未验证 提交 9ae6c854 编写于 作者: X xiaoxiaohehe001 提交者: GitHub

[Paddle Inference] Add take_along_axis trt converter (#48358)

上级 9896ac1e
...@@ -2341,6 +2341,7 @@ USE_TRT_CONVERTER(tanh_shrink) ...@@ -2341,6 +2341,7 @@ USE_TRT_CONVERTER(tanh_shrink)
USE_TRT_CONVERTER(logsigmoid) USE_TRT_CONVERTER(logsigmoid)
USE_TRT_CONVERTER(lookup_table) USE_TRT_CONVERTER(lookup_table)
USE_TRT_CONVERTER(expand_v2) USE_TRT_CONVERTER(expand_v2)
USE_TRT_CONVERTER(take_along_axis)
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000) #if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER(sparse_fc) USE_TRT_CONVERTER(sparse_fc)
USE_TRT_CONVERTER(sparse_multihead_matmul) USE_TRT_CONVERTER(sparse_multihead_matmul)
......
...@@ -82,6 +82,7 @@ list( ...@@ -82,6 +82,7 @@ list(
celu_op.cc celu_op.cc
layernorm_shift_partition_op.cc layernorm_shift_partition_op.cc
tanhshrink_op.cc tanhshrink_op.cc
take_along_axis_op.cc
logsigmoid_op.cc logsigmoid_op.cc
preln_layernorm_shift_partition_op.cc preln_layernorm_shift_partition_op.cc
merge_layernorm_op.cc merge_layernorm_op.cc
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace inference {
namespace tensorrt {
/*
* TakeAlongAxis Op
*/
class TakeAlongAxisOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
// AddGatherV2 is supported by the trt version of 8.2.
#if IS_TRT_VERSION_GE(8200)
VLOG(3) << "convert take_along_axis op to tensorrt take_along_axis layer";
framework::OpDesc op_desc(op, nullptr);
const auto input_tensor = engine_->GetITensor(op_desc.Input("Input")[0]);
const auto index_tensor = engine_->GetITensor(op_desc.Input("Index")[0]);
auto output_name = op_desc.Output("Result")[0];
int axis = 0;
if (op_desc.HasAttr("Axis")) {
axis = PADDLE_GET_CONST(int, op_desc.GetAttr("Axis"));
}
auto input_dims = input_tensor->getDimensions();
int NbDims = input_dims.nbDims;
if (axis < 0) axis = axis + NbDims;
auto layer = TRT_ENGINE_ADD_LAYER(engine_,
GatherV2,
*input_tensor,
*index_tensor,
nvinfer1::GatherMode::kELEMENT);
layer->setGatherAxis(axis);
RreplenishLayerAndOutput(
layer, "take_along_axis", {output_name}, test_mode);
#endif
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(take_along_axis, TakeAlongAxisOpConverter);
...@@ -596,6 +596,36 @@ struct SimpleOpTypeSetTeller : public Teller { ...@@ -596,6 +596,36 @@ struct SimpleOpTypeSetTeller : public Teller {
#endif #endif
} }
if (op_type == "take_along_axis") {
#if IS_TRT_VERSION_GE(8200)
if (!with_dynamic_shape) return false;
auto* block = desc.Block();
auto input_var_name = desc.Input("Input")[0];
auto index_var_name = desc.Input("Index")[0];
auto* input_var_desc = block->FindVar(input_var_name);
auto* index_var_desc = block->FindVar(index_var_name);
// The index input must be int32 datatype.
