提交 9a976f4c 编写于 作者: T Travis CI

Deploy to GitHub Pages: 75d0c790

上级 5d0d8dcc
......@@ -179,40 +179,104 @@ init_attr={
`optimize_op_attrs` is not in the `VarDesc` message, but kept in the Python instance, as it will be used in the Python space when creating the optimize operator's `OpDesc`, and will be in the `OpDesc` message.
## Layer Functions
## Layer Function
A layer is a Python function that creates some operators and variables. Layers simplify the work of application programmers.
A layer is a Python function that creates some operators and variables. Layers simplify the work of application programmers.
### Data Layer
Layer functions take `Variable` and configuration parameters as its input and return the output variable(s).
For example, `FullyConnected` take one or more variable as its input. The input could be input data or another layer's output. There are many configuration options for a `FullyConnected` layer, such as layer size, activation, parameter names, initialization strategies of parameters, and so on. The `FullyConnected` layer will return an output variable.
### Necessity for reusing code between layer functions
There are a lot of code that can be reused. Such as
* Give the default value of configuration. e.g., default initialize strategy for parameters is uniform random with `min = -1.0`, `max = 1.0`. and default initialize strategy for bias is to fill zero.
* Append the activation operator.
* Create a temporary variable.
* Create parameter.
* Generate a unique name.
* Add a bias.
* ...
A mechanism to reuse code between layer functions is necessary. It will be around [150 lines of code](https://github.com/PaddlePaddle/Paddle/pull/4724/files#diff-823b27e07e93914ada859232ae23f846R12) if we write a `FullyConnected` layer without any helper functions.
### Comparision between global functions and helper class
The `FullyConnected` layer will be as follow when we provide global functions:
```python
def data_layer(name, type, column_name):
block = the_current_program.glolal_block()
var = block.create_global_var(
name=name,
shape=[None] + type.dims(),
dtype=type.dtype)
block.prepend_operator(block,
type="Feed",
inputs = None,
outputs = [var],
{column_name: column_name})
return var
def fc_layer(input, size, param_attr=None, bias_attr=None, act=None, name=None):
if name is None:
name = unique_name("fc")
input = multiple_input(input)
param_attr = default_param_attr(param_attr)
param_attr = multiple_param_attr(param_attr, len(input))
# mul
mul_results = []
for ipt, attr in zip(input, param_attr):
shape = ipt.shape[1:] + [size]
w = g_program.global_block().create_parameter(shape, ipt.dtype, name, attr)
tmp = create_tmp_var(name)
g_program.current_block().append_op("mul", {ipt, w}, {tmp})
mul_results.append(tmp)
# add sum
...
# add bias
...
# add activation
...
return out
```
The input to the feed operator is a special variable in the global scope, which is the output of [Python readers](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/reader/README.md).
We can provide many helpers functions for layer developers. However, there are several disadvantages for global helper functions:
1. We need a namespace for these methods, then layer developers can quickly figure out what method they can use.
2. Global functions will force layer developers to pass its parameter time by time.
So we provide a helper class, `LayerHelper`, to share code between layer functions. The `FullyConnected` Layer will be as follow.
```python
def fc_layer(input, size, param_attr=None, bias_attr=None, act=None, name=None):
helper = LayerHelper(locals()) # pass all parameter to LayerHelper
mul_results = []
for ipt, param in helper.iter_multiple_input_and_param():
w = helper.create_parameter(shape=ipt.shape[1:] + [size], dtype = ipt.dtype)
tmp = helper.create_tmp_variable()
helper.append_op('mul', {ipt, w}, {tmp})
mul_results.append(tmp)
pre_bias = helper.add_sum(mul_results)
pre_activation = helper.add_bias(pre_bias)
return helper.add_activation(pre_activation)
```
We not only use the fewer lines of code to write `fc_layer` but also make the code clearer to understand. At the same time, layer developers can figure out what function they can invoke by typing `helper.` in a python editor.
### Implementation of layer helper
### FC Layer
We just keep all parameters of a layer function as a dictionary in layer helper as a private data member. Every method of layer helper will look up the dictionary after it is invoked. In that way, we can implement a layer helper for all layer functions even some layer does not contain some operator. For example, The `activation` is used by the FullyConnected layer or convolution layers, but a cross-entropy layer does not use it. The example code of `add_activation` are:
```python
def fc_layer(input, size, ...):
block = program.current_block()
w = block.create_parameter(...)
b = block.create_parameter(...)
out = block.create_var()
op = block.append_operator("FC", X=input, W=w, b=b, out=out)
out.writer = op
return out
class LayerHelper(object):
def __init__(self, **kwargs): # kwargs is short for `keyword arguments`
self.kwargs = kwargs
def add_activation(self, input_var):
act = self.kwargs.get("act", None) # default value is None
if act is None: # do nothing if no act
return input_var
tmp = self.create_tmp_var(self)
self.append_op(type=act, input=input_var, output=tmp)
return tmp
```
## Optimizer
......
