Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
9f06069d
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9f06069d
编写于
4月 18, 2022
作者:
Q
qipengh
提交者:
GitHub
4月 18, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU]add op: reduce_sum, elementwise_sub (#41697)
* [MLU]add op: reduce_sum, elementwise_sub * [MLU]del unrelated code
上级
0ef3ef28
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
853 addition
and
147 deletion
+853
-147
paddle/fluid/operators/elementwise/elementwise_add_op_mlu.cc
paddle/fluid/operators/elementwise/elementwise_add_op_mlu.cc
+6
-63
paddle/fluid/operators/elementwise/elementwise_mlu.h
paddle/fluid/operators/elementwise/elementwise_mlu.h
+207
-0
paddle/fluid/operators/elementwise/elementwise_mul_op_mlu.cc
paddle/fluid/operators/elementwise/elementwise_mul_op_mlu.cc
+2
-45
paddle/fluid/operators/elementwise/elementwise_sub_op_mlu.cc
paddle/fluid/operators/elementwise/elementwise_sub_op_mlu.cc
+112
-0
paddle/fluid/operators/mlu/mlu_baseop.h
paddle/fluid/operators/mlu/mlu_baseop.h
+16
-0
paddle/fluid/operators/reduce_ops/reduce_mean_op_mlu.cc
paddle/fluid/operators/reduce_ops/reduce_mean_op_mlu.cc
+2
-39
paddle/fluid/operators/reduce_ops/reduce_op_mlu.h
paddle/fluid/operators/reduce_ops/reduce_op_mlu.h
+73
-0
paddle/fluid/operators/reduce_ops/reduce_sum_op_mlu.cc
paddle/fluid/operators/reduce_ops/reduce_sum_op_mlu.cc
+78
-0
python/paddle/fluid/tests/unittests/mlu/test_elementwise_sub_op_mlu.py
.../fluid/tests/unittests/mlu/test_elementwise_sub_op_mlu.py
+208
-0
python/paddle/fluid/tests/unittests/mlu/test_reduce_sum_op_mlu.py
...addle/fluid/tests/unittests/mlu/test_reduce_sum_op_mlu.py
+149
-0
未找到文件。
paddle/fluid/operators/elementwise/elementwise_add_op_mlu.cc
浏览文件 @
9f06069d
...
@@ -12,8 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,8 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_mlu.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -23,35 +22,7 @@ template <typename T>
...
@@ -23,35 +22,7 @@ template <typename T>
class
ElementwiseAddMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
class
ElementwiseAddMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
MLUOpTensorKernel
<
T
>
(
ctx
,
CNNL_OP_TENSOR_ADD
);
auto
*
y
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Y"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
const
auto
&
x_dims
=
x
->
dims
();
const
auto
&
y_dims
=
y
->
dims
();
axis
=
(
axis
<
0
?
(
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
+
axis
+
1
)
:
axis
);
int
max_dim
=
std
::
max
(
x_dims
.
size
(),
y_dims
.
size
());
std
::
vector
<
int
>
x_dims_array
(
max_dim
);
std
::
vector
<
int
>
y_dims_array
(
max_dim
);
std
::
vector
<
int
>
out_dims_array
(
max_dim
);
GetBroadcastDimsArrays
(
x_dims
,
y_dims
,
x_dims_array
.
data
(),
y_dims_array
.
data
(),
out_dims_array
.
data
(),
max_dim
,
axis
);
MLUCnnlTensorDesc
x_desc
(
max_dim
,
x_dims_array
.
data
(),
ToCnnlDataType
(
x
->
type
()));
MLUCnnlTensorDesc
y_desc
(
max_dim
,
y_dims_array
.
data
(),
ToCnnlDataType
(
y
->
type
()));
MLUCnnlTensorDesc
out_desc
(
*
out
);
MLUCnnlOpTensorDesc
op_tensor_desc
(
CNNL_OP_TENSOR_ADD
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
);
MLUCnnl
::
OpTensor
(
ctx
,
op_tensor_desc
.
get
(),
x_desc
.
get
(),
GetBasePtr
(
x
),
y_desc
.
get
(),
GetBasePtr
(
y
),
out_desc
.
get
(),
GetBasePtr
(
out
),
ToCnnlDataType
<
T
>
());
}
}
};
};
...
@@ -75,22 +46,8 @@ class ElementwiseAddGradMLUKernel : public framework::OpKernel<T> {
...
