Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
a30d53b7
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a30d53b7
编写于
10月 17, 2017
作者:
W
wangmeng28
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'upstream/develop' into factorization_machine_layer
上级
8654e8a5
3ae9aa93
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
387 addition
and
20 deletion
+387
-20
doc/api/v2/config/networks.rst
doc/api/v2/config/networks.rst
+5
-0
paddle/gserver/gradientmachines/NeuralNetwork.cpp
paddle/gserver/gradientmachines/NeuralNetwork.cpp
+15
-0
paddle/gserver/gradientmachines/NeuralNetwork.h
paddle/gserver/gradientmachines/NeuralNetwork.h
+3
-0
paddle/gserver/layers/MKLDNNConvLayer.cpp
paddle/gserver/layers/MKLDNNConvLayer.cpp
+5
-3
paddle/gserver/layers/MKLDNNLayer.h
paddle/gserver/layers/MKLDNNLayer.h
+18
-1
paddle/gserver/layers/MKLDNNPoolLayer.cpp
paddle/gserver/layers/MKLDNNPoolLayer.cpp
+5
-3
paddle/gserver/tests/CMakeLists.txt
paddle/gserver/tests/CMakeLists.txt
+4
-1
paddle/gserver/tests/MKLDNNTester.cpp
paddle/gserver/tests/MKLDNNTester.cpp
+141
-0
paddle/gserver/tests/MKLDNNTester.h
paddle/gserver/tests/MKLDNNTester.h
+30
-8
paddle/gserver/tests/mkldnn_branches_conv.conf
paddle/gserver/tests/mkldnn_branches_conv.conf
+56
-0
paddle/gserver/tests/test_MKLDNN.cpp
paddle/gserver/tests/test_MKLDNN.cpp
+19
-2
python/paddle/trainer_config_helpers/networks.py
python/paddle/trainer_config_helpers/networks.py
+86
-2
未找到文件。
doc/api/v2/config/networks.rst
浏览文件 @
a30d53b7
...
@@ -125,3 +125,8 @@ simple_attention
...
@@ -125,3 +125,8 @@ simple_attention
:members: simple_attention
:members: simple_attention
:noindex:
:noindex:
dot_product_attention
---------------------
.. automodule:: paddle.v2.networks
:members: dot_product_attention
:noindex:
paddle/gserver/gradientmachines/NeuralNetwork.cpp
浏览文件 @
a30d53b7
...
@@ -21,6 +21,10 @@ limitations under the License. */
...
@@ -21,6 +21,10 @@ limitations under the License. */
#include "paddle/utils/Logging.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "paddle/utils/Stat.h"
#ifdef PADDLE_USE_MKLDNN
#include "paddle/gserver/layers/MKLDNNLayer.h"
#endif
#ifndef PADDLE_MOBILE_INFERENCE
#ifndef PADDLE_MOBILE_INFERENCE
#include "MultiNetwork.h"
#include "MultiNetwork.h"
#include "RecurrentGradientMachine.h"
#include "RecurrentGradientMachine.h"
...
@@ -300,6 +304,17 @@ void NeuralNetwork::backward(const UpdateCallback& callback) {
...
@@ -300,6 +304,17 @@ void NeuralNetwork::backward(const UpdateCallback& callback) {
}
}
}
}
void
NeuralNetwork
::
finish
()
{
#ifdef PADDLE_USE_MKLDNN
FOR_EACH_R
(
layer
,
layers_
)
{
MKLDNNLayerPtr
dnnLayer
=
std
::
dynamic_pointer_cast
<
MKLDNNLayer
>
(
*
layer
);
if
(
dnnLayer
)
{
dnnLayer
->
convertWeightsToPaddle
();
}
}
#endif
}
Argument
NeuralNetwork
::
getLayerOutput
(
const
std
::
string
&
layerName
)
{
Argument
NeuralNetwork
::
getLayerOutput
(
const
std
::
string
&
layerName
)
{
return
getLayer
(
layerName
)
->
getOutput
();
return
getLayer
(
layerName
)
->
getOutput
();
}
}
...
...
paddle/gserver/gradientmachines/NeuralNetwork.h
浏览文件 @
a30d53b7
...
@@ -134,6 +134,9 @@ public:
...
@@ -134,6 +134,9 @@ public:
const
std
::
string
&
getName
()
const
{
return
subModelName_
;
}
const
std
::
string
&
getName
()
const
{
return
subModelName_
;
}
/// some finish work, like convert the weight format of MKLDNNLayers
void
finish
()
override
;
protected:
protected:
/**
/**
* The constructor of NeuralNetwork.
* The constructor of NeuralNetwork.
...
...
paddle/gserver/layers/MKLDNNConvLayer.cpp
浏览文件 @
a30d53b7
...
@@ -313,6 +313,7 @@ void MKLDNNConvLayer::resetOutValue(
...