......@@ -340,37 +340,91 @@
<p><code class="docutils literal"><span class="pre">optimize_op_attrs</span></code> is not in the <code class="docutils literal"><span class="pre">VarDesc</span></code> message, but kept in the Python instance, as it will be used in the Python space when creating the optimize operator&#8217;s <code class="docutils literal"><span class="pre">OpDesc</span></code>, and will be in the <code class="docutils literal"><span class="pre">OpDesc</span></code> message.</p>
</div>
</div>
<div class="section" id="layer-functions">
<span id="layer-functions"></span><h2>Layer Functions<a class="headerlink" href="#layer-functions" title="Permalink to this headline"></a></h2>
<p>A layer is a Python function that creates some operators and variables. Layers simplify the work of application programmers.</p>
<div class="section" id="data-layer">
<span id="data-layer"></span><h3>Data Layer<a class="headerlink" href="#data-layer" title="Permalink to this headline"></a></h3>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">data_layer</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="nb">type</span><span class="p">,</span> <span class="n">column_name</span><span class="p">):</span>
<span class="n">block</span> <span class="o">=</span> <span class="n">the_current_program</span><span class="o">.</span><span class="n">glolal_block</span><span class="p">()</span>
<span class="n">var</span> <span class="o">=</span> <span class="n">block</span><span class="o">.</span><span class="n">create_global_var</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="n">name</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="bp">None</span><span class="p">]</span> <span class="o">+</span> <span class="nb">type</span><span class="o">.</span><span class="n">dims</span><span class="p">(),</span>
<span class="n">dtype</span><span class="o">=</span><span class="nb">type</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">block</span><span class="o">.</span><span class="n">prepend_operator</span><span class="p">(</span><span class="n">block</span><span class="p">,</span>
<span class="nb">type</span><span class="o">=</span><span class="s2">&quot;Feed&quot;</span><span class="p">,</span>
<span class="n">inputs</span> <span class="o">=</span> <span class="bp">None</span><span class="p">,</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="p">[</span><span class="n">var</span><span class="p">],</span>
<span class="p">{</span><span class="n">column_name</span><span class="p">:</span> <span class="n">column_name</span><span class="p">})</span>
<span class="k">return</span> <span class="n">var</span>
<div class="section" id="layer-function">
<span id="layer-function"></span><h2>Layer Function<a class="headerlink" href="#layer-function" title="Permalink to this headline"></a></h2>
<p>A layer is a Python function that creates some operators and variables. Layers simplify the work of application programmers.</p>
<p>Layer functions take <code class="docutils literal"><span class="pre">Variable</span></code> and configuration parameters as its input and return the output variable(s).</p>
<p>For example, <code class="docutils literal"><span class="pre">FullyConnected</span></code> take one or more variable as its input. The input could be input data or another layer&#8217;s output. There are many configuration options for a <code class="docutils literal"><span class="pre">FullyConnected</span></code> layer, such as layer size, activation, parameter names, initialization strategies of parameters, and so on. The <code class="docutils literal"><span class="pre">FullyConnected</span></code> layer will return an output variable.</p>
<div class="section" id="necessity-for-reusing-code-between-layer-functions">
<span id="necessity-for-reusing-code-between-layer-functions"></span><h3>Necessity for reusing code between layer functions<a class="headerlink" href="#necessity-for-reusing-code-between-layer-functions" title="Permalink to this headline"></a></h3>
<p>There are a lot of code that can be reused. Such as</p>
<ul class="simple">
<li>Give the default value of configuration. e.g., default initialize strategy for parameters is uniform random with <code class="docutils literal"><span class="pre">min</span> <span class="pre">=</span> <span class="pre">-1.0</span></code>, <code class="docutils literal"><span class="pre">max</span> <span class="pre">=</span> <span class="pre">1.0</span></code>. and default initialize strategy for bias is to fill zero.</li>
<li>Append the activation operator.</li>
<li>Create a temporary variable.</li>
<li>Create parameter.</li>
<li>Generate a unique name.</li>
<li>Add a bias.</li>
<li>...</li>
</ul>
<p>A mechanism to reuse code between layer functions is necessary. It will be around <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/pull/4724/files#diff-823b27e07e93914ada859232ae23f846R12">150 lines of code</a> if we write a <code class="docutils literal"><span class="pre">FullyConnected</span></code> layer without any helper functions.</p>
</div>
<div class="section" id="comparision-between-global-functions-and-helper-class">
<span id="comparision-between-global-functions-and-helper-class"></span><h3>Comparision between global functions and helper class<a class="headerlink" href="#comparision-between-global-functions-and-helper-class" title="Permalink to this headline"></a></h3>