@@ -75,22 +46,8 @@ class ElementwiseAddGradMLUKernel : public framework::OpKernel<T> {
if
(
dx
->
dims
()
!=
dout
->
dims
())
{
if
(
dx
->
dims
()
!=
dout
->
dims
())
{
std
::
vector
<
int
>
dst_dims_vec
;
std
::
vector
<
int
>
dst_dims_vec
;
std
::
vector
<
int
>
reduce_axes
;
std
::
vector
<
int
>
reduce_axes
;
auto
src_dims
=
dx
->
dims
();
GetReduceAxesAndDstDims
(
axis
,
dout
->
dims
(),
dx
->
dims
(),
&
reduce_axes
,
auto
dout_dims
=
dout
->
dims
();
&
dst_dims_vec
);
int
src_axis
=
(
src_dims
.
size
()
<
dout_dims
.
size
()
?
axis
:
0
);
for
(
int
ax
=
0
;
ax
<
dout_dims
.
size
();
++
ax
)
{
if
((
ax
<
src_axis
||
ax
>=
src_axis
+
src_dims
.
size
())
||
(
dout_dims
[
ax
]
>
1
&&
src_dims
[
ax
-
src_axis
]
==
1
))
{
reduce_axes
.
push_back
(
ax
);
}
else
{
dst_dims_vec
.
push_back
(
dout_dims
[
ax
]);
}
}
if
(
dst_dims_vec
.
size
()
==
0
)
{
// x is scalar
dst_dims_vec
.
push_back
(
1
);
}
MLUCnnlReduceDesc
reduction_desc
(
MLUCnnlReduceDesc
reduction_desc
(
reduce_axes
,
CNNL_REDUCE_ADD
,
ToCnnlDataType
<
T
>
(),
reduce_axes
,
CNNL_REDUCE_ADD
,
ToCnnlDataType
<
T
>
(),
...
@@ -109,22 +66,8 @@ class ElementwiseAddGradMLUKernel : public framework::OpKernel<T> {
...
@@ -109,22 +66,8 @@ class ElementwiseAddGradMLUKernel : public framework::OpKernel<T> {
if
(
dy
->
dims
()
!=
dout
->
dims
())
{
if
(
dy
->
dims
()
!=
dout
->
dims
())
{
std
::
vector
<
int
>
dst_dims_vec
;
std
::
vector
<
int
>
dst_dims_vec
;
std
::
vector
<
int
>
reduce_axes
;
std
::
vector
<
int
>
reduce_axes
;
auto
src_dims
=
dy
->
dims
();
GetReduceAxesAndDstDims
(
axis
,
dout
->
dims
(),
dy
->
dims
(),
&
reduce_axes
,
auto
dout_dims
=
dout
->
dims
();
&
dst_dims_vec
);
int
src_axis
=
(
src_dims
.
size
()
<
dout_dims
.
size
()
?
axis
:
0
);
for
(
int
ax
=
0
;
ax
<
dout_dims
.
size
();
++
ax
)
{
if
((
ax
<
src_axis
||
ax
>=
src_axis
+
src_dims
.
size
())
||
(
dout_dims
[
ax
]
>
1
&&
src_dims
[
ax
-
src_axis
]
==
1
))
{
reduce_axes
.
push_back
(
ax
);
}
else
{
dst_dims_vec
.
push_back
(
dout_dims
[
ax
]);
}
}
if
(
dst_dims_vec
.
size
()
==
0
)
{
// y is scalar
dst_dims_vec
.
push_back
(
1
);
}
MLUCnnlReduceDesc
reduction_desc
(
MLUCnnlReduceDesc
reduction_desc
(
reduce_axes
,
CNNL_REDUCE_ADD
,
ToCnnlDataType
<
T
>
(),
reduce_axes
,
CNNL_REDUCE_ADD
,
ToCnnlDataType
<
T
>
(),
...
...
paddle/fluid/operators/elementwise/elementwise_mlu.h
0 → 100644
浏览文件 @
9f06069d
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef PADDLE_WITH_MLU
#include <vector>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
inline
void
GetReduceAxes
(
const
int
axis
,
const
framework
::
DDim
&
src_ddims
,
const
framework
::
DDim
&
target_ddims
,
std
::
vector
<
int
>*
axes
)
{
int64_t
src_dim_size
=
src_ddims
.
size
();
int64_t
target_dim_size
=
target_ddims
.
size
();
for
(
int64_t
i
=
0
;
i
<
src_dim_size
;
++
i
)
{
if
(
i
<
axis
||
i
>=
target_dim_size
+
axis
)
{
axes
->
push_back
(
i
);
continue
;
}
if
(
src_ddims
[
i
]
>
target_ddims
[
i
-
axis
])
{
axes
->
push_back
(
i
);
}
}
}
inline
void
GetReduceAxesAndDstDims
(
const
int
axis
,
const
framework
::
DDim
&
src_ddims
,
const
framework
::
DDim
&
target_ddims
,
std
::
vector
<
int
>*
reduce_axes
,
std
::
vector
<
int
>*
dst_dims_vec
)
{
int64_t
src_dim_size
=
src_ddims
.