@@ -313,6 +313,7 @@ void MKLDNNConvLayer::resetOutValue(
cvtOutVal_
=
MKLDNNMatrix
::
createReorder
(
out
,
cpuOutVal_
);
cvtOutVal_
=
MKLDNNMatrix
::
createReorder
(
out
,
cpuOutVal_
);
CHECK
(
cvtOutVal_
)
<<
"should not be empty"
;
CHECK
(
cvtOutVal_
)
<<
"should not be empty"
;
}
else
{
}
else
{
cpuOut
->
setData
(
output_
.
value
->
getData
());
cpuOutVal_
=
out
;
cpuOutVal_
=
out
;
}
}
// when output is cpu device, change the mkldnn output value and make them
// when output is cpu device, change the mkldnn output value and make them
...
@@ -456,17 +457,18 @@ void MKLDNNConvLayer::resetOutGrad(
...
@@ -456,17 +457,18 @@ void MKLDNNConvLayer::resetOutGrad(
MKLDNNLayer
::
resetOutGrad
(
out
,
outVal_
->
getPrimitiveDesc
());
MKLDNNLayer
::
resetOutGrad
(
out
,
outVal_
->
getPrimitiveDesc
());
}
else
{
}
else
{
const
MatrixPtr
&
cpuOut
=
getOutput
(
CPU_DEVICE
).
grad
;
const
MatrixPtr
&
cpuOut
=
getOutput
(
CPU_DEVICE
).
grad
;
// always share the same grad data of CPU output
// then the activation can get the right grad from output_.grad
output_
.
grad
->
setData
(
cpuOut
->
getData
());
// same PrimitiveDesc with cpuInVal_
// same PrimitiveDesc with cpuInVal_
CHECK
(
cpuOutVal_
);
CHECK
(
cpuOutVal_
);
cpuOutGrad_
=
MKLDNNMatrix
::
create
(
cpuOut
,
cpuOutVal_
->
getPrimitiveDesc
());
cpuOutGrad_
=
MKLDNNMatrix
::
create
(
cpuOut
,
cpuOutVal_
->
getPrimitiveDesc
());
// create reorder if primitive desc does not match
// create reorder if primitive desc does not match
if
(
cpuOutGrad_
->
getPrimitiveDesc
()
!=
outVal_
->
getPrimitiveDesc
())
{
if
(
cpuOutGrad_
->
getPrimitiveDesc
()
!=
outVal_
->
getPrimitiveDesc
())
{
out
=
MKLDNNMatrix
::
create
(
output_
.
grad
,
outVal_
->
getPrimitiveDesc
());
out
=
MKLDNNMatrix
::
create
(
nullptr
,
outVal_
->
getPrimitiveDesc
());
cvtOutGrad_
=
MKLDNNMatrix
::
createReorder
(
cpuOutGrad_
,
out
);
cvtOutGrad_
=
MKLDNNMatrix
::
createReorder
(
cpuOutGrad_
,
out
);
CHECK
(
cvtOutGrad_
);
CHECK
(
cvtOutGrad_
);
}
else
{
}
else
{
// share the same data of CPU output
output_
.
grad
->
setData
(
cpuOut
->
getData
());
out
=
cpuOutGrad_
;
out
=
cpuOutGrad_
;
}
}
}
}
...
...
paddle/gserver/layers/MKLDNNLayer.h
浏览文件 @
a30d53b7
...
@@ -46,6 +46,9 @@ protected:
...
@@ -46,6 +46,9 @@ protected:
// backward also need reset after reset forward handle
// backward also need reset after reset forward handle
bool
needResetBwd_
;
bool
needResetBwd_
;
// is output only mkldnn
bool
outputOnlyMKLDNN_
;
// mkldnn engine, stream and primivtives
// mkldnn engine, stream and primivtives
mkldnn
::
engine
engine_
;
mkldnn
::
engine
engine_
;
std
::
shared_ptr
<
MKLDNNStream
>
stream_
;
std
::
shared_ptr
<
MKLDNNStream
>
stream_
;
...
@@ -141,6 +144,9 @@ public:
...
@@ -141,6 +144,9 @@ public:
updateInputData
();
updateInputData
();
}
}
if
(
!
outputOnlyMKLDNN_
)
{
clearGrads
();
}
stream_
->
submit
(
pipelineFwd_
);
stream_
->
submit
(
pipelineFwd_
);
}
}
...
@@ -389,7 +395,8 @@ protected:
...
@@ -389,7 +395,8 @@ protected:
CHECK_EQ
(
outputOtherDevice_
[
i
].
deviceId
,
CPU_DEVICE
)
CHECK_EQ
(
outputOtherDevice_
[
i
].
deviceId
,
CPU_DEVICE
)
<<
"Only support other device is CPU yet"
;
<<
"Only support other device is CPU yet"
;
}
}
return
outputOtherDevice_
.
size
()
==
0
;
outputOnlyMKLDNN_
=
outputOtherDevice_
.
size
()
==
0
;
return
outputOnlyMKLDNN_
;
}
}
/**
/**
...
@@ -398,6 +405,16 @@ protected:
...
