提交 983566d9 编写于 作者: G guosheng

Merge branch 'develop' of https://github.com/PaddlePaddle/paddle into fix-beam_search-dev

......@@ -40,12 +40,12 @@ ExternalProject_Add(
# NOTE(wuyi):
# this package is generated by following steps:
# 1. git clone -b v1.8.x https://github.com/grpc/grpc.git
# 2. submodule update --init
# 2. git submodule update --init
# 3. keep only zlib, cares, protobuf, boringssl under "third_party",
# checkout and clean other dirs under third_party
# 4. remove .git, and package the directory.
URL "http://paddlepaddledeps.bj.bcebos.com/grpc-v1.8.x.tar.gz"
URL_MD5 "c9c58ee7d0e8929a63155af6a2ecdbd0"
URL "http://paddlepaddledeps.bj.bcebos.com/grpc-v1.10.x.tar.gz"
URL_MD5 "1f268a2aff6759839dccd256adcc91cf"
PREFIX ${GRPC_SOURCES_DIR}
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
......
......@@ -269,14 +269,15 @@ void GRPCClient::Proceed() {
}
std::shared_ptr<grpc::Channel> GRPCClient::GetChannel(const std::string& ep) {
// TODO(Yancey1989): make grpc client completely thread-safe
std::lock_guard<std::mutex> guard(chan_mutex_);
auto it = channels_.find(ep);
if (it != channels_.end()) {
return it->second;
}
// Channel configurations:
grpc::ChannelArguments args;
args.SetInt(GRPC_ARG_MAX_RECONNECT_BACKOFF_MS, 2000);
args.SetCompressionAlgorithm(GRPC_COMPRESS_NONE);
args.SetMaxSendMessageSize(std::numeric_limits<int>::max());
args.SetMaxReceiveMessageSize(std::numeric_limits<int>::max());
......
......@@ -76,6 +76,7 @@ class BaseProcessor {
virtual void Prepare(const VarHandle& var_info, int64_t time_out) {
context_.reset(new grpc::ClientContext());
var_h_ = var_info;
context_->set_wait_for_ready(true);
std::chrono::system_clock::time_point deadline =
std::chrono::system_clock::now() + std::chrono::milliseconds(time_out);
......@@ -85,6 +86,7 @@ class BaseProcessor {
virtual void Prepare(int64_t time_out) {
context_.reset(new grpc::ClientContext());
context_->set_wait_for_ready(true);
std::chrono::system_clock::time_point deadline =
std::chrono::system_clock::now() + std::chrono::milliseconds(time_out);
......@@ -176,26 +178,24 @@ class GRPCClient : public RPCClient {
bool AsyncSendVar(const std::string& ep, const platform::DeviceContext& ctx,
const framework::Scope& scope, const std::string& var_name,
int64_t time_out = RPCClient::rpc_time_out) override;
int64_t time_out = FLAGS_grpc_deadline) override;
bool AsyncGetVar(const std::string& ep, const platform::DeviceContext& ctx,
const framework::Scope& scope, const std::string& var_name,
int64_t time_out = RPCClient::rpc_time_out) override;
int64_t time_out = FLAGS_grpc_deadline) override;
bool AsyncPrefetchVar(const std::string& ep,
const platform::DeviceContext& ctx,
const framework::Scope& scope,
const std::string& in_var_name,
const std::string& out_var_name,
int64_t time_out = RPCClient::rpc_time_out) override;
int64_t time_out = FLAGS_grpc_deadline) override;
void AsyncSendBatchBarrier(
const std::string& ep,
int64_t time_out = RPCClient::rpc_time_out) override;
void AsyncSendBatchBarrier(const std::string& ep,
int64_t time_out = FLAGS_grpc_deadline) override;
void AsyncSendFetchBarrier(
const std::string& ep,
int64_t time_out = RPCClient::rpc_time_out) override;
void AsyncSendFetchBarrier(const std::string& ep,
int64_t time_out = FLAGS_grpc_deadline) override;
void Wait() override;
......@@ -211,7 +211,7 @@ class GRPCClient : public RPCClient {
void Proceed();
void AsyncSendComplete(const std::string& ep,
int64_t time_out = RPCClient::rpc_time_out);
int64_t time_out = FLAGS_grpc_deadline);
std::shared_ptr<grpc::Channel> GetChannel(const std::string& ep);
......
