未验证 提交 a3cc4a4a 编写于 作者: M Meiyim 提交者: GitHub

[NPU] Support npu op table_lookup_v2 and table_lookup_v2_grad (#31399)

* [npu] support npu kernel `table_lookup_v2`

* clean up

* +python test

* +cmake

* clean up

* remove int8 kernel
+ python unitest for fp16

* clean up
上级 f2504160
...@@ -156,6 +156,9 @@ cc_library(tensor_formatter SRCS tensor_formatter.cc DEPS ${OP_HEADER_DEPS}) ...@@ -156,6 +156,9 @@ cc_library(tensor_formatter SRCS tensor_formatter.cc DEPS ${OP_HEADER_DEPS})
if (WITH_PYTHON) if (WITH_PYTHON)
cc_library(py_func_op SRCS py_func_op.cc DEPS op_registry python pybind) cc_library(py_func_op SRCS py_func_op.cc DEPS op_registry python pybind)
endif() endif()
if (WITH_ASCEND_CL)
cc_test(lookup_table_v2_op_npu_test SRCS lookup_table_v2_op_npu_test.cc DEPS op_registry lookup_table_v2_op scope device_context enforce executor compare_op)
endif()
if (WITH_ASCEND_CL) if (WITH_ASCEND_CL)
cc_test(range_op_npu_test SRCS range_op_npu_test.cc DEPS op_registry range_op scope device_context enforce executor) cc_test(range_op_npu_test SRCS range_op_npu_test.cc DEPS op_registry range_op scope device_context enforce executor)
......
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <iostream>
#include <memory>
#include <string>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class LookupTableV2NPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *ids_t = ctx.Input<framework::LoDTensor>("Ids"); // int tensor
auto *output_t = ctx.Output<framework::LoDTensor>("Out"); // float tensor
auto *table_t = ctx.Input<framework::LoDTensor>("W");
auto *table_var = ctx.InputVar("W");
PADDLE_ENFORCE_EQ(
table_var->IsType<framework::LoDTensor>(), true,
platform::errors::InvalidArgument("npu only accept LoDTensor"));
output_t->mutable_data<T>(ctx.GetPlace());
framework::NPUAttributeMap attr_input = {{"validate_indices", false}};
auto runner =
NpuOpRunner("Gather", {*table_t, *ids_t}, {*output_t}, attr_input);
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
}
};
template <typename T>
class LookupTableV2GradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *ids_t = ctx.Input<framework::LoDTensor>("Ids");
auto *output_grad_t =
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
auto *table_t = ctx.Input<framework::LoDTensor>("W");
auto *table_grad_t =
ctx.Output<framework::LoDTensor>(framework::GradVarName("W"));
framework::NPUAttributeMap attr_input = {{"use_locking", true}};
auto runner = NpuOpRunner("ScatterAdd", {*table_t, *ids_t, *output_grad_t},
{*table_grad_t}, attr_input);
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
lookup_table_v2,
ops::LookupTableV2NPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::LookupTableV2NPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
lookup_table_v2_grad, ops::LookupTableV2GradNPUKernel<float>,
ops::LookupTableV2GradNPUKernel<paddle::platform::float16>);
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef _WIN32
#include <unistd.h>
#endif
#include <cmath>
#include <iostream>
#include <numeric>
#include <string>
#include <thread> // NOLINT
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/string/printf.h"
namespace f = paddle::framework;
namespace p = paddle::platform;
namespace m = paddle::operators::math;
USE_OP(lookup_table_v2);
USE_OP_DEVICE_KERNEL(lookup_table_v2, NPU);
template <typename T>
void Compare(f::Scope* scope, const p::DeviceContext& ctx) {
// init
auto ids = scope->Var("Ids");
auto out = scope->Var("Out");
auto w = scope->Var("W");
auto ids_t = ids->GetMutable<f::LoDTensor>();
auto out_t = out->GetMutable<f::LoDTensor>();
auto w_t = w->GetMutable<f::LoDTensor>();
int bsz = 10;
int dim = 32;
int seqlen = 8;
int vocab_size = 100;
TensorFromVector(std::vector<int64_t>(bsz * seqlen, 3), ctx, ids_t);
std::vector<T> val(vocab_size * dim, 10.);
TensorFromVector(val, ctx, w_t);
ids_t->Resize({bsz, seqlen});
w_t->Resize({vocab_size, dim});
out_t->Resize({bsz, seqlen, dim});
ctx.Wait();
auto place = ctx.GetPlace();
out_t->mutable_data<T>(place);
f::AttributeMap attrs = {{}};
auto op = f::OpRegistry::CreateOp("lookup_table_v2",
{{"W", {"W"}}, {"Ids", {"Ids"}}},
{{"Out", {"Out"}}}, attrs);
op->Run(*scope, place);
std::vector<T> out_v;
TensorToVector(*out_t, ctx, &out_v);
ctx.Wait();