size
();
int64_t
target_dim_size
=
target_ddims
.
size
();
int
src_axis
=
(
target_dim_size
<
src_dim_size
?
axis
:
0
);
for
(
int
ax
=
0
;
ax
<
src_dim_size
;
++
ax
)
{
if
((
ax
<
src_axis
||
ax
>=
src_axis
+
target_dim_size
)
||
(
src_ddims
[
ax
]
>
1
&&
target_ddims
[
ax
-
src_axis
]
==
1
))
{
reduce_axes
->
push_back
(
ax
);
}
else
{
dst_dims_vec
->
push_back
(
src_ddims
[
ax
]);
}
}
if
(
dst_dims_vec
->
size
()
==
0
)
{
// target_var is scalar
dst_dims_vec
->
push_back
(
1
);
}
}
template
<
typename
T
>
void
MLUOpTensorKernel
(
const
framework
::
ExecutionContext
&
ctx
,
const
cnnlOpTensorDesc_t
op_tensor_op
)
{
PADDLE_ENFORCE_EQ
(
platform
::
is_mlu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
Unavailable
(
"This kernel only runs on MLU."
));
PADDLE_ENFORCE_EQ
((
op_tensor_op
==
CNNL_OP_TENSOR_ADD
)
||
(
op_tensor_op
==
CNNL_OP_TENSOR_SUB
)
||
(
op_tensor_op
==
CNNL_OP_TENSOR_MUL
),
true
,
platform
::
errors
::
Unavailable
(
"This kernel of MLU only support ADD, SUB, MUL."
));
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
const
auto
&
x_dims
=
x
->
dims
();
const
auto
&
y_dims
=
y
->
dims
();
axis
=
(
axis
<
0
?
(
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
+
axis
+
1
)
:
axis
);
int
max_dim
=
std
::
max
(
x_dims
.
size
(),
y_dims
.
size
());
std
::
vector
<
int
>
x_dims_array
(
max_dim
);
std
::
vector
<
int
>
y_dims_array
(
max_dim
);
std
::
vector
<
int
>
out_dims_array
(
max_dim
);
GetBroadcastDimsArrays
(
x_dims
,
y_dims
,
x_dims_array
.
data
(),
y_dims_array
.
data
(),
out_dims_array
.
data
(),
max_dim
,
axis
);
MLUCnnlTensorDesc
x_desc
(
max_dim
,
x_dims_array
.
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
y_desc
(
max_dim
,
y_dims_array
.
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
out_desc
(
*
out
);
MLUCnnlOpTensorDesc
op_tensor_desc
(
op_tensor_op
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
);
MLUCnnl
::
OpTensor
(
ctx
,
op_tensor_desc
.
get
(),
x_desc
.
get
(),
GetBasePtr
(
x
),
y_desc
.
get
(),
GetBasePtr
(
y
),
out_desc
.
get
(),
GetBasePtr
(
out
),
ToCnnlDataType
<
T
>
());
}
// ------------------ BinaryOp -----------------
enum
BINARY_FUNCTOR
{
DIV
,
DIVNONAN
,
};
template
<
BINARY_FUNCTOR
func
>
void
MLUBinary
(
const
framework
::
ExecutionContext
&
ctx
,
cnnlComputationPreference_t
prefer
,
const
cnnlTensorDescriptor_t
x_desc
,
const
void
*
x
,
const
cnnlTensorDescriptor_t
y_desc
,
const
void
*
y
,
const
cnnlTensorDescriptor_t
out_desc
,
void
*
out
);
template
<
>
inline
void
MLUBinary
<
DIV
>
(
const
framework
::
ExecutionContext
&
ctx
,
cnnlComputationPreference_t
prefer
,
const
cnnlTensorDescriptor_t
x_desc
,
const
void
*
x
,
const
cnnlTensorDescriptor_t
y_desc
,
const
void
*
y
,
const
cnnlTensorDescriptor_t
out_desc
,
void
*
out
)
{
MLUCnnl
::
Div
(
ctx
,
prefer
,
x_desc
,
x
,
y_desc
,
y
,
out_desc
,
out
);
}
template
<
BINARY_FUNCTOR
Functor
,
typename
T
>
void
MLUBinaryOp
(
const
framework
::
ExecutionContext
&
ctx
)
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
const
auto
&
x_dims
=
x
->
dims
();
const
auto
&
y_dims
=
y
->
dims
();
axis
=
(
axis
<
0
?
