Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
99f60188
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
99f60188
编写于
11月 02, 2022
作者:
S
ShenLiang
提交者:
GitHub
11月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support unbalanced data for pipeline (#47199)
* add unbalanced data * fix utest
上级
bafa890a
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
115 addition
and
37 deletion
+115
-37
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
...ddle/distributed/fleet/meta_parallel/pipeline_parallel.py
+41
-37
python/paddle/fluid/tests/unittests/collective/fleet/hybrid_parallel_pp_transformer_unbalanced_data.py
...e/fleet/hybrid_parallel_pp_transformer_unbalanced_data.py
+67
-0
python/paddle/fluid/tests/unittests/collective/fleet/test_parallel_dygraph_pipeline_parallel.py
...llective/fleet/test_parallel_dygraph_pipeline_parallel.py
+7
-0
未找到文件。
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
浏览文件 @
99f60188
...
...
@@ -355,51 +355,55 @@ class PipelineParallel(MetaParallelBase):
input_tensor_grad
=
input_tensor
.
grad
return
input_tensor_grad
def
_load_micro_batch
(
self
,
cache_id
):
inputs
=
self
.
data
def
_check_data_vaild
(
self
,
data
):
batch_size
=
data
.
shape
[
0
]
assert
self
.
micro_batch_size
*
self
.
accumulate_steps
==
batch_size
,
(
"batch_size needs to be divisible by micro_batch_size. Currently, "
"batch_size = %d, micro_batch_size = %d, accumulate_steps = %d."
%
(
batch_size
,
self
.
micro_batch_size
,
self
.
accumulate_steps
)
)
def
_load_micro_batch_impl
(
self
,
inputs
,
cache_id
):
begin
=
cache_id
*
self
.
micro_batch_size
end
=
begin
+
self
.
micro_batch_size
# The virtual first and last pipeline stage need data, all others don't need.
if
isinstance
(
inputs
,
tuple
):
output
=
[]
for
data
in
inputs
:
if
isinstance
(
data
,
list
):
assert
(
len
(
data
)
==
self
.
accumulate_steps
),
"length of data should be %d, but it is %d"
%
(
self
.
accumulate_steps
,
len
(
data
),
)
output
.
append
(
data
[
cache_id
].
detach
())
else
:
self
.
_check_data_vaild
(
data
)
output
.
append
(
data
[
begin
:
end
,
:].
detach
())
return
tuple
(
output
)
elif
isinstance
(
inputs
,
list
):
assert
(
len
(
inputs
)
==
self
.
accumulate_steps
),
"length of data should be %d, but it is %d"
%
(
self
.
accumulate_steps
,
len
(
inputs
),
)
return
inputs
[
cache_id
].
detach
()
else
:
self
.
_check_data_vaild
(
inputs
)
return
inputs
[
begin
:
end
,
:].
detach
()
def
_load_micro_batch
(
self
,
cache_id
):
inputs
=
self
.
data
if
self
.
is_pipeline_first_stage
():
assert
len
(
inputs
)
==
2
,
"length of input should be 2"
if
isinstance
(
inputs
[
0
],
tuple
):
assert
(
len
(
inputs
[
0
])
>
1
),
"If you use tuple for input data, it should have at least two inputs."
batch_size
=
inputs
[
0
][
0
].
shape
[
0
]
assert
(
self
.
micro_batch_size
*
self
.
accumulate_steps
==
batch_size
),
(
"batch_size needs to be divisible by micro_batch_size. Currently, "
"batch_size = %d, micro_batch_size = %d, accumulate_steps = %d."
%
(
batch_size
,
self
.
micro_batch_size
,
self
.
accumulate_steps
)
)
data
=
[
input
[
begin
:
end
,
:].
detach
()
for
input
in
inputs
[
0
]]
return
tuple
(
data
)
else
:
batch_size
=
inputs
[
0
].
shape
[
0
]
assert
(
self
.
micro_batch_size
*
self
.
accumulate_steps
==
batch_size
)
return
inputs
[
0
][
begin
:
end
,
:].
detach
()
return
self
.
