Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
96f42d8e
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
96f42d8e
编写于
3月 22, 2017
作者:
Q
qingqing01
提交者:
GitHub
3月 22, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1455 from wangyang59/cudnnDeconv
Cudnn deconv
上级
4951c462
fc7f72c0
变更
22
隐藏空白更改
内联
并排
Showing
22 changed file
with
1484 addition
and
574 deletion
+1484
-574
paddle/gserver/CMakeLists.txt
paddle/gserver/CMakeLists.txt
+4
-0
paddle/gserver/layers/ConvBaseOperator.cpp
paddle/gserver/layers/ConvBaseOperator.cpp
+150
-0
paddle/gserver/layers/ConvBaseOperator.h
paddle/gserver/layers/ConvBaseOperator.h
+112
-0
paddle/gserver/layers/ConvBaseProjection.cpp
paddle/gserver/layers/ConvBaseProjection.cpp
+195
-0
paddle/gserver/layers/ConvBaseProjection.h
paddle/gserver/layers/ConvBaseProjection.h
+116
-0
paddle/gserver/layers/ConvOperator.cpp
paddle/gserver/layers/ConvOperator.cpp
+12
-205
paddle/gserver/layers/ConvOperator.h
paddle/gserver/layers/ConvOperator.h
+44
-0
paddle/gserver/layers/ConvProjection.cpp
paddle/gserver/layers/ConvProjection.cpp
+27
-166
paddle/gserver/layers/ConvProjection.h
paddle/gserver/layers/ConvProjection.h
+7
-94
paddle/gserver/layers/ConvTransOperator.cpp
paddle/gserver/layers/ConvTransOperator.cpp
+125
-0
paddle/gserver/layers/ConvTransOperator.h
paddle/gserver/layers/ConvTransOperator.h
+44
-0
paddle/gserver/layers/ConvTransProjection.cpp
paddle/gserver/layers/ConvTransProjection.cpp
+123
-0
paddle/gserver/layers/ConvTransProjection.h
paddle/gserver/layers/ConvTransProjection.h
+43
-0
paddle/gserver/layers/CudnnConvBaseLayer.cpp
paddle/gserver/layers/CudnnConvBaseLayer.cpp
+36
-29
paddle/gserver/layers/CudnnConvBaseLayer.h
paddle/gserver/layers/CudnnConvBaseLayer.h
+6
-9
paddle/gserver/tests/test_ConvUnify.cpp
paddle/gserver/tests/test_ConvUnify.cpp
+127
-16
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+58
-18
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+90
-15
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+20
-9
python/paddle/trainer_config_helpers/tests/configs/projections.py
...addle/trainer_config_helpers/tests/configs/projections.py
+21
-1
python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr
..._helpers/tests/configs/protostr/img_trans_layers.protostr
+4
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/projections.protostr
...onfig_helpers/tests/configs/protostr/projections.protostr
+120
-12
未找到文件。
paddle/gserver/CMakeLists.txt
浏览文件 @
96f42d8e
...
@@ -25,12 +25,16 @@ filter_test(GSERVER_HEADER)
...
@@ -25,12 +25,16 @@ filter_test(GSERVER_HEADER)
filter_test
(
GSERVER_SOURCES
)
filter_test
(
GSERVER_SOURCES
)
if
(
NOT WITH_GPU
)
if
(
NOT WITH_GPU
)
list
(
REMOVE_ITEM GSERVER_HEADER
list
(
REMOVE_ITEM GSERVER_HEADER
layers/CudnnConvBaseLayer.h
layers/CudnnConvLayer.h
layers/CudnnConvLayer.h
layers/CudnnConvTransLayer.h
layers/CudnnPoolLayer.h
layers/CudnnPoolLayer.h
layers/CudnnBatchNormLayer.h
)
layers/CudnnBatchNormLayer.h
)
list
(
REMOVE_ITEM GSERVER_SOURCES
list
(
REMOVE_ITEM GSERVER_SOURCES
layers/CudnnConvBaseLayer.cpp
layers/CudnnConvLayer.cpp
layers/CudnnConvLayer.cpp
layers/CudnnConvTransLayer.cpp
layers/CudnnPoolLayer.cpp
layers/CudnnPoolLayer.cpp
layers/CudnnBatchNormLayer.cpp
)
layers/CudnnBatchNormLayer.cpp
)
compile_cu_as_cpp
(
layers/LstmCompute.cu
)
compile_cu_as_cpp
(
layers/LstmCompute.cu
)
...