<p>The <code class="docutils literal"><span class="pre">FullyConnected</span></code> layer will be as follow when we provide global functions:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">fc_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">size</span><span class="p">,</span> <span class="n">param_attr</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">bias_attr</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
<span class="k">if</span> <span class="n">name</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
<span class="n">name</span> <span class="o">=</span> <span class="n">unique_name</span><span class="p">(</span><span class="s2">&quot;fc&quot;</span><span class="p">)</span>
<span class="nb">input</span> <span class="o">=</span> <span class="n">multiple_input</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
<span class="n">param_attr</span> <span class="o">=</span> <span class="n">default_param_attr</span><span class="p">(</span><span class="n">param_attr</span><span class="p">)</span>
<span class="n">param_attr</span> <span class="o">=</span> <span class="n">multiple_param_attr</span><span class="p">(</span><span class="n">param_attr</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="nb">input</span><span class="p">))</span>
<span class="c1"># mul</span>
<span class="n">mul_results</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">ipt</span><span class="p">,</span> <span class="n">attr</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">param_attr</span><span class="p">):</span>
<span class="n">shape</span> <span class="o">=</span> <span class="n">ipt</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span> <span class="o">+</span> <span class="p">[</span><span class="n">size</span><span class="p">]</span>
<span class="n">w</span> <span class="o">=</span> <span class="n">g_program</span><span class="o">.</span><span class="n">global_block</span><span class="p">()</span><span class="o">.</span><span class="n">create_parameter</span><span class="p">(</span><span class="n">shape</span><span class="p">,</span> <span class="n">ipt</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="n">name</span><span class="p">,</span> <span class="n">attr</span><span class="p">)</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="n">create_tmp_var</span><span class="p">(</span><span class="n">name</span><span class="p">)</span>
<span class="n">g_program</span><span class="o">.</span><span class="n">current_block</span><span class="p">()</span><span class="o">.</span><span class="n">append_op</span><span class="p">(</span><span class="s2">&quot;mul&quot;</span><span class="p">,</span> <span class="p">{</span><span class="n">ipt</span><span class="p">,</span> <span class="n">w</span><span class="p">},</span> <span class="p">{</span><span class="n">tmp</span><span class="p">})</span>
<span class="n">mul_results</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
<span class="c1"># add sum</span>
<span class="o">...</span>
<span class="c1"># add bias</span>
<span class="o">...</span>
<span class="c1"># add activation</span>
<span class="o">...</span>
<span class="k">return</span> <span class="n">out</span>
</pre></div>
</div>
<p>We can provide many helpers functions for layer developers. However, there are several disadvantages for global helper functions:</p>
<ol class="simple">
<li>We need a namespace for these methods, then layer developers can quickly figure out what method they can use.</li>
<li>Global functions will force layer developers to pass its parameter time by time.</li>
</ol>
<p>So we provide a helper class, <code class="docutils literal"><span class="pre">LayerHelper</span></code>, to share code between layer functions. The <code class="docutils literal"><span class="pre">FullyConnected</span></code> Layer will be as follow.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">fc_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">size</span><span class="p">,</span> <span class="n">param_attr</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">bias_attr</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
<span class="n">helper</span> <span class="o">=</span> <span class="n">LayerHelper</span><span class="p">(</span><span class="nb">locals</span><span class="p">())</span> <span class="c1"># pass all parameter to LayerHelper</span>
<span class="n">mul_results</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">ipt</span><span class="p">,</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">helper</span><span class="o">.</span><span class="n">iter_multiple_input_and_param</span><span class="p">():</span>
<span class="n">w</span> <span class="o">=</span> <span class="n">helper</span><span class="o">.</span><span class="n">create_parameter</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="n">ipt</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span> <span class="o">+</span> <span class="p">[</span><span class="n">size</span><span class="p">],</span> <span class="n">dtype</span> <span class="o">=</span> <span class="n">ipt</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="n">helper</span><span class="o">.</span><span class="n">create_tmp_variable</span><span class="p">()</span>
<span class="n">helper</span><span class="o">.</span><span class="n">append_op</span><span class="p">(</span><span class="s1">&#39;mul&#39;</span><span class="p">,</span> <span class="p">{</span><span class="n">ipt</span><span class="p">,</span> <span class="n">w</span><span class="p">},</span> <span class="p">{</span><span class="n">tmp</span><span class="p">})</span>