@@ -398,6 +405,16 @@ protected:
void
setDevice
(
int
id
)
{
deviceId_
=
id
;
}
void
setDevice
(
int
id
)
{
deviceId_
=
id
;
}
private:
private:
/**
* clear all grad
*/
void
clearGrads
()
{
output_
.
grad
->
zeroMem
();
for
(
size_t
i
=
0
;
i
<
outputOtherDevice_
.
size
();
i
++
)
{
outputOtherDevice_
[
i
].
grad
->
zeroMem
();
}
}
/**
/**
* Set deviceId of the params used in this layer.
* Set deviceId of the params used in this layer.
*/
*/
...
...
paddle/gserver/layers/MKLDNNPoolLayer.cpp
浏览文件 @
a30d53b7
...
@@ -146,6 +146,7 @@ void MKLDNNPoolLayer::resetOutValue(MKLDNNMatrixPtr& out) {
...
@@ -146,6 +146,7 @@ void MKLDNNPoolLayer::resetOutValue(MKLDNNMatrixPtr& out) {
cvtOutVal_
=
MKLDNNMatrix
::
createReorder
(
out
,
cpuOutVal_
);
cvtOutVal_
=
MKLDNNMatrix
::
createReorder
(
out
,
cpuOutVal_
);
CHECK
(
cvtOutVal_
)
<<
"should not be emptry"
;
CHECK
(
cvtOutVal_
)
<<
"should not be emptry"
;
}
else
{
}
else
{
cpuOut
->
setData
(
output_
.
value
->
getData
());
cpuOutVal_
=
out
;
cpuOutVal_
=
out
;
}
}
output_
.
value
=
std
::
dynamic_pointer_cast
<
Matrix
>
(
cpuOutVal_
);
output_
.
value
=
std
::
dynamic_pointer_cast
<
Matrix
>
(
cpuOutVal_
);
...
@@ -213,15 +214,16 @@ void MKLDNNPoolLayer::resetOutGrad(MKLDNNMatrixPtr& out) {
...
@@ -213,15 +214,16 @@ void MKLDNNPoolLayer::resetOutGrad(MKLDNNMatrixPtr& out) {
MKLDNNLayer
::
resetOutGrad
(
out
,
outVal_
->
getPrimitiveDesc
());
MKLDNNLayer
::
resetOutGrad
(
out
,
outVal_
->
getPrimitiveDesc
());
}
else
{
}
else
{
const
MatrixPtr
&
cpuOut
=
getOutput
(
CPU_DEVICE
).
grad
;
const
MatrixPtr
&
cpuOut
=
getOutput
(
CPU_DEVICE
).
grad
;
// always share the same grad data of CPU output
// then the activation can get the right grad from output_.grad
output_
.
grad
->
setData
(
cpuOut
->
getData
());
cpuOutGrad_
=
MKLDNNMatrix
::
create
(
cpuOutGrad_
=
MKLDNNMatrix
::
create
(
cpuOut
,
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
},
format
::
nchw
,
engine_
);
cpuOut
,
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
},
format
::
nchw
,
engine_
);
if
(
cpuOutGrad_
->
getPrimitiveDesc
()
!=
outVal_
->
getPrimitiveDesc
())
{
if
(
cpuOutGrad_
->
getPrimitiveDesc
()
!=
outVal_
->
getPrimitiveDesc
())
{
out
=
MKLDNNMatrix
::
create
(
output_
.
grad
,
outVal_
->
getPrimitiveDesc
());
out
=
MKLDNNMatrix
::
create
(
nullptr
,
outVal_
->
getPrimitiveDesc
());
cvtOutGrad_
=
MKLDNNMatrix
::
createReorder
(
cpuOutGrad_
,
out
);
cvtOutGrad_
=
MKLDNNMatrix
::
createReorder
(
cpuOutGrad_
,
out
);
CHECK
(
cvtOutGrad_
)
<<
"should not be emptry"
;
CHECK
(
cvtOutGrad_
)
<<
"should not be emptry"
;
}
else
{
}
else
{
// share the same data of CPU output
output_
.
grad
->
setData
(
cpuOut
->
getData
());
out
=
cpuOutGrad_
;
out
=
cpuOutGrad_
;
}
}
}
}
...
...
paddle/gserver/tests/CMakeLists.txt
浏览文件 @
a30d53b7
...
@@ -26,7 +26,10 @@ if(WITH_MKLDNN)
...
@@ -26,7 +26,10 @@ if(WITH_MKLDNN)
test_MKLDNN.cpp
test_MKLDNN.cpp
MKLDNNTester.cpp
MKLDNNTester.cpp
LayerGradUtil.cpp
)
LayerGradUtil.cpp
)
add_test
(
NAME test_MKLDNN COMMAND test_MKLDNN
)
add_test
(
NAME test_MKLDNN
COMMAND .set_python_path.sh -d
${
PADDLE_SOURCE_DIR
}
/python
${
CMAKE_CURRENT_BINARY_DIR
}
/test_MKLDNN
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle
)
endif
()
endif
()
################ test_CRFLayerGrad ####################
################ test_CRFLayerGrad ####################
...
...
paddle/gserver/tests/MKLDNNTester.cpp
浏览文件 @
a30d53b7
...
@@ -15,6 +15,7 @@ limitations under the License. */
...