......@@ -97,7 +97,7 @@ class RequestSend final : public RequestBase {
void Process() override {
std::string varname = GetReqName();
VLOG(3) << "RequestSend var_name:" << varname;
VLOG(4) << "RequestSend var_name:" << varname;
auto scope = request_->GetMutableLocalScope();
auto invar = request_->GetVar();
......@@ -132,7 +132,7 @@ class RequestGet final : public RequestBase {
void Process() override {
// proc request.
std::string varname = request_.varname();
VLOG(3) << "RequestGet " << varname;
VLOG(4) << "RequestGet " << varname;
auto scope = request_handler_->scope();
auto invar = scope->FindVar(varname);
......@@ -178,7 +178,7 @@ class RequestPrefetch final : public RequestBase {
// prefetch process...
std::string in_var_name = request_->Varname();
std::string out_var_name = request_->OutVarname();
VLOG(3) << "RequestPrefetch, in_var_name: " << in_var_name
VLOG(4) << "RequestPrefetch, in_var_name: " << in_var_name
<< " out_var_name: " << out_var_name;
auto scope = request_->GetMutableLocalScope();
......@@ -201,10 +201,10 @@ class RequestPrefetch final : public RequestBase {
};
void AsyncGRPCServer::WaitServerReady() {
VLOG(3) << "AsyncGRPCServer is wait server ready";
VLOG(4) << "AsyncGRPCServer is wait server ready";
std::unique_lock<std::mutex> lock(this->mutex_ready_);
condition_ready_.wait(lock, [=] { return this->ready_ == 1; });
VLOG(3) << "AsyncGRPCServer WaitSeverReady";
VLOG(4) << "AsyncGRPCServer WaitSeverReady";
}
void AsyncGRPCServer::StartServer() {
......@@ -243,7 +243,7 @@ void AsyncGRPCServer::StartServer() {
for (int i = 0; i < threadnum; i++) {
rpc_threads_[rpc_name].emplace_back(new std::thread(std::bind(
&AsyncGRPCServer::HandleRequest, this, cq.get(), rpc_name, f)));
VLOG(3) << t.first << " creates threads!";
VLOG(4) << t.first << " creates threads!";
}
}
......@@ -260,7 +260,7 @@ void AsyncGRPCServer::StartServer() {
auto& threads = t.second;
for (size_t i = 0; i < threads.size(); ++i) {
threads[i]->join();
VLOG(3) << t.first << " threads ends!";
VLOG(4) << t.first << " threads ends!";
}
}
}
......@@ -268,7 +268,7 @@ void AsyncGRPCServer::StartServer() {
void AsyncGRPCServer::ShutdownQueue() {
for (auto& t : rpc_cq_) {
t.second->Shutdown();
VLOG(3) << t.first << " shutdown!";
VLOG(4) << t.first << " queue shutdown!";
}
}
......@@ -277,7 +277,7 @@ void AsyncGRPCServer::ShutDownImpl() {
is_shut_down_ = true;
ShutdownQueue();
VLOG(3) << "server_ shutdown!";
VLOG(4) << "server_ shutdown!";
server_->Shutdown();
}
......@@ -285,7 +285,7 @@ void AsyncGRPCServer::TryToRegisterNewOne(const std::string& rpc_name,
int req_id) {
std::unique_lock<std::mutex> lock(cq_mutex_);
if (is_shut_down_) {
LOG(WARNING) << "shutdown, do not TryToRegisterNewSendOne";
VLOG(4) << "shutdown, do not TryToRegisterNewSendOne";
return;
}
......
......@@ -13,6 +13,10 @@
// limitations under the License.
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "gflags/gflags.h"
// default to 3min to avoid temprary network failures.
DEFINE_int32(grpc_deadline, 180000, "deadline timeouts for grpc");
namespace paddle {
namespace operators {
......
......@@ -15,11 +15,14 @@
#pragma once
#include <string>
#include "gflags/gflags.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
DECLARE_int32(grpc_deadline);
namespace paddle {
namespace operators {
namespace distributed {
......@@ -32,26 +35,26 @@ class RPCClient {
const platform::DeviceContext& ctx,
const framework::Scope& scope,
const std::string& var_name,
int64_t time_out = rpc_time_out) = 0;
int64_t time_out = FLAGS_grpc_deadline) = 0;
virtual bool AsyncGetVar(const std::string& ep,
const platform::DeviceContext& ctx,
const framework::Scope& scope,
const std::string& var_name,
int64_t time_out = rpc_time_out) = 0;
int64_t time_out = FLAGS_grpc_deadline) = 0;
virtual bool AsyncPrefetchVar(const std::string& ep,
const platform::DeviceContext& ctx,
const framework::Scope& scope,
const std::string& in_var_name,
const std::string& out_var_name,
int64_t time_out = rpc_time_out) = 0;
int64_t time_out = FLAGS_grpc_deadline) = 0;
virtual void AsyncSendBatchBarrier(const std::string& ep,
int64_t time_out = rpc_time_out) = 0;
virtual void AsyncSendBatchBarrier(
const std::string& ep, int64_t time_out = FLAGS_grpc_deadline) = 0;
virtual void AsyncSendFetchBarrier(const std::string& ep,
int64_t time_out = rpc_time_out) = 0;
virtual void AsyncSendFetchBarrier(
const std::string& ep, int64_t time_out = FLAGS_grpc_deadline) = 0;
// SendComplete tells all the server that current trainer have no more data
// to train, so that the pserver can reduce it's barrier count, and continue
......@@ -60,8 +63,6 @@ class RPCClient {
virtual void Wait() = 0;
static constexpr int64_t rpc_time_out = 120 * 1000;
template <typename T>
static RPCClient* GetInstance() {
std::call_once(init_flag_, &RPCClient::Init<T>);
......