<span class="n">mul_results</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
<span class="n">pre_bias</span> <span class="o">=</span> <span class="n">helper</span><span class="o">.</span><span class="n">add_sum</span><span class="p">(</span><span class="n">mul_results</span><span class="p">)</span>
<span class="n">pre_activation</span> <span class="o">=</span> <span class="n">helper</span><span class="o">.</span><span class="n">add_bias</span><span class="p">(</span><span class="n">pre_bias</span><span class="p">)</span>
<span class="k">return</span> <span class="n">helper</span><span class="o">.</span><span class="n">add_activation</span><span class="p">(</span><span class="n">pre_activation</span><span class="p">)</span>
</pre></div>
</div>
<p>The input to the feed operator is a special variable in the global scope, which is the output of <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/reader/README.md">Python readers</a>.</p>
<p>We not only use the fewer lines of code to write <code class="docutils literal"><span class="pre">fc_layer</span></code> but also make the code clearer to understand. At the same time, layer developers can figure out what function they can invoke by typing <code class="docutils literal"><span class="pre">helper.</span></code> in a python editor.</p>
</div>
<div class="section" id="fc-layer">
<span id="fc-layer"></span><h3>FC Layer<a class="headerlink" href="#fc-layer" title="Permalink to this headline"></a></h3>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">fc_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">size</span><span class="p">,</span> <span class="o">...</span><span class="p">):</span>
<span class="n">block</span> <span class="o">=</span> <span class="n">program</span><span class="o">.</span><span class="n">current_block</span><span class="p">()</span>
<span class="n">w</span> <span class="o">=</span> <span class="n">block</span><span class="o">.</span><span class="n">create_parameter</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">block</span><span class="o">.</span><span class="n">create_parameter</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">block</span><span class="o">.</span><span class="n">create_var</span><span class="p">()</span>
<span class="n">op</span> <span class="o">=</span> <span class="n">block</span><span class="o">.</span><span class="n">append_operator</span><span class="p">(</span><span class="s2">&quot;FC&quot;</span><span class="p">,</span> <span class="n">X</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span> <span class="n">W</span><span class="o">=</span><span class="n">w</span><span class="p">,</span> <span class="n">b</span><span class="o">=</span><span class="n">b</span><span class="p">,</span> <span class="n">out</span><span class="o">=</span><span class="n">out</span><span class="p">)</span>
<span class="n">out</span><span class="o">.</span><span class="n">writer</span> <span class="o">=</span> <span class="n">op</span>
<span class="k">return</span> <span class="n">out</span>
<div class="section" id="implementation-of-layer-helper">
<span id="implementation-of-layer-helper"></span><h3>Implementation of layer helper<a class="headerlink" href="#implementation-of-layer-helper" title="Permalink to this headline"></a></h3>
<p>We just keep all parameters of a layer function as a dictionary in layer helper as a private data member. Every method of layer helper will look up the dictionary after it is invoked. In that way, we can implement a layer helper for all layer functions even some layer does not contain some operator. For example, The <code class="docutils literal"><span class="pre">activation</span></code> is used by the FullyConnected layer or convolution layers, but a cross-entropy layer does not use it. The example code of <code class="docutils literal"><span class="pre">add_activation</span></code> are:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">LayerHelper</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span> <span class="c1"># kwargs is short for `keyword arguments`</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kwargs</span> <span class="o">=</span> <span class="n">kwargs</span>
<span class="k">def</span> <span class="nf">add_activation</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">input_var</span><span class="p">):</span>
<span class="n">act</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;act&quot;</span><span class="p">,</span> <span class="bp">None</span><span class="p">)</span> <span class="c1"># default value is None</span>
<span class="k">if</span> <span class="n">act</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span> <span class="c1"># do nothing if no act</span>
<span class="k">return</span> <span class="n">input_var</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">create_tmp_var</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">append_op</span><span class="p">(</span><span class="nb">type</span><span class="o">=</span><span class="n">act</span><span class="p">,</span> <span class="nb">input</span><span class="o">=</span><span class="n">input_var</span><span class="p">,</span> <span class="n">output</span><span class="o">=</span><span class="n">tmp</span><span class="p">)</span>
<span class="k">return</span> <span class="n">tmp</span>
</pre></div>
</div>
</div>
......