...
paddle/gserver/layers/ConvBaseOperator.cpp
0 → 100644
浏览文件 @
96f42d8e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ConvBaseOperator.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
/**
* @brief ConvBaseOperator takes two inputs to perform the convolution.
* The first input is the image, and the second input is the convolution kernel.
* The height of data for two inputs are the same. Each data of the first input
* is convolved with each data of the second input indepedently.
*
* The config file api is conv_operator.
*/
ConvBaseOperator
::
ConvBaseOperator
(
const
OperatorConfig
&
config
,
bool
useGpu
)
:
Operator
(
config
,
useGpu
)
{
CHECK
(
useGpu
);
CHECK_EQ
(
config_
.
input_indices_size
(),
2L
);
caffeMode_
=
true
;
getConvParams
();
computeConvSizes
();
// initialize all to default algorithms
fwdAlgo_
=
0
;
bwdFilterAlgo_
=
0
;
bwdDataAlgo_
=
0
;
fwdLimitBytes_
=
0
;
bwdDataLimitBytes_
=
0
;
bwdFilterLimitBytes_
=
0
;
workSpaceInBytes_
=
0
;
workSpace_
=
nullptr
;
isSelectAlgo_
=
false
;
}
void
ConvBaseOperator
::
allocConvWorkSpace
()
{
hl_conv_workspace
(
imageDesc_
,
outputDesc_
,
filterDesc_
,
convDesc_
,
&
fwdAlgo_
,
&
fwdLimitBytes_
,
&
bwdDataAlgo_
,
&
bwdDataLimitBytes_
,
&
bwdFilterAlgo_
,
&
bwdFilterLimitBytes_
);
size_t
maxWorkSpace
=
0
;
maxWorkSpace
=
std
::
max
(
fwdLimitBytes_
,
bwdDataLimitBytes_
);
maxWorkSpace
=
std
::
max
(
maxWorkSpace
,
bwdFilterLimitBytes_
);
if
(
maxWorkSpace
>
workSpaceInBytes_
)
{
if
(
workSpaceInBytes_
!=
0
)
{
hl_free_mem_device
(
workSpace_
);
}
// total amount of storage needed
workSpace_
=
hl_malloc_device
(
maxWorkSpace
);
workSpaceInBytes_
=
maxWorkSpace
;
}
}
void
ConvBaseOperator
::
computeConvSizes
()
{
hl_create_filter_descriptor
(
&
filterDesc_
,
channels_
,
numFilters_
,
filterSizeY_
,
filterSize_
);
hl_create_tensor_descriptor
(
&
imageDesc_
);
hl_create_tensor_descriptor
(
&
outputDesc_
);
hl_create_convolution_descriptor
(
&
convDesc_
,
imageDesc_
,
filterDesc_
,
paddingY_
,
padding_
,
strideY_
,
stride_
);
}
void
ConvBaseOperator
::
reshapeImageDescriptors
()
{
hl_tensor_reshape
(
imageDesc_
,
1
,
channels_
,
imageH_
,
imageW_
,
channels_
*
imageH_
*
imageW_
,
imageH_
*
imageW_
,
imageW_
,
1
);
hl_tensor_reshape
(
outputDesc_
,
1
,
numFilters_
,
outputH_
,
outputW_
,
numFilters_
*
outputH_
*
outputW_
,
outputH_
*
outputW_
,
outputW_
,
1
);
hl_reset_convolution_descriptor
(
convDesc_
,
imageDesc_
,
filterDesc_
,
paddingY_
,
padding_
,
strideY_
,
stride_
);
}
void
ConvBaseOperator
::
getConvParams
()
{
configNumFilters_
=
config_
.
num_filters
();
const
ConvConfig
&
conf
=
config_
.
conv_conf
();
padding_
=
conf
.
padding
();
stride_
=
conf
.
stride
();
filterSize_
=
conf
.
filter_size
();
paddingY_
=
conf
.
padding_y
();
strideY_
=
conf
.
stride_y
();
filterSizeY_
=
conf
.
filter_size_y
();
filterPixels_
=
filterSize_
*
filterSizeY_
;
configChannels_
=
conf
.
channels
();
imgSize_
=
conf
.
img_size
();
imgSizeY_
=
conf
.
has_img_size_y
()
?
conf
.