(
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
+
axis
+
1
)
:
axis
);
int
max_dim
=
std
::
max
(
x_dims
.
size
(),
y_dims
.
size
());
std
::
vector
<
int
>
x_dims_array
(
max_dim
);
std
::
vector
<
int
>
y_dims_array
(
max_dim
);
std
::
vector
<
int
>
out_dims_array
(
max_dim
);
GetBroadcastDimsArrays
(
x_dims
,
y_dims
,
x_dims_array
.
data
(),
y_dims_array
.
data
(),
out_dims_array
.
data
(),
max_dim
,
axis
);
MLUCnnlTensorDesc
x_desc
(
max_dim
,
x_dims_array
.
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
y_desc
(
max_dim
,
y_dims_array
.
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
out_desc
(
*
out
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
T
>
());
cnnlComputationPreference_t
prefer_type
=
CNNL_COMPUTATION_HIGH_PRECISION
;
MLUBinary
<
Functor
>
(
ctx
,
prefer_type
,
x_desc
.
get
(),
GetBasePtr
(
x
),
y_desc
.
get
(),
GetBasePtr
(
y
),
out_desc
.
get
(),
GetBasePtr
(
out
));
}
// ------------------ UnaryOp -----------------
enum
UNARY_FUNCTOR
{
NEG
,
RECIPROCAL
,
};
template
<
UNARY_FUNCTOR
func
>
void
MLUUnary
(
const
framework
::
ExecutionContext
&
ctx
,
cnnlComputationPreference_t
prefer
,
const
cnnlTensorDescriptor_t
input_desc
,
const
void
*
input
,
const
cnnlTensorDescriptor_t
ouput_desc
,
void
*
output
);
template
<
>
inline
void
MLUUnary
<
NEG
>
(
const
framework
::
ExecutionContext
&
ctx
,
cnnlComputationPreference_t
prefer
,
const
cnnlTensorDescriptor_t
input_desc
,
const
void
*
input
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
)
{
MLUCnnl
::
Neg
(
ctx
,
input_desc
,
input
,
output_desc
,
output
);
}
template
<
>
inline
void
MLUUnary
<
RECIPROCAL
>
(
const
framework
::
ExecutionContext
&
ctx
,
cnnlComputationPreference_t
prefer
,
const
cnnlTensorDescriptor_t
input_desc
,
const
void
*
input
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
)
{
MLUCnnl
::
Reciprocal
(
ctx
,
input_desc
,
input
,
output_desc
,
output
);
}
template
<
UNARY_FUNCTOR
Functor
,
typename
Tin
,
typename
Tout
=
Tin
>
void
MLUUnaryOp
(
const
framework
::
ExecutionContext
&
ctx
)
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
Tout
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
x_desc
(
x
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
Tin
>
());
MLUCnnlTensorDesc
out_desc
(
*
out
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
Tout
>
());
cnnlComputationPreference_t
prefer_type
=
CNNL_COMPUTATION_HIGH_PRECISION
;
MLUUnary
<
Functor
>
(
ctx
,
prefer_type
,
x_desc
.
get
(),
GetBasePtr
(
x
),
out_desc
.
get
(),
GetBasePtr
(
out
));
}
}
// namespace operators
}
// namespace paddle
#endif
paddle/fluid/operators/elementwise/elementwise_mul_op_mlu.cc
浏览文件 @
9f06069d
...
@@ -12,8 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,8 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_mlu.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -21,53 +20,11 @@ namespace operators {
...
@@ -21,53 +20,11 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
using
Tensor
=
framework
::
Tensor
;
using
MLUDeviceContext
=
platform
::
MLUDeviceContext
;
using
MLUDeviceContext
=
platform
::
MLUDeviceContext
;
static
void
GetReduceAxes
(
const
int
axis
,
const
framework
::
DDim
&
src_ddims
,
const
framework
::
DDim
&
target_ddims
,
std
::
vector
<
int
>*
axes
)
{
int64_t
src_dim_size
=
src_ddims
.
size
();
int64_t
target_dim_size
=
target_ddims
.
size
();
for
(
int64_t
i
=
0
;
i
<
src_dim_size
;
++
i
)
{
if
(
i
<
axis
||
i
>=
target_dim_size
+
axis
)
{
axes
->
push_back
(
i
);
continue
;
}
if
(
src_ddims
[
i
]
>
target_ddims
[
i
-
axis
])
{
axes
->
push_back
(
i
);
}
}
}
template
<
typename
T
>
template
<
typename
T
>
class
ElementwiseMulMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
class
ElementwiseMulMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
MLUOpTensorKernel
<
T
>
(
ctx
,
CNNL_OP_TENSOR_MUL
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
const
auto
&
x_dims
=
x
->
dims
();
const
auto
&
y_dims
=
y
->
dims
();
axis
=
(
axis
<
0
?