因为 它太大了无法显示 source diff 。你可以改为 查看blob
......@@ -179,40 +179,104 @@ init_attr={
`optimize_op_attrs` is not in the `VarDesc` message, but kept in the Python instance, as it will be used in the Python space when creating the optimize operator's `OpDesc`, and will be in the `OpDesc` message.
## Layer Functions
## Layer Function
A layer is a Python function that creates some operators and variables. Layers simplify the work of application programmers.
A layer is a Python function that creates some operators and variables. Layers simplify the work of application programmers.
### Data Layer
Layer functions take `Variable` and configuration parameters as its input and return the output variable(s).
For example, `FullyConnected` take one or more variable as its input. The input could be input data or another layer's output. There are many configuration options for a `FullyConnected` layer, such as layer size, activation, parameter names, initialization strategies of parameters, and so on. The `FullyConnected` layer will return an output variable.
### Necessity for reusing code between layer functions
There are a lot of code that can be reused. Such as
* Give the default value of configuration. e.g., default initialize strategy for parameters is uniform random with `min = -1.0`, `max = 1.0`. and default initialize strategy for bias is to fill zero.
* Append the activation operator.
* Create a temporary variable.
* Create parameter.
* Generate a unique name.
* Add a bias.
* ...
A mechanism to reuse code between layer functions is necessary. It will be around [150 lines of code](https://github.com/PaddlePaddle/Paddle/pull/4724/files#diff-823b27e07e93914ada859232ae23f846R12) if we write a `FullyConnected` layer without any helper functions.
### Comparision between global functions and helper class
The `FullyConnected` layer will be as follow when we provide global functions:
```python
def data_layer(name, type, column_name):
block = the_current_program.glolal_block()
var = block.create_global_var(
name=name,
shape=[None] + type.dims(),
dtype=type.dtype)
block.prepend_operator(block,
type="Feed",
inputs = None,
outputs = [var],
{column_name: column_name})
return var
def fc_layer(input, size, param_attr=None, bias_attr=None, act=None, name=None):
if name is None:
name = unique_name("fc")
input = multiple_input(input)
param_attr = default_param_attr(param_attr)
param_attr = multiple_param_attr(param_attr, len(input))
# mul
mul_results = []
for ipt, attr in zip(input, param_attr):
shape = ipt.shape[1:] + [size]
w = g_program.global_block().create_parameter(shape, ipt.dtype, name, attr)
tmp = create_tmp_var(name)
g_program.current_block().append_op("mul", {ipt, w}, {tmp})
mul_results.append(tmp)
# add sum
...
# add bias
...
# add activation
...
return out
```
The input to the feed operator is a special variable in the global scope, which is the output of [Python readers](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/reader/README.md).
We can provide many helpers functions for layer developers. However, there are several disadvantages for global helper functions:
1. We need a namespace for these methods, then layer developers can quickly figure out what method they can use.
2. Global functions will force layer developers to pass its parameter time by time.
So we provide a helper class, `LayerHelper`, to share code between layer functions. The `FullyConnected` Layer will be as follow.
```python
def fc_layer(input, size, param_attr=None, bias_attr=None, act=None, name=None):
helper = LayerHelper(locals()) # pass all parameter to LayerHelper
mul_results = []
for ipt, param in helper.iter_multiple_input_and_param():
w = helper.create_parameter(shape=ipt.shape[1:] + [size], dtype = ipt.dtype)
tmp = helper.create_tmp_variable()
helper.append_op('mul', {ipt, w}, {tmp})
mul_results.append(tmp)
pre_bias = helper.add_sum(mul_results)
pre_activation = helper.add_bias(pre_bias)
return helper.add_activation(pre_activation)
```
We not only use the fewer lines of code to write `fc_layer` but also make the code clearer to understand. At the same time, layer developers can figure out what function they can invoke by typing `helper.` in a python editor.
### Implementation of layer helper
### FC Layer
We just keep all parameters of a layer function as a dictionary in layer helper as a private data member. Every method of layer helper will look up the dictionary after it is invoked. In that way, we can implement a layer helper for all layer functions even some layer does not contain some operator. For example, The `activation` is used by the FullyConnected layer or convolution layers, but a cross-entropy layer does not use it. The example code of `add_activation` are:
```python
def fc_layer(input, size, ...):
block = program.current_block()
w = block.create_parameter(...)
b = block.create_parameter(...)
out = block.create_var()
op = block.append_operator("FC", X=input, W=w, b=b, out=out)
out.writer = op
return out
class LayerHelper(object):
def __init__(self, **kwargs): # kwargs is short for `keyword arguments`
self.kwargs = kwargs
def add_activation(self, input_var):
act = self.kwargs.get("act", None) # default value is None
if act is None: # do nothing if no act
return input_var
tmp = self.create_tmp_var(self)
self.append_op(type=act, input=input_var, output=tmp)
return tmp
```
## Optimizer
......
