Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
9a964901
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9a964901
编写于
10月 28, 2021
作者:
L
Li Min
提交者:
GitHub
10月 28, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[fix-doc-bug] Fix fused_attention_op english doc test=document_fix (#36803) (#36829)
* Fix fused_attention english doc test=document_fix
上级
5fb28500
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
33 addition
and
23 deletion
+33
-23
python/paddle/incubate/nn/functional/fused_transformer.py
python/paddle/incubate/nn/functional/fused_transformer.py
+24
-18
python/paddle/incubate/nn/layer/fused_transformer.py
python/paddle/incubate/nn/layer/fused_transformer.py
+9
-5
未找到文件。
python/paddle/incubate/nn/functional/fused_transformer.py
浏览文件 @
9a964901
...
...
@@ -194,24 +194,27 @@ def fused_multi_head_attention(x,
Multi-Head Attention performs multiple parallel attention to jointly attending
to information from different representation subspaces. This API only
support self_attention. The pseudo code is as follows:
if pre_layer_norm:
out = layer_norm(x);
out = linear(out) + qkv)bias
else:
out = linear(x) + bias;
out = transpose(out, perm=[2, 0, 3, 1, 4]);
# extract q, k and v from out.
q = out[0:1,::]
k = out[1:2,::]
v = out[2:3,::]
out = q * k^t;
out = attn_mask + out;
out = softmax(out);
out = dropout(out);
out = out * v;
out = transpose(out, perm=[0, 2, 1, 3]);
out = out_linear(out);
out = layer_norm(x + dropout(linear_bias + out));
.. code-block:: python
if pre_layer_norm:
out = layer_norm(x)
out = linear(out) + qkv) + bias
else:
out = linear(x) + bias
out = transpose(out, perm=[2, 0, 3, 1, 4])
# extract q, k and v from out.
q = out[0:1,::]
k = out[1:2,::]
v = out[2:3,::]
out = q * k^t
out = attn_mask + out
out = softmax(out)
out = dropout(out)
out = out * v
out = transpose(out, perm=[0, 2, 1, 3])
out = out_linear(out)
out = layer_norm(x + dropout(linear_bias + out))
Parameters:
x (Tensor): The input tensor of fused_multi_head_attention. The shape is
...
...
@@ -245,6 +248,9 @@ def fused_multi_head_attention(x,
ln_epsilon (float, optional): Small float value added to denominator of layer_norm
to avoid dividing by zero. Default is 1e-5.
Returns:
Tensor: The output Tensor, the data type and shape is same as `x`.
Examples:
.. code-block:: python
...
...
python/paddle/incubate/nn/layer/fused_transformer.py
浏览文件 @
9a964901
...
...
@@ -24,11 +24,12 @@ import collections
class
FusedMultiHeadAttention
(
Layer
):
"""
Attention mapps queries and a set of key-value pairs to outputs, and
Attention mapps queries and a set of key-value pairs to outputs, and
Multi-Head Attention performs multiple parallel attention to jointly attending
to information from different representation subspaces.
Please refer to `Attention Is All You Need <https://arxiv.org/pdf/1706.03762.pdf>`_
for more details.
Parameters:
embed_dim (int): The expected feature size in the input and output.
num_heads (int): The number of heads in multi-head attention.
...
...
@@ -42,17 +43,18 @@ class FusedMultiHeadAttention(Layer):
`embed_dim`. Default None.
vdim (int, optional): The feature size in value. If None, assumed equal to
`embed_dim`. Default None.
normalize_before (bool, optional): Indicate whether it is pre_layer_norm
(True)
or post_layer_norm architecture (False). Default False.
normalize_before (bool, optional): Indicate whether it is pre_layer_norm
(True)
or post_layer_norm architecture (False). Default False.
need_weights (bool, optional): Indicate whether to return the attention
weights. Now, only False is supported. Default False.
weight_attr(ParamAttr, optional): To specify the weight parameter property.
Default: None, which means the default weight parameter property is used.
See usage for details in :code:`ParamAttr`
.
See usage for details in :code:`ParamAttr`.
bias_attr (ParamAttr|bool, optional): To specify the bias parameter property.
Default: None, which means the default bias parameter property is used.
If it is set to False, this layer will not have trainable bias parameter.
See usage for details in :code:`ParamAttr` .
See usage for details in :code:`ParamAttr`.
Examples:
.. code-block:: python
...
...
@@ -139,6 +141,7 @@ class FusedMultiHeadAttention(Layer):
"""
Applies multi-head attention to map queries and a set of key-value pairs
to outputs.
Parameters:
query (Tensor): The queries for multi-head attention. It is a
tensor with shape `[batch_size, query_length, embed_dim]`. The
...
...
@@ -163,6 +166,7 @@ class FusedMultiHeadAttention(Layer):
nothing wanted or needed to be prevented attention to. Default None.
cache (MultiHeadAttention.Cache|MultiHeadAttention.StaticCache, optional):
Now, only None is supported. Default None.
Returns:
Tensor|tuple: It is a tensor that has the same shape and data type
\
as `query`, representing attention output.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录