@@ -15,6 +15,7 @@ limitations under the License. */
#include "MKLDNNTester.h"
#include "MKLDNNTester.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/gserver/layers/MKLDNNLayer.h"
#include "paddle/gserver/layers/MKLDNNLayer.h"
#include "paddle/trainer/Trainer.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -315,6 +316,7 @@ void MKLDNNTester::runOnce() {
...
@@ -315,6 +316,7 @@ void MKLDNNTester::runOnce() {
auto
&
value
=
para
->
getBuf
(
PARAMETER_VALUE
);
auto
&
value
=
para
->
getBuf
(
PARAMETER_VALUE
);
real
lr
=
1e-3
;
real
lr
=
1e-3
;
value
->
add
(
*
grad
,
lr
);
value
->
add
(
*
grad
,
lr
);
grad
->
zeroMem
();
};
};
randomTopDiffs
();
randomTopDiffs
();
dnnLayer_
->
backward
(
updateCallback
);
dnnLayer_
->
backward
(
updateCallback
);
...
@@ -411,4 +413,143 @@ void MKLDNNTester::run(const TestConfig& dnn,
...
@@ -411,4 +413,143 @@ void MKLDNNTester::run(const TestConfig& dnn,
}
}
}
}
void
MKLDNNTester
::
initArgument
(
DataIn
&
data
,
const
std
::
string
&
configPath
,
const
size_t
iter
)
{
TrainerConfigHelper
config
(
configPath
);
size_t
batchSize
=
config
.
getOptConfig
().
batch_size
();
data
.
inArgs
.
resize
(
iter
);
data
.
outGrads
.
resize
(
iter
);
data
.
paraValues
.
clear
();
for
(
const
auto
&
layer_name
:
config
.
getModelConfig
().
input_layer_names
())
{
auto
layer_config
=
std
::
find_if
(
config
.
getModelConfig
().
layers
().
begin
(),
config
.
getModelConfig
().
layers
().
end
(),
[
=
](
const
LayerConfig
&
layer_config
)
{
return
layer_config
.
name
()
==
layer_name
;
});
CHECK
(
layer_config
!=
config
.
getModelConfig
().
layers
().
end
());
size_t
layerSize
=
layer_config
->
size
();
for
(
size_t
i
=
0
;
i
<
iter
;
++
i
)
{
Argument
arg
;
arg
.
value
=
Matrix
::
create
(
batchSize
,
layerSize
,
false
,
false
);
arg
.
grad
=
Matrix
::
create
(
batchSize
,
layerSize
,
false
,
false
);
arg
.
value
->
randomizeUniform
();
arg
.
value
->
add
(
-
0.5
);
arg
.
value
->
sigmoid
(
*
arg
.
value
);
arg
.
grad
->
zeroMem
();
arg
.
ids
=
VectorT
<
int
>::
create
(
batchSize
,
false
);
arg
.
ids
->
rand
(
layerSize
);
generateSequenceStartPositions
(
batchSize
,
arg
.
sequenceStartPositions
);
data
.
inArgs
[
i
].
push_back
(
arg
);
}
}
for
(
const
auto
&
layer_name
:
config
.
getModelConfig
().
output_layer_names
())
{
auto
layer_config
=
std
::
find_if
(
config
.
getModelConfig
().
layers
().
begin
(),
config
.
getModelConfig
().
layers
().
end
(),
[
=
](
const
LayerConfig
&
layer_config
)
{
return
layer_config
.
name
()
==
layer_name
;
});
CHECK
(
layer_config
!=
config
.
getModelConfig
().
layers
().
end
());
size_t
layerSize
=
layer_config
->
size
();
for
(
size_t
i
=
0
;
i
<
iter
;
++
i
)
{
MatrixPtr
grad
=
Matrix
::
create
(
batchSize
,
layerSize
,
false
,
false
);
grad
->
randomizeUniform
();
data
.
outGrads
[
i
].
push_back
(
grad
);
}
}
for
(
const
auto
&
para_config
:
config
.
getModelConfig
().
parameters
())
{
VectorPtr
value
=
Vector
::
create
(
para_config
.
size
(),
false
);
value
->
randnorm
(
0
,
2
);
data
.
paraValues
.
push_back
(
value
);
}
}
void
MKLDNNTester
::
getOutResult
(
const
std
::
string
&
configPath
,
DataIn
&
in
,
DataOut
&
out
,
bool
use_mkldnn
,
size_t
iter
)
{
FLAGS_use_gpu
=
false
;
FLAGS_use_mkldnn
=
use_mkldnn
;
*
ThreadLocalRand
::
getSeed
()
=
1
;
srand
(
1
);
Trainer
trainer
;
auto
config
=
std
::
make_shared
<
TrainerConfigHelper
>
(
configPath
);
trainer
.
init
(
config
,
false
);
auto
gradientMachine
=
trainer
.
getGradientMachine
();
std
::
vector
<
ParameterPtr
>
parameters
=
gradientMachine
->
getParameters
();
for
(
size_t
i
=
0
;
i
<
in
.
paraValues
.