......@@ -354,37 +354,91 @@
<p><code class="docutils literal"><span class="pre">optimize_op_attrs</span></code> is not in the <code class="docutils literal"><span class="pre">VarDesc</span></code> message, but kept in the Python instance, as it will be used in the Python space when creating the optimize operator&#8217;s <code class="docutils literal"><span class="pre">OpDesc</span></code>, and will be in the <code class="docutils literal"><span class="pre">OpDesc</span></code> message.</p>
</div>
</div>
<div class="section" id="layer-functions">
<span id="layer-functions"></span><h2>Layer Functions<a class="headerlink" href="#layer-functions" title="永久链接至标题"></a></h2>
<p>A layer is a Python function that creates some operators and variables. Layers simplify the work of application programmers.</p>
<div class="section" id="data-layer">
<span id="data-layer"></span><h3>Data Layer<a class="headerlink" href="#data-layer" title="永久链接至标题"></a></h3>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">data_layer</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="nb">type</span><span class="p">,</span> <span class="n">column_name</span><span class="p">):</span>
<span class="n">block</span> <span class="o">=</span> <span class="n">the_current_program</span><span class="o">.</span><span class="n">glolal_block</span><span class="p">()</span>
<span class="n">var</span> <span class="o">=</span> <span class="n">block</span><span class="o">.</span><span class="n">create_global_var</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="n">name</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="bp">None</span><span class="p">]</span> <span class="o">+</span> <span class="nb">type</span><span class="o">.</span><span class="n">dims</span><span class="p">(),</span>
<span class="n">dtype</span><span class="o">=</span><span class="nb">type</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">block</span><span class="o">.</span><span class="n">prepend_operator</span><span class="p">(</span><span class="n">block</span><span class="p">,</span>
<span class="nb">type</span><span class="o">=</span><span class="s2">&quot;Feed&quot;</span><span class="p">,</span>
<span class="n">inputs</span> <span class="o">=</span> <span class="bp">None</span><span class="p">,</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="p">[</span><span class="n">var</span><span class="p">],</span>
<span class="p">{</span><span class="n">column_name</span><span class="p">:</span> <span class="n">column_name</span><span class="p">})</span>
<span class="k">return</span> <span class="n">var</span>
<div class="section" id="layer-function">
<span id="layer-function"></span><h2>Layer Function<a class="headerlink" href="#layer-function" title="永久链接至标题"></a></h2>
<p>A layer is a Python function that creates some operators and variables. Layers simplify the work of application programmers.</p>
<p>Layer functions take <code class="docutils literal"><span class="pre">Variable</span></code> and configuration parameters as its input and return the output variable(s).</p>
<p>For example, <code class="docutils literal"><span class="pre">FullyConnected</span></code> take one or more variable as its input. The input could be input data or another layer&#8217;s output. There are many configuration options for a <code class="docutils literal"><span class="pre">FullyConnected</span></code> layer, such as layer size, activation, parameter names, initialization strategies of parameters, and so on. The <code class="docutils literal"><span class="pre">FullyConnected</span></code> layer will return an output variable.</p>
<div class="section" id="necessity-for-reusing-code-between-layer-functions">
<span id="necessity-for-reusing-code-between-layer-functions"></span><h3>Necessity for reusing code between layer functions<a class="headerlink" href="#necessity-for-reusing-code-between-layer-functions" title="永久链接至标题"></a></h3>
<p>There are a lot of code that can be reused. Such as</p>
<ul class="simple">
<li>Give the default value of configuration. e.g., default initialize strategy for parameters is uniform random with <code class="docutils literal"><span class="pre">min</span> <span class="pre">=</span> <span class="pre">-1.0</span></code>, <code class="docutils literal"><span class="pre">max</span> <span class="pre">=</span> <span class="pre">1.0</span></code>. and default initialize strategy for bias is to fill zero.</li>
<li>Append the activation operator.</li>
<li>Create a temporary variable.</li>
<li>Create parameter.</li>
<li>Generate a unique name.</li>
<li>Add a bias.</li>
<li>...</li>
</ul>
<p>A mechanism to reuse code between layer functions is necessary. It will be around <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/pull/4724/files#diff-823b27e07e93914ada859232ae23f846R12">150 lines of code</a> if we write a <code class="docutils literal"><span class="pre">FullyConnected</span></code> layer without any helper functions.</p>
</div>
<div class="section" id="comparision-between-global-functions-and-helper-class">
<span id="comparision-between-global-functions-and-helper-class"></span><h3>Comparision between global functions and helper class<a class="headerlink" href="#comparision-between-global-functions-and-helper-class" title="永久链接至标题"></a></h3>