if (index_var_desc->GetDataType() !=
paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
VLOG(3) << "take_along_axis op Index input data type must be int32";
return false;
}
const auto input_shape = input_var_desc->GetShape();
const auto index_shape = index_var_desc->GetShape();
if (input_shape.size() != index_shape.size()) {
VLOG(3) << "take_along_axis op Index input dims size ["
<< index_shape.size() << " ] not equal to input dims size ["
<< input_shape.size() << "]";
return false;
}
#else
VLOG(3) << "take_along_axis op is only supported by trt8.2 above ";
return false;
#endif
}
if (op_type == "anchor_generator") { if (op_type == "anchor_generator") {
if (!with_dynamic_shape) return false; if (!with_dynamic_shape) return false;
} }
...@@ -2399,6 +2429,7 @@ struct SimpleOpTypeSetTeller : public Teller { ...@@ -2399,6 +2429,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"squeeze2", "squeeze2",
"unsqueeze2", "unsqueeze2",
"layernorm_shift_partition", "layernorm_shift_partition",
"take_along_axis",
"tanh_shrink", "tanh_shrink",
"logsigmoid", "logsigmoid",
"preln_layernorm_shift_partition", "preln_layernorm_shift_partition",
...@@ -2530,6 +2561,7 @@ struct SimpleOpTypeSetTeller : public Teller { ...@@ -2530,6 +2561,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"fused_token_prune", "fused_token_prune",
"layernorm_shift_partition", "layernorm_shift_partition",
"tanh_shrink", "tanh_shrink",
"take_along_axis",
"logsigmoid", "logsigmoid",
"preln_layernorm_shift_partition", "preln_layernorm_shift_partition",
"merge_layernorm", "merge_layernorm",
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from functools import partial
from typing import List
import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest
import paddle.inference as paddle_infer
class TrtConvertTakeAlongAxisTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
inputs = program_config.inputs
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
if len(inputs['input_data'].shape) <= attrs[0]['Axis']:
return False
if len(inputs['input_data'].shape) != len(inputs['index_data'].shape):
return False
return True
def sample_program_configs(self):
def generate_input1(shape):
return np.random.random(shape).astype(np.float32)
def generate_input2(index):
return np.zeros(index).astype(np.int32)
def generate_input3(axis):
return np.array([axis]).astype(np.int32)
for shape in [[32], [3, 64], [1, 64, 16], [1, 64, 16, 32]]:
for index in [[1], [1, 1], [1, 1, 2], [1, 1, 1, 1]]:
for axis in [0, 1, 2, 3]:
self.shape = shape
self.axis = axis
dics = [{"Axis": axis}]
ops_config = [
{
"op_type": "take_along_axis",
"op_inputs": {
"Input": ["input_data"],
"Index": ["index_data"],
},
"op_outputs": {"Result": ["output_data"]},
"op_attrs": dics[0],
}
]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(
data_gen=partial(generate_input1, shape)
),
"index_data": TensorConfig(
data_gen=partial(generate_input2, index)
),
},
outputs=["output_data"],
)
yield program_config
def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if len(self.shape) == 1:
self.dynamic_shape.min_input_shape = {
"input_data": [4],
"index_data": [1],
}
self.dynamic_shape.max_input_shape = {
"input_data": [128],
"index_data": [4],
}
self.dynamic_shape.opt_input_shape = {
"input_data": [16],
"index_data": [2],
}
elif len(self.shape) == 2:
self.dynamic_shape.min_input_shape = {
"input_data": [3, 64],
"index_data": [1, 1],
}
self.dynamic_shape.max_input_shape = {
"input_data": [3, 64],
"index_data": [1, 1],
}
self.dynamic_shape.opt_input_shape = {
"input_data": [3, 64],
"index_data": [1, 1],
}
elif len(self.shape) == 3:
self.dynamic_shape.min_input_shape = {
"input_data": [1, 64, 16],
"index_data": [1, 1, 2],
}
self.dynamic_shape.max_input_shape = {
"input_data": [1, 64, 16],
"index_data": [1, 1, 2],
}
self.dynamic_shape.opt_input_shape = {
"input_data": [1, 64, 16],
"index_data": [1, 1, 2],
}
elif len(self.shape) == 4:
self.dynamic_shape.min_input_shape = {
"input_data": [1, 64, 16, 32],
"index_data": [1, 1, 1, 1],
}
self.dynamic_shape.max_input_shape = {
"input_data": [1, 64, 16, 32],
"index_data": [1, 1, 1, 1],
}
self.dynamic_shape.opt_input_shape = {
"input_data": [1, 64, 16, 32],
"index_data": [1, 1, 1, 1],
}
def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(dynamic_shape):
ver = paddle_infer.get_trt_compile_version()
if (
ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 > 8200
and dynamic_shape
):
return 1, 3
else:
return 0, 4
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
False
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
False
), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-3
def add_skip_trt_case(self):
pass
def test(self):
self.add_skip_trt_case()
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册