......@@ -47,11 +47,12 @@ void RPCServer::WaitBarrier(const std::string& rpc_name) {
return (barrier_counter_[rpc_name] >= client_num_ || exit_flag_.load());
});
VLOG(3) << "batch_barrier_:" << barrier_counter_[rpc_name];
VLOG(3) << "batch_barrier_: " << rpc_name << " "
<< barrier_counter_[rpc_name];
}
void RPCServer::IncreaseBatchBarrier(const std::string rpc_name) {
VLOG(3) << "RPCServer begin IncreaseBatchBarrier " << rpc_name;
VLOG(4) << "RPCServer begin IncreaseBatchBarrier " << rpc_name;
int b = 0;
std::unique_lock<std::mutex> lock(mutex_);
b = ++barrier_counter_[rpc_name];
......@@ -100,7 +101,7 @@ void RPCServer::SetCond(const std::string& rpc_name) {
}
void RPCServer::WaitCond(const std::string& rpc_name) {
VLOG(3) << "RPCServer WaitCond " << rpc_name;
VLOG(4) << "RPCServer WaitCond " << rpc_name;
int cond = 0;
{
std::unique_lock<std::mutex> lock(mutex_);
......
......@@ -164,7 +164,6 @@ void ListenAndServOp::RunSyncLoop(
void ListenAndServOp::RunAsyncLoop(framework::Executor *executor,
framework::ProgramDesc *program) const {
VLOG(3) << "RunAsyncLoop in";
// grad name to block id
std::unordered_map<std::string, int32_t> grad_to_block_id;
std::unordered_map<int32_t, std::string> id_to_grad;
......@@ -202,7 +201,6 @@ void ListenAndServOp::RunAsyncLoop(framework::Executor *executor,
request_get_handler_->SetGradToPreparedCtx(&grad_to_prepared_ctx);
request_prefetch_handler_->SetGradToPreparedCtx(&grad_to_prepared_ctx);
VLOG(3) << "RunAsyncLoop into while";
while (true) {
if (rpc_service_->IsExit()) {
LOG(INFO) << "get exit!rpc_processor break!";
......
......@@ -4318,14 +4318,18 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
say :attr:`actual_shape` has a higher priority
than :attr:`shape`.
act (str): The non-linear activation to be applied to output variable.
inplace(bool): If this flag is set true, a new output tensor is created
whose data is copied from input x, otherwise the output
shares data with input without copying.
inplace(bool): If this flag is set true, the output
shares data with input without copying, otherwise
a new output tensor is created
whose data is copied from input x.
name (str): The name of this layer. It is optional.
Returns:
Variable: The output tensor.
Raises:
TypeError: if actual_shape is neither Variable nor None.
Examples:
.. code-block:: python
......@@ -4337,6 +4341,11 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
if not (isinstance(shape, list) or isinstance(shape, tuple)):
raise ValueError("Input shape must be a python lsit or tuple.")
inputs = {"X": x}
if isinstance(actual_shape, Variable):
inputs["Shape"] = actual_shape
elif actual_shape is not None:
raise TypeError("actual_shape should either be Variable or None")
# Validate the shape
unk_dim_idx = -1
......@@ -4357,9 +4366,7 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
reshaped = helper.create_tmp_variable(dtype=x.dtype)
helper.append_op(
type="reshape",
inputs={"X": x,
"Shape": actual_shape}
if isinstance(actual_shape, Variable) else {"X": x},
inputs=inputs,
attrs={"shape": shape,
"inplace": inplace},
outputs={"Out": reshaped})
......@@ -4978,10 +4985,10 @@ def log(x):
.. math::
Out = \\ln(input)
Out = \\ln(x)
Args:
input (Variable): Input tensor.
x (Variable): Input tensor.
Returns:
Variable: The natural log of the input tensor computed element-wise.
......@@ -5002,7 +5009,7 @@ def log(x):
def relu(x):
"""
Relu takes one input data (Tensor) and produces one output data (Tensor)
where the rectified linear function, y = max(0, input), is applied to
where the rectified linear function, y = max(0, x), is applied to
the tensor elementwise.
.. math::
......@@ -5010,7 +5017,7 @@ def relu(x):
Out = \\max(0, x)
Args:
input (Variable): The input tensor.
x (Variable): The input tensor.
Returns:
Variable: The output tensor with the same shape as input.
......@@ -5019,7 +5026,7 @@ def relu(x):
.. code-block:: python
output = fluid.layers.relu(input)
output = fluid.layers.relu(x)
"""
helper = LayerHelper('relu', **locals())
dtype = helper.input_dtype(input_param_name='x')
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册