<p>The <code class="docutils literal"><span class="pre">FullyConnected</span></code> layer will be as follow when we provide global functions:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">fc_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">size</span><span class="p">,</span> <span class="n">param_attr</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">bias_attr</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
<span class="k">if</span> <span class="n">name</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
<span class="n">name</span> <span class="o">=</span> <span class="n">unique_name</span><span class="p">(</span><span class="s2">&quot;fc&quot;</span><span class="p">)</span>
<span class="nb">input</span> <span class="o">=</span> <span class="n">multiple_input</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
<span class="n">param_attr</span> <span class="o">=</span> <span class="n">default_param_attr</span><span class="p">(</span><span class="n">param_attr</span><span class="p">)</span>
<span class="n">param_attr</span> <span class="o">=</span> <span class="n">multiple_param_attr</span><span class="p">(</span><span class="n">param_attr</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="nb">input</span><span class="p">))</span>
<span class="c1"># mul</span>
<span class="n">mul_results</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">ipt</span><span class="p">,</span> <span class="n">attr</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">param_attr</span><span class="p">):</span>
<span class="n">shape</span> <span class="o">=</span> <span class="n">ipt</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span> <span class="o">+</span> <span class="p">[</span><span class="n">size</span><span class="p">]</span>
<span class="n">w</span> <span class="o">=</span> <span class="n">g_program</span><span class="o">.</span><span class="n">global_block</span><span class="p">()</span><span class="o">.</span><span class="n">create_parameter</span><span class="p">(</span><span class="n">shape</span><span class="p">,</span> <span class="n">ipt</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="n">name</span><span class="p">,</span> <span class="n">attr</span><span class="p">)</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="n">create_tmp_var</span><span class="p">(</span><span class="n">name</span><span class="p">)</span>
<span class="n">g_program</span><span class="o">.</span><span class="n">current_block</span><span class="p">()</span><span class="o">.</span><span class="n">append_op</span><span class="p">(</span><span class="s2">&quot;mul&quot;</span><span class="p">,</span> <span class="p">{</span><span class="n">ipt</span><span class="p">,</span> <span class="n">w</span><span class="p">},</span> <span class="p">{</span><span class="n">tmp</span><span class="p">})</span>
<span class="n">mul_results</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
<span class="c1"># add sum</span>
<span class="o">...</span>
<span class="c1"># add bias</span>
<span class="o">...</span>
<span class="c1"># add activation</span>
<span class="o">...</span>
<span class="k">return</span> <span class="n">out</span>
</pre></div>
</div>
<p>We can provide many helpers functions for layer developers. However, there are several disadvantages for global helper functions:</p>
<ol class="simple">
<li>We need a namespace for these methods, then layer developers can quickly figure out what method they can use.</li>
<li>Global functions will force layer developers to pass its parameter time by time.</li>
</ol>
<p>So we provide a helper class, <code class="docutils literal"><span class="pre">LayerHelper</span></code>, to share code between layer functions. The <code class="docutils literal"><span class="pre">FullyConnected</span></code> Layer will be as follow.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">fc_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">size</span><span class="p">,</span> <span class="n">param_attr</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">bias_attr</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
<span class="n">helper</span> <span class="o">=</span> <span class="n">LayerHelper</span><span class="p">(</span><span class="nb">locals</span><span class="p">())</span> <span class="c1"># pass all parameter to LayerHelper</span>
<span class="n">mul_results</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">ipt</span><span class="p">,</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">helper</span><span class="o">.</span><span class="n">iter_multiple_input_and_param</span><span class="p">():</span>
<span class="n">w</span> <span class="o">=</span> <span class="n">helper</span><span class="o">.</span><span class="n">create_parameter</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="n">ipt</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span> <span class="o">+</span> <span class="p">[</span><span class="n">size</span><span class="p">],</span> <span class="n">dtype</span> <span class="o">=</span> <span class="n">ipt</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="n">helper</span><span class="o">.</span><span class="n">create_tmp_variable</span><span class="p">()</span>
<span class="n">helper</span><span class="o">.</span><span class="n">append_op</span><span class="p">(</span><span class="s1">&#39;mul&#39;</span><span class="p">,</span> <span class="p">{</span><span class="n">ipt</span><span class="p">,</span> <span class="n">w</span><span class="p">},</span> <span class="p">{</span><span class="n">tmp</span><span class="p">})</span>