size
();
i
++
)
{
parameters
[
i
]
->
getBuf
(
PARAMETER_VALUE
)
->
copyFrom
(
*
in
.
paraValues
[
i
]);
}
UpdateCallback
simpleUpdate
=
[](
Parameter
*
para
)
{
auto
&
grad
=
para
->
getBuf
(
PARAMETER_GRADIENT
);
auto
&
value
=
para
->
getBuf
(
PARAMETER_VALUE
);
real
lr
=
1e-2
;
value
->
add
(
*
grad
,
lr
);
grad
->
zeroMem
();
};
vector
<
Argument
>
outArgs
;
gradientMachine
->
start
();
out
.
outValues
.
clear
();
out
.
paraValues
.
clear
();
for
(
size_t
i
=
0
;
i
<
iter
;
++
i
)
{
VLOG
(
MKLDNN_TESTS
)
<<
"runing iteration "
<<
i
;
gradientMachine
->
forward
(
in
.
inArgs
[
i
],
&
outArgs
,
PASS_TRAIN
);
// save forward result
for
(
size_t
k
=
0
;
k
<
outArgs
.
size
();
k
++
)
{
MatrixPtr
value
=
Matrix
::
create
(
outArgs
[
k
].
value
->
getHeight
(),
outArgs
[
k
].
value
->
getWidth
(),
false
,
false
);
value
->
copyFrom
(
*
outArgs
[
k
].
value
);
out
.
outValues
.
push_back
(
value
);
}
// random backward input
for
(
size_t
k
=
0
;
k
<
outArgs
.
size
();
k
++
)
{
outArgs
[
k
].
grad
->
copyFrom
(
*
in
.
outGrads
[
i
][
k
]);
}
gradientMachine
->
backward
(
simpleUpdate
);
}
gradientMachine
->
finish
();
// save param value
for
(
size_t
i
=
0
;
i
<
in
.
paraValues
.
size
();
i
++
)
{
VectorPtr
val
=
Vector
::
create
(
parameters
[
i
]
->
getBuf
(
PARAMETER_VALUE
)
->
getSize
(),
false
);
val
->
copyFrom
(
*
parameters
[
i
]
->
getBuf
(
PARAMETER_VALUE
));
out
.
paraValues
.
push_back
(
val
);
}
}
void
MKLDNNTester
::
compareResult
(
DataOut
&
ref
,
DataOut
&
dnn
,
float
eps
)
{
CHECK_EQ
(
ref
.
outValues
.
size
(),
dnn
.
outValues
.
size
());
CHECK_EQ
(
ref
.
paraValues
.
size
(),
dnn
.
paraValues
.
size
());
for
(
size_t
i
=
0
;
i
<
ref
.
outValues
.
size
();
i
++
)
{
EXPECT_LE
(
fabs
(
compareMatrix
(
ref
.
outValues
[
i
],
dnn
.
outValues
[
i
])),
eps
);
}
for
(
size_t
i
=
0
;
i
<
ref
.
paraValues
.
size
();
i
++
)
{
EXPECT_LE
(
fabs
(
compareVector
(
ref
.
paraValues
[
i
],
dnn
.
paraValues
[
i
])),
eps
);
}
}
void
MKLDNNTester
::
runBranchesTest
(
const
std
::
string
&
configPath
,
size_t
iter
,
float
eps
)
{
DataIn
in
;
initArgument
(
in
,
configPath
,
iter
);
DataOut
outCpu
,
outDnn
;
getOutResult
(
configPath
,
in
,
outCpu
,
false
,
iter
);
getOutResult
(
configPath
,
in
,
outDnn
,
true
,
iter
);
compareResult
(
outCpu
,
outDnn
,
eps
);
}
}
// namespace paddle
}
// namespace paddle
paddle/gserver/tests/MKLDNNTester.h
浏览文件 @
a30d53b7
...
@@ -33,6 +33,17 @@ class MKLDNNTester {
...
@@ -33,6 +33,17 @@ class MKLDNNTester {
NUM
=
2
,
// Number of total
NUM
=
2
,
// Number of total
};
};
struct
DataIn
{
std
::
vector
<
std
::
vector
<
Argument
>>
inArgs
;
std
::
vector
<
std
::
vector
<
MatrixPtr
>>
outGrads
;
std
::
vector
<
VectorPtr
>
paraValues
;
};
struct
DataOut
{
std
::
vector
<
MatrixPtr
>
outValues
;
std
::
vector
<
VectorPtr
>
paraValues
;
};
protected:
protected:
std
::
vector
<
TestConfig
>
configs_
;
std
::
vector
<
TestConfig
>
configs_
;
vector
<
string
>
layerNames_
;
vector
<
string
>
layerNames_
;
...
@@ -74,7 +85,17 @@ public:
...