(
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
+
axis
+
1
)
:
axis
);
int
max_dim
=
std
::
max
(
x_dims
.
size
(),
y_dims
.
size
());
std
::
vector
<
int
>
x_dims_array
(
max_dim
);
std
::
vector
<
int
>
y_dims_array
(
max_dim
);
std
::
vector
<
int
>
out_dims_array
(
max_dim
);
GetBroadcastDimsArrays
(
x_dims
,
y_dims
,
x_dims_array
.
data
(),
y_dims_array
.
data
(),
out_dims_array
.
data
(),
max_dim
,
axis
);
MLUCnnlTensorDesc
x_desc
(
max_dim
,
x_dims_array
.
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
y_desc
(
max_dim
,
y_dims_array
.
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
out_desc
(
*
out
);
MLUCnnlOpTensorDesc
op_tensor_desc
(
CNNL_OP_TENSOR_MUL
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
);
MLUCnnl
::
OpTensor
(
ctx
,
op_tensor_desc
.
get
(),
x_desc
.
get
(),
GetBasePtr
(
x
),
y_desc
.
get
(),
GetBasePtr
(
y
),
out_desc
.
get
(),
GetBasePtr
(
out
),
ToCnnlDataType
<
T
>
());
}
}
};
};
...
...
paddle/fluid/operators/elementwise/elementwise_sub_op_mlu.cc
0 → 100644
浏览文件 @
9f06069d
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_mlu.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
ElementwiseSubMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
MLUOpTensorKernel
<
T
>
(
ctx
,
CNNL_OP_TENSOR_SUB
);
}
};
template
<
typename
T
>
class
ElementwiseSubGradMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MLUDeviceContext
>();
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
axis
=
(
axis
==
-
1
?
std
::
abs
(
x
->
dims
().
size
()
-
y
->
dims
().
size
())
:
axis
);
MLUCnnlTensorDesc
dout_desc
(
*
dout
);
if
(
dx
)
{
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
dx
->
dims
()
!=
dout
->
dims
())
{
std
::
vector
<
int
>
dst_dims_vec
;
std
::
vector
<
int
>
reduce_axes
;
GetReduceAxesAndDstDims
(
axis
,
dout
->
dims
(),
dx
->
dims
(),
&
reduce_axes
,
&
dst_dims_vec
);
MLUCnnlReduceDesc
reduction_desc
(
reduce_axes
,
CNNL_REDUCE_ADD
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_NO_INDICES
,
CNNL_32BIT_INDICES
);
MLUCnnlTensorDesc
dx_desc
(
dst_dims_vec
.
size
(),
dst_dims_vec
.
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnl
::
Reduce
(
ctx
,
true
/*need_workspace*/
,
reduction_desc
.
get
(),
nullptr
,
dout_desc
.
get
(),
GetBasePtr
(
dout
),
0
,
nullptr
,
nullptr
,
dx_desc
.
get
(),
GetBasePtr
(
dx
));
}
else
{
framework
::
TensorCopy
(
*
dout
,
ctx
.
GetPlace
(),
dev_ctx
,
dx
);
}
}
if
(
dy
)
{
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Tensor
*
tmp_dout
=
const_cast
<
Tensor
*>
(
dout
);
if
(
dy
->
dims
()
!=
dout
->
dims
())
{
std
::
vector
<
int
>
dst_dims_vec
;
std
::
vector
<
int
>
reduce_axes
;
GetReduceAxesAndDstDims
(
axis
,
dout
->
dims
(),
dy
->
dims
(),
&
reduce_axes
,
&
dst_dims_vec
);
MLUCnnlReduceDesc
reduction_desc
(
reduce_axes
,
CNNL_REDUCE_ADD
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_NO_INDICES
,
CNNL_32BIT_INDICES
);
MLUCnnlTensorDesc
dy_desc
(
dst_dims_vec
.
size
(),
dst_dims_vec
.