EXPECT_EQ(out_t->numel(), bsz * seqlen * dim);
T res = std::accumulate(out_v.begin(), out_v.end(), 0.);
float eps = 1.e-6;
EXPECT_LT(fabs(res - bsz * seqlen * dim * 10.), eps);
}
template <typename T>
void CompareGrad(f::Scope* scope, const p::DeviceContext& ctx) {
// init
auto w = scope->Var("W");
auto ids = scope->Var("Ids");
auto out = scope->Var("DOut");
auto dw = scope->Var("DW");
auto w_t = w->GetMutable<f::LoDTensor>();
auto ids_t = ids->GetMutable<f::LoDTensor>();
auto out_t = out->GetMutable<f::LoDTensor>();
auto dw_t = dw->GetMutable<f::LoDTensor>();
int bsz = 2;
int dim = 2;
int seqlen = 2;
int vocab_size = 4;
std::vector<int64_t> val_int(bsz * seqlen, 3);
std::vector<T> val(vocab_size * dim, 0.);
std::vector<T> val_out(bsz * seqlen * dim, 1.);
TensorFromVector(val_int, ctx, ids_t);
TensorFromVector(val, ctx, w_t);
TensorFromVector(val, ctx, dw_t);
TensorFromVector(val_out, ctx, out_t);
w_t->Resize({vocab_size, dim});
ids_t->Resize({bsz, seqlen});
out_t->Resize({bsz, seqlen, dim});
dw_t->Resize({vocab_size, dim});
ctx.Wait();
auto place = ctx.GetPlace();
out_t->mutable_data<T>(place);
w_t->mutable_data<T>(place);
dw_t->mutable_data<T>(place);
f::AttributeMap attrs = {{}};
auto op = f::OpRegistry::CreateOp(
"lookup_table_v2_grad",
{{"Ids", {"Ids"}}, {"W", {"W"}}, {"Out@GRAD", {"DOut"}}},
{{"W@GRAD", {"DW"}}}, attrs);
op->Run(*scope, place);
ctx.Wait();
std::vector<T> w_v;
TensorToVector(*dw_t, ctx, &w_v);
ctx.Wait();
EXPECT_EQ(dw_t->numel(), vocab_size * dim);
T res = std::accumulate(w_v.begin(), w_v.end(), 0.);
float eps = 1.e-6;
EXPECT_LT(fabs(res - bsz * seqlen * dim), eps);
}
TEST(lookup_table_v2, NPU_fp32) {
f::Scope scope;
p::NPUDeviceContext ctx(p::NPUPlace(0));
Compare<float>(&scope, ctx);
}
TEST(lookup_table_v2_grad, NPU_fp32) {
f::Scope scope;
p::NPUDeviceContext ctx(p::NPUPlace(0));
CompareGrad<float>(&scope, ctx);
}
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
paddle.enable_static()
SEED = 2021
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestLookupTableV2(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "lookup_table_v2"
self.place = paddle.NPUPlace(0)
self.init_dtype()
np.random.seed(SEED)
bsz=2
seqlen=2
vocab=3
dim=2
w = np.ones([vocab, dim]).astype(self.dtype)
x = np.random.randint(0, vocab, size=(bsz, seqlen)).astype(np.int64)
out = np.ones([bsz, seqlen, dim]).astype(self.dtype)
self.inputs = {'W': OpTest.np_dtype_to_fluid_dtype(w), 'Ids': OpTest.np_dtype_to_fluid_dtype(x)}
self.attrs = {
'is_sparse': False,
'is_distributed': False,
'remote_prefetch':False,
'padding_idx': -1
}
self.outputs = {'Out': out}
def set_npu(self):
self.__class__.use_npu = True
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)
# TODO(ascendrc): Add grad test
# def test_check_grad(self):
# if self.dtype == np.float16:
# return
# self.check_grad(['X'], 'Out')
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestLookupTableV2FP16(TestLookupTableV2):
no_need_check_grad = True
def init_dtype(self):
self.dtype = np.float16
#@unittest.skipIf(not paddle.is_compiled_with_npu(),
# "core is not compiled with NPU")
#class TestLookupTableV2Int8(TestLookupTableV2):
# def init_dtype(self):
# self.dtype = np.int8
#
#@unittest.skipIf(not paddle.is_compiled_with_npu(),
# "core is not compiled with NPU")
#class TestLookupTableV2UInt8(TestLookupTableV2):
# def init_dtype(self):
# self.dtype = np.uint8
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestLookupTableV2Net(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)
bsz=3
seqlen=2
vocab=3
dim=2
ids_np = np.random.randint(0, vocab, size=(bsz, seqlen)).astype('int64')
with paddle.static.program_guard(main_prog, startup_prog):
emb = paddle.nn.Embedding(vocab, dim)
ids = paddle.static.data(name="ids", shape=[bsz, seqlen], dtype='int64')
res = emb(ids)
loss = res.sum()
if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
for epoch in range(1):
loss_res, w = exe.run(
main_prog,
feed={"ids": ids_np},
fetch_list=[loss, emb.weight])
if epoch % 10 == 0:
print(w)
print("Epoch {} | Loss: {}".format(epoch, loss))
return loss_res
def test_npu(self):
cpu_loss = self._test(False)
npu_loss = self._test(True)
self.assertTrue(np.allclose(npu_loss, cpu_loss))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册