@@ -74,7 +85,17 @@ public:
float
epsilon
=
1e-4
,
float
epsilon
=
1e-4
,
bool
log
=
false
,
bool
log
=
false
,
int
level
=
MKLDNN_ALL
);
int
level
=
MKLDNN_ALL
);
void
setLogLevel
(
int
lvl
)
{
lvl_
=
lvl
;
}
static
void
runBranchesTest
(
const
std
::
string
&
configPath
,
size_t
iter
=
3
,
float
eps
=
1e-4
);
static
void
initArgument
(
DataIn
&
data
,
const
std
::
string
&
configPath
,
size_t
iter
=
3
);
static
void
getOutResult
(
const
std
::
string
&
configPath
,
DataIn
&
in
,
DataOut
&
out
,
bool
use_mkldnn
,
size_t
iter
=
3
);
private:
private:
void
reset
(
const
TestConfig
&
dnn
,
const
TestConfig
&
ref
,
size_t
batchSize
);
void
reset
(
const
TestConfig
&
dnn
,
const
TestConfig
&
ref
,
size_t
batchSize
);
...
@@ -101,8 +122,9 @@ private:
...
@@ -101,8 +122,9 @@ private:
void
saveWgt
(
const
vector
<
ParameterPtr
>&
from
,
vector
<
VectorPtr
>&
to
);
void
saveWgt
(
const
vector
<
ParameterPtr
>&
from
,
vector
<
VectorPtr
>&
to
);
void
restoreWgt
(
const
vector
<
VectorPtr
>&
from
,
vector
<
ParameterPtr
>&
to
);
void
restoreWgt
(
const
vector
<
VectorPtr
>&
from
,
vector
<
ParameterPtr
>&
to
);
double
compareMatrix
(
const
MatrixPtr
&
m1
,
const
MatrixPtr
&
m2
);
static
double
compareMatrix
(
const
MatrixPtr
&
m1
,
const
MatrixPtr
&
m2
);
double
compareVector
(
const
VectorPtr
&
v1
,
const
VectorPtr
&
v2
);
static
double
compareVector
(
const
VectorPtr
&
v1
,
const
VectorPtr
&
v2
);
static
void
compareResult
(
DataOut
&
ref
,
DataOut
&
dnn
,
float
eps
=
1e-4
);
/**
/**
* Get delta percent
* Get delta percent
...
@@ -111,11 +133,11 @@ private:
...
@@ -111,11 +133,11 @@ private:
* else return sum(abs(a-b)) / sum(abs(b))
* else return sum(abs(a-b)) / sum(abs(b))
* The return value should be smaller than eps when passing.
* The return value should be smaller than eps when passing.
*/
*/
double
getDelta
(
const
real
*
d1
,
static
double
getDelta
(
const
real
*
d1
,
const
real
*
d2
,
const
real
*
d2
,
size_t
len
,
size_t
len
,
const
float
failRate
=
1e-3
,
const
float
failRate
=
1e-3
,
const
float
thres
=
0.1
);
const
float
thres
=
0.1
);
};
};
}
// namespace paddle
}
// namespace paddle
paddle/gserver/tests/mkldnn_branches_conv.conf
0 → 100644
浏览文件 @
a30d53b7
# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle
.
trainer_config_helpers
import
*
settings
(
batch_size
=
16
)
channels
=
get_config_arg
(
"channels"
,
int
,
2
)
def
two_conv
(
input
,
group_name
):
out1
=
img_conv_layer
(
input
=
input
,
name
=
group_name
+
'_conv1'
,
filter_size
=
1
,
num_filters
=
channels
,
padding
=
0
,
shared_biases
=
True
,
act
=
ReluActivation
())
out2
=
img_conv_layer
(
input
=
input
,
name
=
group_name
+
'_conv2'
,
filter_size
=
3
,
num_filters
=
channels
,
padding
=
1
,
shared_biases
=
True
,
act
=
ReluActivation
())
return
out1
,
out2
data
=
data_layer
(
name
=
"input"
,
size
=
channels
*
16
*
16
)
conv
=
img_conv_layer
(
input
=
data
,
num_channels
=
channels
,
filter_size
=
3
,
num_filters
=
channels
,
padding
=
1
,
shared_biases
=
True
,
act
=
ReluActivation
())
a1
,
a2
=
two_conv
(
input
=
conv
,
group_name
=
'a'
)
concat
=
concat_layer
(
input
=[
a1
,
a2
])
b1
,
b2
=
two_conv
(
input
=
conv
,
group_name
=
'b'
)
addto
=
addto_layer
(
input
=[
b1
,
b2
])
outputs
([
concat
,
addto
])
paddle/gserver/tests/test_MKLDNN.cpp
浏览文件 @
a30d53b7
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include <gtest/gtest.h>
#include <gtest/gtest.h>
#include <paddle/utils/PythonUtil.h>
#include <string>
#include <string>
#include <vector>
#include <vector>
#include "MKLDNNTester.h"
#include "MKLDNNTester.h"
...
@@ -40,12 +41,13 @@ DECLARE_bool(use_mkldnn);
...