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnl
::
Reduce
(
ctx
,
true
/*need_workspace*/
,
reduction_desc
.
get
(),
nullptr
,
dout_desc
.
get
(),
GetBasePtr
(
dout
),
0
,
nullptr
,
nullptr
,
dy_desc
.
get
(),
GetBasePtr
(
dy
));
tmp_dout
=
dy
;
}
// call neg op, dy = -dout
MLUCnnlTensorDesc
tmp_dout_desc
(
*
tmp_dout
);
MLUCnnlTensorDesc
dy_desc
(
*
dy
);
MLUUnary
<
NEG
>
(
ctx
,
CNNL_COMPUTATION_HIGH_PRECISION
,
tmp_dout_desc
.
get
(),
GetBasePtr
(
tmp_dout
),
dy_desc
.
get
(),
GetBasePtr
(
dy
));
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
elementwise_sub
,
ops
::
ElementwiseSubMLUKernel
<
int
>
,
ops
::
ElementwiseSubMLUKernel
<
float
>
,
ops
::
ElementwiseSubMLUKernel
<
plat
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
elementwise_sub_grad
,
ops
::
ElementwiseSubGradMLUKernel
<
int
>
,
ops
::
ElementwiseSubGradMLUKernel
<
float
>
,
ops
::
ElementwiseSubGradMLUKernel
<
plat
::
float16
>
);
paddle/fluid/operators/mlu/mlu_baseop.h
浏览文件 @
9f06069d
...
@@ -45,6 +45,22 @@ enum MLULogicMethod {
...
@@ -45,6 +45,22 @@ enum MLULogicMethod {
CNNL_LOGIC_OP_OR
=
7
,
CNNL_LOGIC_OP_OR
=
7
,
};
};
const
std
::
map
<
std
::
string
,
cnnlReduceOp_t
>
MLUReduceOpMap
=
{
{
"reduce_all"
,
CNNL_REDUCE_AND
},
{
"reduce_any"
,
CNNL_REDUCE_OR
},
{
"reduce_max"
,
CNNL_REDUCE_MAX
},
{
"reduce_mean"
,
CNNL_REDUCE_AVG
},
{
"reduce_min"
,
CNNL_REDUCE_MIN
},
{
"reduce_sum"
,
CNNL_REDUCE_ADD
},
{
"reduce_prod"
,
CNNL_REDUCE_MUL
},
};
inline
cnnlReduceOp_t
GetMLUCnnlReduceOp
(
const
std
::
string
reduce_name
)
{
auto
iter
=
MLUReduceOpMap
.
find
(
reduce_name
);
if
(
iter
!=
MLUReduceOpMap
.
end
())
{
return
iter
->
second
;
}
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Not support reduce op type of MLU Device: %s"
,
reduce_name
));
}
inline
const
void
*
GetBasePtr
(
const
Tensor
*
t
)
{
return
t
->
data
();
}
inline
const
void
*
GetBasePtr
(
const
Tensor
*
t
)
{
return
t
->
data
();
}
inline
void
*
GetBasePtr
(
Tensor
*
t
)
{
return
t
->
data
();
}
inline
void
*
GetBasePtr
(
Tensor
*
t
)
{
return
t
->
data
();
}
...
...
paddle/fluid/operators/reduce_ops/reduce_mean_op_mlu.cc
浏览文件 @
9f06069d
...
@@ -12,9 +12,7 @@
...
@@ -12,9 +12,7 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/reduce_mean_op.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op_mlu.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#include "paddle/fluid/platform/device/mlu/device_context.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -23,42 +21,7 @@ template <typename T>
...
@@ -23,42 +21,7 @@ template <typename T>
class
ReduceMeanMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
class
ReduceMeanMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
MLUReduceOp
<
T
>
(
context
,
"reduce_mean"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
auto
input_dims
=
phi
::
vectorize
(
input
->
dims
());
const
auto
&
input_dim_size
=
input
->
dims
().
size
();
std
::
vector
<
int
>
reduce_dims
;
if
(
reduce_all
)
{
for
(
size_t
i
=
0
;
i
<
input_dims
.
size
();
i
++
)
{
reduce_dims
.
push_back
(
static_cast
<
int
>
(
i
));
}
}
else
{
for
(
size_t
i
=
0
;
i
<
dims
.
size
();
++
i
)
{
if
(
dims
[
i
]
<
0
)
{
reduce_dims
.
push_back
(
dims
[
i
]
+
input_dim_size
);
}
else
{
reduce_dims
.
push_back
(
dims
[
i
]);
}
}
}
MLUCnnlTensorDesc
input_desc
(
*
input
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
input
->
dtype
()));
MLUCnnlTensorDesc
output_desc
(
*
output
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
output
->
dtype
()));
MLUCnnlReduceDesc
reduction_desc
(
reduce_dims
,
CNNL_REDUCE_AVG
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_NO_INDICES
,
CNNL_32BIT_INDICES
);
MLUCnnl
::
Reduce
(
context
,
true
/*need_workspace*/
,
reduction_desc
.
get
(),
nullptr
,
input_desc
.
get
(),
GetBasePtr
(
input
),
0
/*indices_size*/
,
nullptr
,
nullptr
,
output_desc
.
get
(),
GetBasePtr
(
output
));
}
}
};
};
...