_load_micro_batch_impl
(
inputs
[
0
],
cache_id
)
elif
self
.
is_pipeline_last_stage
():
assert
len
(
inputs
)
==
2
,
"length of input should be 2"
if
isinstance
(
inputs
[
1
],
tuple
):
batch_size
=
inputs
[
1
][
0
].
shape
[
0
]
assert
(
self
.
micro_batch_size
*
self
.
accumulate_steps
==
batch_size
)
data
=
[
input
[
begin
:
end
,
:].
detach
()
for
input
in
inputs
[
1
]]
return
tuple
(
data
)
else
:
batch_size
=
inputs
[
1
].
shape
[
0
]
assert
(
self
.
micro_batch_size
*
self
.
accumulate_steps
==
batch_size
)
return
inputs
[
1
][
begin
:
end
,
:].
detach
()
return
self
.
_load_micro_batch_impl
(
inputs
[
1
],
cache_id
)
else
:
# No data input is required for other stages
inputs
=
None
def
_broadcast_final_loss
(
self
):
...
...
python/paddle/fluid/tests/unittests/collective/fleet/hybrid_parallel_pp_transformer_unbalanced_data.py
0 → 100644
浏览文件 @
99f60188
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle
import
numpy
as
np
import
paddle.distributed
as
dist
import
paddle.distributed.fleet
as
fleet
from
hybrid_parallel_pp_transformer
import
(
TestDistPPTraning
,
set_random_seed
,
ModelPipe
,
batch_size
,
length
,
micro_batch_size
,
vocab_size
,
)
class
TestDistPPTraningUnbalancedData
(
TestDistPPTraning
):
def
test_pp_model
(
self
):
hcg
=
fleet
.
get_hybrid_communicate_group
()
word_size
=
hcg
.
get_model_parallel_world_size
()
dp_id
=
hcg
.
get_data_parallel_rank
()
pp_id
=
hcg
.
get_stage_id
()
rank_id
=
dist
.
get_rank
()
topology
=
hcg
.
topology
()
set_random_seed
(
1024
,
dp_id
,
rank_id
)
model
=
ModelPipe
(
topology
)
scheduler
=
paddle
.
optimizer
.
lr
.
PiecewiseDecay
(
boundaries
=
[
2
],
values
=
[
0.001
,
0.002
],
verbose
=
True
)
optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
scheduler
,
parameters
=
model
.
parameters
()
)
model
=
fleet
.
distributed_model
(
model
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
for
step_id
in
range
(
5
):
x
=
[]
for
_
in
range
(
batch_size
//
micro_batch_size
):
size
=
micro_batch_size
x_data
=
np
.
random
.
randint
(
0
,
vocab_size
,
size
=
[
size
,
length
])
x
.
append
(
paddle
.
to_tensor
(
x_data
))
e_loss
=
model
.
eval_batch
([
x
,
x
],
True
)
loss
=
model
.
train_batch
([
x
,
x
],
optimizer
,
scheduler
)
# TODO(shenliang03) add utest for loss
if
pp_id
!=
0
:
np
.
testing
.
assert_allclose
(
loss
.
numpy
(),
e_loss
.
numpy
())
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/collective/fleet/test_parallel_dygraph_pipeline_parallel.py
浏览文件 @
99f60188
...
...
@@ -64,6 +64,13 @@ class TestHybridPipeParallel(TestMultipleGpus):
self
.
run_mnist_2gpu
(
'hybrid_parallel_pp_clip_grad.py'
)
self
.
run_mnist_2gpu
(
'hybrid_parallel_pp_clip_grad.py'
,
eager_mode
=
False
)
def
test_hybrid_parallel_transformer_unbalanced_data
(
self
):
self
.
run_mnist_2gpu
(
'hybrid_parallel_pp_transformer_unbalanced_data.py'
)
self
.
run_mnist_2gpu
(
'hybrid_parallel_pp_transformer_unbalanced_data.py'
,
eager_mode
=
False
,
)
if
__name__
==
"__main__"
:
os
.
environ
[
"FLAGS_enable_eager_mode"
]
=
"1"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录