@@ -40,12 +41,13 @@ DECLARE_bool(use_mkldnn);
struct
testFcDesc
{
struct
testFcDesc
{
int
bs
;
int
bs
;
int
ic
;
int
ic
;
int
oc
;
int
ih
,
iw
;
// oh == ow == 1
int
ih
,
iw
;
// oh == ow == 1
int
oc
;
};
};
static
void
getMKLDNNFcConfig
(
TestConfig
&
cfg
,
const
testFcDesc
&
pm
)
{
static
void
getMKLDNNFcConfig
(
TestConfig
&
cfg
,
const
testFcDesc
&
pm
)
{
cfg
.
layerConfig
.
set_type
(
"mkldnn_fc"
);
cfg
.
layerConfig
.
set_type
(
"mkldnn_fc"
);
cfg
.
layerConfig
.
set_active_type
(
"relu"
);
cfg
.
layerConfig
.
set_size
(
pm
.
oc
);
cfg
.
layerConfig
.
set_size
(
pm
.
oc
);
cfg
.
inputDefs
.
push_back
(
cfg
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
{
INPUT_DATA
,
...
@@ -86,6 +88,7 @@ struct testConvDesc {
...
@@ -86,6 +88,7 @@ struct testConvDesc {
static
void
getMKLDNNConvConfig
(
TestConfig
&
cfg
,
const
testConvDesc
&
pm
)
{
static
void
getMKLDNNConvConfig
(
TestConfig
&
cfg
,
const
testConvDesc
&
pm
)
{
cfg
.
layerConfig
.
set_type
(
"mkldnn_conv"
);
cfg
.
layerConfig
.
set_type
(
"mkldnn_conv"
);
cfg
.
layerConfig
.
set_active_type
(
"relu"
);
cfg
.
layerConfig
.
set_num_filters
(
pm
.
oc
);
cfg
.
layerConfig
.
set_num_filters
(
pm
.
oc
);
cfg
.
layerConfig
.
set_size
(
pm
.
oc
*
pm
.
oh
*
pm
.
ow
);
cfg
.
layerConfig
.
set_size
(
pm
.
oc
*
pm
.
oh
*
pm
.
ow
);
cfg
.
layerConfig
.
set_shared_biases
(
true
);
cfg
.
layerConfig
.
set_shared_biases
(
true
);
...
@@ -158,6 +161,7 @@ struct testPoolDesc {
...
@@ -158,6 +161,7 @@ struct testPoolDesc {
static
void
getMKLDNNPoolConfig
(
TestConfig
&
cfg
,
const
testPoolDesc
&
pm
)
{
static
void
getMKLDNNPoolConfig
(
TestConfig
&
cfg
,
const
testPoolDesc
&
pm
)
{
cfg
.
layerConfig
.
set_type
(
"mkldnn_pool"
);
cfg
.
layerConfig
.
set_type
(
"mkldnn_pool"
);
cfg
.
layerConfig
.
set_active_type
(
"relu"
);
cfg
.
layerConfig
.
set_size
(
pm
.
ic
*
pm
.
oh
*
pm
.
ow
);
cfg
.
layerConfig
.
set_size
(
pm
.
ic
*
pm
.
oh
*
pm
.
ow
);
cfg
.
inputDefs
.
push_back
(
cfg
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
{
INPUT_DATA
,
...
@@ -244,13 +248,26 @@ TEST(MKLDNNActivation, Activations) {
...
@@ -244,13 +248,26 @@ TEST(MKLDNNActivation, Activations) {
}
}
}
}
// TODO(TJ): add branch test
DECLARE_string
(
config_args
);
TEST
(
MKLDNNLayer
,
branches
)
{
std
::
vector
<
std
::
string
>
cases
=
{
"conv"
};
for
(
auto
name
:
cases
)
{
std
::
string
config
=
"./gserver/tests/mkldnn_branches_"
+
name
+
".conf"
;
for
(
auto
channels
:
{
2
,
32
})
{
std
::
ostringstream
oss
;
oss
<<
"channels="
<<
channels
;
FLAGS_config_args
=
oss
.
str
();
MKLDNNTester
::
runBranchesTest
(
config
);
}
}
}
int
main
(
int
argc
,
char
**
argv
)
{
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
testing
::
InitGoogleTest
(
&
argc
,
argv
);
FLAGS_use_gpu
=
false
;
FLAGS_use_gpu
=
false
;
FLAGS_use_mkldnn
=
true
;
FLAGS_use_mkldnn
=
true
;
initMain
(
argc
,
argv
);
initMain
(
argc
,
argv
);
initPython
(
argc
,
argv
);
FLAGS_thread_local_rand_use_global_seed
=
true
;
FLAGS_thread_local_rand_use_global_seed
=
true
;
srand
(
1
);
srand
(
1
);
return
RUN_ALL_TESTS
();
return
RUN_ALL_TESTS
();
...
...
python/paddle/trainer_config_helpers/networks.py
浏览文件 @
a30d53b7
...
@@ -26,8 +26,9 @@ __all__ = [
...