...
paddle/fluid/operators/reduce_ops/reduce_op_mlu.h
0 → 100644
浏览文件 @
9f06069d
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef PADDLE_WITH_MLU
#include <string>
#include <vector>
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
void
MLUReduceOp
(
const
framework
::
ExecutionContext
&
context
,
std
::
string
reduce_name
)
{
PADDLE_ENFORCE_EQ
(
platform
::
is_mlu_place
(
context
.
GetPlace
()),
true
,
platform
::
errors
::
Unavailable
(
"This kernel only runs on MLU."
));
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
auto
input_dims
=
phi
::
vectorize
(
input
->
dims
());
const
auto
&
input_dim_size
=
input
->
dims
().
size
();
std
::
vector
<
int
>
reduce_dims
;
if
(
reduce_all
)
{
for
(
size_t
i
=
0
;
i
<
input_dims
.
size
();
i
++
)
{
reduce_dims
.
push_back
(
static_cast
<
int
>
(
i
));
}
}
else
{
for
(
size_t
i
=
0
;
i
<
dims
.
size
();
++
i
)
{
if
(
dims
[
i
]
<
0
)
{
reduce_dims
.
push_back
(
dims
[
i
]
+
input_dim_size
);
}
else
{
reduce_dims
.
push_back
(
dims
[
i
]);
}
}
}
MLUCnnlTensorDesc
input_desc
(
*
input
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
input
->
dtype
()));
MLUCnnlTensorDesc
output_desc
(
*
output
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
output
->
dtype
()));
cnnlReduceOp_t
reduce_op
=
GetMLUCnnlReduceOp
(
reduce_name
);
MLUCnnlReduceDesc
reduction_desc
(
reduce_dims
,
reduce_op
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_NO_INDICES
,
CNNL_32BIT_INDICES
);
MLUCnnl
::
Reduce
(
context
,
true
/*need_workspace*/
,
reduction_desc
.
get
(),
nullptr
,
input_desc
.
get
(),
GetBasePtr
(
input
),
0
/*indices_size*/
,
nullptr
,
nullptr
,
output_desc
.
get
(),
GetBasePtr
(
output
));
}
}
// namespace operators
}
// namespace paddle
#endif
paddle/fluid/operators/reduce_ops/reduce_sum_op_mlu.cc
0 → 100644
浏览文件 @
9f06069d
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/reduce_op_mlu.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
ReduceSumMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
MLUReduceOp
<
T
>
(
context
,
"reduce_sum"
);
}
};
template
<
typename
T
>
class
ReduceSumGradMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
out_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
in_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
in_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
auto
reduce_dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
auto
in_dims
=
phi
::
vectorize
(
in
->
dims
());
if
(
reduce_all
)
{
reduce_dims
.
clear
();
for
(
size_t
d
=
0
;
d
<
in_dims
.
size
();
++
d
)
{
reduce_dims
.
push_back
(
static_cast
<
int
>
(
d
));
}
}
for
(
auto
&
d
:
reduce_dims
)
{
if
(
d
<
0
)
{
d
=
d
+
in_dims
.
size
();
}
}
Tensor
tmp_out
(
out_grad
->
dtype
());
auto
tmp_output_dims
=
in_dims
;
for
(
auto
d
:
reduce_dims
)
{
tmp_output_dims
[
d
]
=
1
;
}
tmp_out
.
ShareDataWith
(
*
out_grad
);
tmp_out
.
Resize
(
phi
::
make_ddim
(
tmp_output_dims
));
MLUCnnlTensorDesc
out_desc
(
tmp_out
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
in_grad_desc
(
*
in_grad
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
T
>
());
MLUCnnl
::
BroadcastTo
(
context
,
out_desc
.
get
(),
GetBasePtr
(
&
tmp_out
),
in_grad_desc
.
get
(),
GetBasePtr
(
in_grad
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
reduce_sum
,
ops
::
ReduceSumMLUKernel
<
float
>
,
ops
::
ReduceSumMLUKernel
<
plat
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
reduce_sum_grad
,
ops
::
ReduceSumGradMLUKernel
<
float
>
,
ops
::
ReduceSumGradMLUKernel
<
plat
::
float16
>
);
python/paddle/fluid/tests/unittests/mlu/test_elementwise_sub_op_mlu.py
0 → 100644
浏览文件 @
9f06069d
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle.fluid
as
fluid
paddle
.
enable_static
()
SEED
=
2022
class
TestElementwiseSubOp
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_sub"
self
.
init_dtype
()
self
.
init_input_output
()
self
.
init_axis
()
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
y
)
}
self
.