<span class="n">mul_results</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
<span class="n">pre_bias</span> <span class="o">=</span> <span class="n">helper</span><span class="o">.</span><span class="n">add_sum</span><span class="p">(</span><span class="n">mul_results</span><span class="p">)</span>
<span class="n">pre_activation</span> <span class="o">=</span> <span class="n">helper</span><span class="o">.</span><span class="n">add_bias</span><span class="p">(</span><span class="n">pre_bias</span><span class="p">)</span>
<span class="k">return</span> <span class="n">helper</span><span class="o">.</span><span class="n">add_activation</span><span class="p">(</span><span class="n">pre_activation</span><span class="p">)</span>
</pre></div>
</div>
<p>The input to the feed operator is a special variable in the global scope, which is the output of <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/reader/README.md">Python readers</a>.</p>
<p>We not only use the fewer lines of code to write <code class="docutils literal"><span class="pre">fc_layer</span></code> but also make the code clearer to understand. At the same time, layer developers can figure out what function they can invoke by typing <code class="docutils literal"><span class="pre">helper.</span></code> in a python editor.</p>
</div>
<div class="section" id="fc-layer">
<span id="fc-layer"></span><h3>FC Layer<a class="headerlink" href="#fc-layer" title="永久链接至标题"></a></h3>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">fc_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">size</span><span class="p">,</span> <span class="o">...</span><span class="p">):</span>
<span class="n">block</span> <span class="o">=</span> <span class="n">program</span><span class="o">.</span><span class="n">current_block</span><span class="p">()</span>
<span class="n">w</span> <span class="o">=</span> <span class="n">block</span><span class="o">.</span><span class="n">create_parameter</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">block</span><span class="o">.</span><span class="n">create_parameter</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">block</span><span class="o">.</span><span class="n">create_var</span><span class="p">()</span>
<span class="n">op</span> <span class="o">=</span> <span class="n">block</span><span class="o">.</span><span class="n">append_operator</span><span class="p">(</span><span class="s2">&quot;FC&quot;</span><span class="p">,</span> <span class="n">X</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span> <span class="n">W</span><span class="o">=</span><span class="n">w</span><span class="p">,</span> <span class="n">b</span><span class="o">=</span><span class="n">b</span><span class="p">,</span> <span class="n">out</span><span class="o">=</span><span class="n">out</span><span class="p">)</span>
<span class="n">out</span><span class="o">.</span><span class="n">writer</span> <span class="o">=</span> <span class="n">op</span>
<span class="k">return</span> <span class="n">out</span>
<div class="section" id="implementation-of-layer-helper">
<span id="implementation-of-layer-helper"></span><h3>Implementation of layer helper<a class="headerlink" href="#implementation-of-layer-helper" title="永久链接至标题"></a></h3>
<p>We just keep all parameters of a layer function as a dictionary in layer helper as a private data member. Every method of layer helper will look up the dictionary after it is invoked. In that way, we can implement a layer helper for all layer functions even some layer does not contain some operator. For example, The <code class="docutils literal"><span class="pre">activation</span></code> is used by the FullyConnected layer or convolution layers, but a cross-entropy layer does not use it. The example code of <code class="docutils literal"><span class="pre">add_activation</span></code> are:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">LayerHelper</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span> <span class="c1"># kwargs is short for `keyword arguments`</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kwargs</span> <span class="o">=</span> <span class="n">kwargs</span>
<span class="k">def</span> <span class="nf">add_activation</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">input_var</span><span class="p">):</span>
<span class="n">act</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;act&quot;</span><span class="p">,</span> <span class="bp">None</span><span class="p">)</span> <span class="c1"># default value is None</span>
<span class="k">if</span> <span class="n">act</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span> <span class="c1"># do nothing if no act</span>
<span class="k">return</span> <span class="n">input_var</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">create_tmp_var</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">append_op</span><span class="p">(</span><span class="nb">type</span><span class="o">=</span><span class="n">act</span><span class="p">,</span> <span class="nb">input</span><span class="o">=</span><span class="n">input_var</span><span class="p">,</span> <span class="n">output</span><span class="o">=</span><span class="n">tmp</span><span class="p">)</span>
<span class="k">return</span> <span class="n">tmp</span>
</pre></div>
</div>
</div>
......
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册