Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
a1ddff81
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a1ddff81
编写于
3月 01, 2021
作者:
L
liym27
提交者:
GitHub
3月 01, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] Support npu op: (1) slice (2) slice_grad (#31275)
上级
d23bf89c
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
268 addition
and
0 deletion
+268
-0
paddle/fluid/operators/slice_op_npu.cc
paddle/fluid/operators/slice_op_npu.cc
+126
-0
python/paddle/fluid/tests/unittests/npu/test_slice_op_npu.py
python/paddle/fluid/tests/unittests/npu/test_slice_op_npu.py
+142
-0
未找到文件。
paddle/fluid/operators/slice_op_npu.cc
0 → 100644
浏览文件 @
a1ddff81
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */
#include <memory>
#include <string>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/operators/slice_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
void
UpdateAttr
(
const
framework
::
DDim
in_dims
,
const
std
::
vector
<
int
>
axes
,
const
std
::
vector
<
int
>
starts
,
const
std
::
vector
<
int
>
ends
,
std
::
vector
<
int
>*
offsets
,
std
::
vector
<
int
>*
size
)
{
int
cnt
=
0
;
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
++
i
)
{
int
start
=
0
;
int
end
=
in_dims
[
i
];
int
axis
=
axes
[
cnt
];
if
(
axis
==
i
)
{
start
=
starts
[
cnt
];
end
=
ends
[
cnt
]
<=
in_dims
[
i
]
?
ends
[
cnt
]
:
end
;
cnt
++
;
}
(
*
offsets
)[
i
]
=
start
;
(
*
size
)[
i
]
=
end
-
start
;
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
SliceNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
axes
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
in_dims
=
input
->
dims
();
std
::
vector
<
int
>
offsets
(
in_dims
.
size
());
std
::
vector
<
int
>
size
(
in_dims
.
size
());
UpdateAttr
(
in_dims
,
axes
,
starts
,
ends
,
&
offsets
,
&
size
);
auto
runner
=
NpuOpRunner
(
"SliceD"
,
{
*
input
},
{
*
out
},
{{
"offsets"
,
offsets
},
{
"size"
,
size
}});
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
runner
.
Run
(
stream
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
SliceGradNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dinput
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
axes
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
auto
in_dims
=
input
->
dims
();
int
rank
=
in_dims
.
size
();
std
::
vector
<
int
>
offsets
(
rank
);
std
::
vector
<
int
>
size
(
rank
);
UpdateAttr
(
in_dims
,
axes
,
starts
,
ends
,
&
offsets
,
&
size
);
std
::
vector
<
std
::
vector
<
int64_t
>>
paddings
(
rank
,
std
::
vector
<
int64_t
>
(
2
));
for
(
int
i
=
0
;
i
<
rank
;
++
i
)
{
paddings
[
i
][
0
]
=
static_cast
<
int64_t
>
(
offsets
[
i
]);
paddings
[
i
][
1
]
=
static_cast
<
int64_t
>
(
in_dims
[
i
]
-
size
[
i
]
-
offsets
[
i
]);
}
dinput
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
auto
runner
=
NpuOpRunner
(
"PadD"
,
{
*
dout
},
{
*
dinput
},
{{
"paddings"
,
paddings
}});
runner
.
Run
(
stream
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_NPU_KERNEL
(
slice
,
ops
::
SliceNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
SliceNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_NPU_KERNEL
(
slice_grad
,
ops
::
SliceGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
SliceGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
python/paddle/fluid/tests/unittests/npu/test_slice_op_npu.py
0 → 100644
浏览文件 @
a1ddff81
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
paddle
.
enable_static
()
SEED
=
2021
EPOCH
=
100
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestSliceOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
set_npu
()
self
.
init_dtype
()
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
self
.
dtype
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
1
:
3
,
0
:
3
,
2
:
4
,
:]
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
place
=
paddle
.
NPUPlace
(
0
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_dygraph
=
False
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestSliceOpFp16
(
TestSliceOp
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
__class__
.
no_need_check_grad
=
True
self
.
place
=
paddle
.
NPUPlace
(
0
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestSliceNet
(
unittest
.
TestCase
):
def
_test
(
self
,
run_npu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
batch_size
=
32
data_shape
=
(
32
,
32
)
a_np
=
np
.
random
.
random
(
size
=
data_shape
).
astype
(
'float32'
)
b_np
=
np
.
random
.
random
(
size
=
data_shape
).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
batch_size
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
data_shape
,
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
"b"
,
shape
=
data_shape
,
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
batch_size
,
1
],
dtype
=
'int64'
)
sum
=
paddle
.
add
(
a
,
b
)
z
=
paddle
.
slice
(
sum
,
axes
=
[
0
,
1
],
starts
=
[
0
,
0
],
ends
=
[
33
,
2
])
prediction
=
paddle
.
static
.
nn
.
fc
(
z
,
size
=
2
,
activation
=
'softmax'
)
cost
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
paddle
.
mean
(
cost
)
sgd
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
sgd
.
minimize
(
loss
)
if
run_npu
:
place
=
paddle
.
NPUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
print
(
"Start run on {}"
.
format
(
place
))
for
epoch
in
range
(
EPOCH
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_npu
(
self
):
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
npu_pred
,
npu_loss
=
self
.
_test
(
True
)
self
.
assertTrue
(
np
.
allclose
(
npu_pred
,
cpu_pred
))
self
.
assertTrue
(
np
.
allclose
(
npu_loss
,
cpu_loss
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录