attrs
=
{
'axis'
:
self
.
axis
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
subtract
(
self
.
x
,
self
.
y
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
init_axis
(
self
):
self
.
axis
=
0
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
,
'Y'
],
'Out'
)
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Y'
],
'Out'
,
max_relative_error
=
0.005
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.005
,
no_grad_set
=
set
(
'Y'
))
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseSubOp_scalar
(
TestElementwiseSubOp
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
3
,
4
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
1
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
class
TestElementwiseSubOp_Vector
(
TestElementwiseSubOp
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
100
,
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
100
,
)).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
class
TestElementwiseSubOp_broadcast_0
(
TestElementwiseSubOp
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
100
,
3
,
2
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
)
}
class
TestElementwiseSubOp_broadcast_1
(
TestElementwiseSubOp
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
100
,
3
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
)
}
class
TestElementwiseSubOp_broadcast_2
(
TestElementwiseSubOp
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
)
}
class
TestElementwiseSubOp_broadcast_3
(
TestElementwiseSubOp
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
10
,
12
,
3
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
10
,
12
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
].
reshape
(
1
,
10
,
12
,
1
)
}
class
TestElementwiseSubOp_broadcast_4
(
TestElementwiseSubOp
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
5
,
3
,
12
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
2
,
5
,
1
,
12
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
class
TestElementwiseSubOp_commonuse_1
(
TestElementwiseSubOp
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
1
,
1
,
100
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
class
TestElementwiseSubOp_commonuse_2
(
TestElementwiseSubOp
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
3
,
1
,
4
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
10
,
1
,
12
,
1
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
class
TestElementwiseSubOp_xsize_lessthan_ysize
(
TestElementwiseSubOp
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
12
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
2
,
3
,
10
,
12
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
2
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
reshape
(
1
,
1
,
10
,
12
)
-
self
.
inputs
[
'Y'
]
}
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_reduce_sum_op_mlu.py
0 → 100644
浏览文件 @
9f06069d
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
paddle
.
enable_static
()
class
TestMLUReduceSumOp
(
OpTest
):
def
setUp
(
self
):
self
.
init_op_type
()
self
.
initTestCase
()
self
.
set_mlu
()
self
.
attrs
=
{
'dim'
:
self
.
axis
,
'keep_dim'
:
self
.
keep_dim
,
'reduce_all'
:
self
.
reduce_all
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)}
if
self
.
attrs
[
'reduce_all'
]:
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
()}
else
:
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
self
.
axis
,
keepdims
=
self
.
attrs
[
'keep_dim'
])
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
def
init_op_type
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
use_mkldnn
=
False
self
.
keep_dim
=
False
self
.
reduce_all
=
False
def
initTestCase
(
self
):
self
.
shape
=
(
5
,
6
,
10
)
self
.
axis
=
(
0
,
)
class
TestSumOp5D
(
TestMLUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
1
,
2
,
5
,
6
,
10
)
self
.
axis
=
(
0
,
)
class
TestSumOp6D
(
TestMLUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
1
,
1
,
2
,
5
,
6
,
10
)
self
.
axis
=
(
0
,
)
class
TestSumOp8D
(
TestMLUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
1
,
3
,
1
,
2
,
1
,
4
,
3
,
10
)
self
.
axis
=
(
0
,
3
)
class
Test1DReduce
(
TestMLUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
120
self
.
axis
=
(
0
,
)
class
Test2DReduce0
(
TestMLUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
20
,
10
)
self
.
axis
=
(
0
,
)
class
Test2DReduce1
(
TestMLUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
20
,
10
)
self
.
axis
=
(
1
,
)
class
Test3DReduce0
(
TestMLUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
5
,
6
,
7
)
self
.
axis
=
(
1
,
)
class
Test3DReduce1
(
TestMLUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
5
,
6
,
7
)
self
.
axis
=
(
2
,
)
class
Test3DReduce2
(
TestMLUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
5
,
6
,
7
)
self
.
axis
=
(
-
2
,
)
class
Test3DReduce3
(
TestMLUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
5
,
6
,
7
)
self
.
axis
=
(
1
,
2
)
class
TestKeepDimReduce
(
TestMLUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
5
,
6
,
10
)
self
.
axis
=
(
1
,
)
self
.
keep_dim
=
True
class
TestKeepDim8DReduce
(
TestMLUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
5
,
3
,
2
,
2
,
3
,
4
,
2
)
self
.
axis
=
(
3
,
4
,
5
)
self
.
keep_dim
=
True
class
TestReduceAll
(
TestMLUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
5
,
6
,
2
,
10
)
self
.
axis
=
(
0
,
)
self
.
reduce_all
=
True
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录