@@ -26,8 +26,9 @@ __all__ = [
'sequence_conv_pool'
,
'simple_lstm'
,
"simple_img_conv_pool"
,
'sequence_conv_pool'
,
'simple_lstm'
,
"simple_img_conv_pool"
,
"img_conv_bn_pool"
,
'lstmemory_group'
,
'lstmemory_unit'
,
'small_vgg'
,
"img_conv_bn_pool"
,
'lstmemory_group'
,
'lstmemory_unit'
,
'small_vgg'
,
'img_conv_group'
,
'vgg_16_network'
,
'gru_unit'
,
'gru_group'
,
'simple_gru'
,
'img_conv_group'
,
'vgg_16_network'
,
'gru_unit'
,
'gru_group'
,
'simple_gru'
,
'simple_attention'
,
'simple_gru2'
,
'bidirectional_gru'
,
'text_conv_pool'
,
'simple_attention'
,
'dot_product_attention'
,
'simple_gru2'
,
'bidirectional_lstm'
,
'inputs'
,
'outputs'
'bidirectional_gru'
,
'text_conv_pool'
,
'bidirectional_lstm'
,
'inputs'
,
'outputs'
]
]
######################################################
######################################################
...
@@ -1361,6 +1362,7 @@ def simple_attention(encoded_sequence,
...
@@ -1361,6 +1362,7 @@ def simple_attention(encoded_sequence,
compute attention weight.
compute attention weight.
:type transform_param_attr: ParameterAttribute
:type transform_param_attr: ParameterAttribute
:return: a context vector
:return: a context vector
:rtype: LayerOutput
"""
"""
assert
encoded_proj
.
size
==
decoder_state
.
size
assert
encoded_proj
.
size
==
decoder_state
.
size
proj_size
=
encoded_proj
.
size
proj_size
=
encoded_proj
.
size
...
@@ -1396,6 +1398,88 @@ def simple_attention(encoded_sequence,
...
@@ -1396,6 +1398,88 @@ def simple_attention(encoded_sequence,
input
=
scaled
,
pooling_type
=
SumPooling
(),
name
=
"%s_pooling"
%
name
)
input
=
scaled
,
pooling_type
=
SumPooling
(),
name
=
"%s_pooling"
%
name
)
@
wrap_name_default
()
def
dot_product_attention
(
encoded_sequence
,
attended_sequence
,
transformed_state
,
softmax_param_attr
=
None
,
name
=
None
):
"""
Calculate and return a context vector with dot-product attention mechanism.
The dimension of the context vector equals to that of the attended_sequence.
.. math::
a(s_{i-1},h_{j}) & = s_{i-1}^\mathrm{T} h_{j}
e_{i,j} & = a(s_{i-1}, h_{j})
a_{i,j} & =
\\
frac{exp(e_{i,j})}{
\\
sum_{k=1}^{T_x}{exp(e_{i,k})}}
c_{i} & =
\\
sum_{j=1}^{T_{x}}a_{i,j}z_{j}
where :math:`h_{j}` is the jth element of encoded_sequence,
:math:`z_{j}` is the jth element of attended_sequence,
:math:`s_{i-1}` is transformed_state.
The example usage is:
.. code-block:: python
context = dot_product_attention(encoded_sequence=enc_seq,
attended_sequence=att_seq,
transformed_state=state,)
:param name: A prefix attached to the name of each layer that defined inside
the dot_product_attention.
:type name: basestring
:param softmax_param_attr: The parameter attribute of sequence softmax
that is used to produce attention weight.
:type softmax_param_attr: ParameterAttribute
:param encoded_sequence: The output hidden vectors of the encoder.
:type encoded_sequence: LayerOutput
:param attended_sequence: The attention weight is computed by a feed forward neural
network which has two inputs : decoder's transformed hidden
state of previous time step and encoder's output.
attended_sequence is the sequence to be attended.
:type attended_sequence: LayerOutput
:param transformed_state: The transformed hidden state of decoder in previous time step.
Since the dot-product operation will be performed on it and the
encoded_sequence, their dimensions must be equal. For flexibility,
we suppose transformations of the decoder's hidden state have been
done outside dot_product_attention and no more will be performed
inside. Then users can use either the original or transformed one.
:type transformed_state: LayerOutput
:return: The context vector.
:rtype: LayerOutput
"""
assert
transformed_state
.
size
==
encoded_sequence
.
size
expanded
=
expand_layer
(
input
=
transformed_state
,
expanded_as
=
encoded_sequence
,
name
=
'%s_expand'
%
name
)
m
=
linear_comb_layer
(
weights
=
expanded
,
vectors
=
encoded_sequence
,
name
=
'%s_dot-product'
)
attention_weight
=
fc_layer
(
input
=
m
,
size
=
1
,
act
=
SequenceSoftmaxActivation
(),
param_attr
=
softmax_param_attr
,
name
=
"%s_softmax"
%
name
,
bias_attr
=
False
)
scaled
=
scaling_layer
(
weight
=
attention_weight
,
input
=
attended_sequence
,
name
=
'%s_scaling'
%
name
)
return
pooling_layer
(
input
=
scaled
,
pooling_type
=
SumPooling
(),
name
=
"%s_pooling"
%
name
)
def
inputs
(
layers
,
*
args
):
def
inputs
(
layers
,
*
args
):
"""
"""
Declare the inputs of network. The order of input should be as same as
Declare the inputs of network. The order of input should be as same as
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录