Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
a635a8a5
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a635a8a5
编写于
8月 26, 2022
作者:
R
Ruibiao Chen
提交者:
GitHub
8月 26, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Move conv2d_transpose_grad XPU kernel to PHI, test=kunlun (#45466)
上级
81eaa97d
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
106 addition
and
116 deletion
+106
-116
paddle/fluid/operators/conv_transpose_op_xpu.cc
paddle/fluid/operators/conv_transpose_op_xpu.cc
+0
-116
paddle/phi/kernels/xpu/conv_transpose_grad_kernel.cc
paddle/phi/kernels/xpu/conv_transpose_grad_kernel.cc
+106
-0
未找到文件。
paddle/fluid/operators/conv_transpose_op_xpu.cc
已删除
100644 → 0
浏览文件 @
81eaa97d
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_transpose_op.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#include "paddle/phi/kernels/cpu/conv_util.h"
#ifdef PADDLE_WITH_XPU
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
Conv2DTransposeGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
const
Tensor
*
output_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
Tensor
*
input_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
Tensor
*
filter_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
// The filter and filter_grad will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
if
(
!
input_grad
&&
!
filter_grad
)
return
;
int
groups
=
context
.
Attr
<
int
>
(
"groups"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
const
std
::
string
data_format
=
context
.
Attr
<
std
::
string
>
(
"data_format"
);
const
std
::
string
padding_algorithm
=
context
.
Attr
<
std
::
string
>
(
"padding_algorithm"
);
PADDLE_ENFORCE_EQ
(
data_format
==
"NHWC"
||
data_format
==
"NDHWC"
,
false
,
platform
::
errors
::
InvalidArgument
(
(
"XPU do support data_format is NCHW in conv grad op."
)));
framework
::
DDim
in_data_dims
=
phi
::
slice_ddim
(
input
->
dims
(),
2
,
input
->
dims
().
size
());
framework
::
DDim
filter_data_dims
=
phi
::
slice_ddim
(
filter
.
dims
(),
2
,
filter
.
dims
().
size
());
std
::
vector
<
int
>
ksize
=
phi
::
vectorize
<
int
>
(
filter_data_dims
);
phi
::
UpdatePaddingAndDilation
(
&
paddings
,
&
dilations
,
padding_algorithm
,
in_data_dims
,
strides
,
ksize
);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
img_yc
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
img_yh
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
img_yw
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
img_xc
=
static_cast
<
int
>
(
output_grad
->
dims
()[
1
]);
const
int
img_xh
=
static_cast
<
int
>
(
output_grad
->
dims
()[
2
]);
const
int
img_xw
=
static_cast
<
int
>
(
output_grad
->
dims
()[
3
]);
if
(
input_grad
)
{
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
}
if
(
filter_grad
)
{
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
conv2d_transpose_grad
<
float
,
float
,
float
,
int16_t
>
(
dev_ctx
.
x_context
(),
input
->
data
<
T
>
(),
filter
.
data
<
T
>
(),
output_grad
->
data
<
T
>
(),
input_grad
?
input_grad
->
data
<
T
>
()
:
nullptr
,
filter_grad
?
filter_grad
->
data
<
T
>
()
:
nullptr
,
batch_size
,
img_yc
,
img_yh
,
img_yw
,
img_xc
,
img_xh
,
img_xw
,
ksize
,
strides
,
paddings
,
dilations
,
groups
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
true
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"conv2d_transpose_grad"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
conv2d_transpose_grad
,
ops
::
Conv2DTransposeGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif
paddle/phi/kernels/xpu/conv_transpose_grad_kernel.cc
0 → 100644
浏览文件 @
a635a8a5
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/conv_transpose_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/conv_util.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
Conv2dTransposeGradKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
filter
,
const
DenseTensor
&
dout
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
output_padding
,
const
std
::
vector
<
int
>&
output_size
,
const
std
::
string
&
padding_algorithm
,
int
groups
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
string
&
data_format
,
DenseTensor
*
dx
,
DenseTensor
*
dfilter
)
{
// The filter and dfilter will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
DenseTensor
filter_
=
filter
;
if
(
!
dx
&&
!
dfilter
)
return
;
std
::
vector
<
int
>
paddings_
=
paddings
;
std
::
vector
<
int
>
dilations_
=
dilations
;
PADDLE_ENFORCE_EQ
(
data_format
==
"NHWC"
||
data_format
==
"NDHWC"
,
false
,
errors
::
InvalidArgument
(
(
"XPU do support data_format is NCHW in conv grad op."
)));
DDim
in_data_dims
=
slice_ddim
(
x
.
dims
(),
2
,
x
.
dims
().
size
());
DDim
filter_data_dims
=
slice_ddim
(
filter_
.
dims
(),
2
,
filter_
.
dims
().
size
());
std
::
vector
<
int
>
ksize
=
vectorize
<
int
>
(
filter_data_dims
);
UpdatePaddingAndDilation
(
&
paddings_
,
&
dilations_
,
padding_algorithm
,
in_data_dims
,
strides
,
ksize
);
const
int
batch_size
=
static_cast
<
int
>
(
x
.
dims
()[
0
]);
const
int
img_yc
=
static_cast
<
int
>
(
x
.
dims
()[
1
]);
const
int
img_yh
=
static_cast
<
int
>
(
x
.
dims
()[
2
]);
const
int
img_yw
=
static_cast
<
int
>
(
x
.
dims
()[
3
]);
const
int
img_xc
=
static_cast
<
int
>
(
dout
.
dims
()[
1
]);
const
int
img_xh
=
static_cast
<
int
>
(
dout
.
dims
()[
2
]);
const
int
img_xw
=
static_cast
<
int
>
(
dout
.
dims
()[
3
]);
if
(
dx
)
{
ctx
.
template
Alloc
<
T
>(
dx
);
}
if
(
dfilter
)
{
ctx
.
template
Alloc
<
T
>(
dfilter
);
}
int
r
=
xpu
::
conv2d_transpose_grad
<
float
,
float
,
float
,
int16_t
>
(
ctx
.
x_context
(),
x
.
data
<
T
>
(),
filter_
.
data
<
T
>
(),
dout
.
data
<
T
>
(),
dx
?
dx
->
data
<
T
>
()
:
nullptr
,
dfilter
?
dfilter
->
data
<
T
>
()
:
nullptr
,
batch_size
,
img_yc
,
img_yh
,
img_yw
,
img_xc
,
img_xh
,
img_xw
,
ksize
,
strides
,
paddings_
,
dilations_
,
groups
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
true
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"conv2d_transpose_grad"
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
conv2d_transpose_grad
,
XPU
,
ALL_LAYOUT
,
phi
::
Conv2dTransposeGradKernel
,
float
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录