img_size_y
()
:
conf
.
img_size
();
imgPixels_
=
imgSize_
*
imgSizeY_
;
CHECK_EQ
(
conf
.
groups
(),
1U
);
filterChannels_
=
conf
.
filter_channels
();
outputX_
=
conf
.
output_x
();
outputY_
=
conf
.
has_output_y
()
?
conf
.
output_y
()
:
conf
.
output_x
();
outputs_
=
outputX_
*
outputX_
;
isDeconv_
=
(
config_
.
type
()
==
"conv"
)
?
false
:
true
;
if
(
isDeconv_
)
{
channels_
=
configNumFilters_
;
numFilters_
=
configChannels_
;
}
else
{
channels_
=
configChannels_
;
numFilters_
=
configNumFilters_
;
}
}
}
// namespace paddle
paddle/gserver/layers/ConvBaseOperator.h
0 → 100644
浏览文件 @
96f42d8e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Operator.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
/**
* @brief ConvOperator takes two inputs to perform the convolution.
* The first input is the image, and the second input is the convolution kernel.
* The height of data for two inputs are the same. Each data of the first input
* is convolved with each data of the second input indepedently.
*
* The config file api is conv_operator.
*/
class
ConvBaseOperator
:
public
Operator
{
public:
ConvBaseOperator
(
const
OperatorConfig
&
config
,
bool
useGpu
);
/**
* Free workspace in device and destroy cudnn tensor descriptor.
*/
virtual
~
ConvBaseOperator
()
{
if
(
workSpaceInBytes_
!=
0
)
{
hl_free_mem_device
(
workSpace_
);
workSpaceInBytes_
=
0
;
}
hl_destroy_tensor_descriptor
(
imageDesc_
);
hl_destroy_tensor_descriptor
(
outputDesc_
);
hl_destroy_filter_descriptor
(
filterDesc_
);
hl_destroy_convolution_descriptor
(
convDesc_
);
}
protected:
/**
* Get convolution parameters from layer config and
* initialize member variables.
*/
void
getConvParams
();
/**
* Allocate Gpu Memory for cudnn convolution algorithms.
*/
void
allocConvWorkSpace
();
/**
* Create cudnn tensor descriptor for convolution operation.
*/
void
computeConvSizes
();
/**
* Reshape cudnn tensor descriptor.
*/
void
reshapeImageDescriptors
();
/**
* Reshape cudnn tensor descriptor.
*/
virtual
void
reshape
(
int
batchSize
)
=
0
;
/**
* Check filter size is equal to the size calculated by parameters from
* layer config.
*/
void
checkFilterSize
(
const
MatrixPtr
&
filter
)
{
CHECK_EQ
(
static_cast
<
int
>
(
filter
->
getWidth
()),
filterSize_
*
filterSizeY_
*
channels_
*
numFilters_
);
}
/// Most of member variables are same with CudnnConvLayer.
/// There is no explanation here.
bool
isDeconv_
;
int
imageH_
,
imageW_
,
outputH_
,
outputW_
;
hl_tensor_descriptor
imageDesc_
;
hl_tensor_descriptor
outputDesc_
;
hl_filter_descriptor
filterDesc_
;
hl_convolution_descriptor
convDesc_
;
bool
caffeMode_
;
int
inputOffset_
,
outputOffset_
,
weightOffset_
;
int
numFilters_
,
channels_
;
/// from parsing config
int
configNumFilters_
,
configChannels_
;
int
padding_
,
stride_
,
filterSize_
,
imgSize_
,
imgSizeY_
;
int
paddingY_
,
strideY_
,
filterSizeY_
;
int
imgPixels_
,
filterPixels_
,
filterChannels_
,
outputX_
,
outputY_
,
outputs_
;
/// Following member variables are same with CudnnConvLayer.
/// There is no explanation here.
int
fwdAlgo_
,
bwdFilterAlgo_
,
bwdDataAlgo_
;
size_t
fwdLimitBytes_
,
bwdDataLimitBytes_
,
bwdFilterLimitBytes_
;
size_t
workSpaceInBytes_
;
void
*
workSpace_
;
bool
isSelectAlgo_
;
};
}
// namespace paddle
paddle/gserver/layers/ConvBaseProjection.cpp
0 → 100644
浏览文件 @
96f42d8e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ConvBaseProjection.h"
#include "paddle/utils/Stat.h"
namespace
paddle
{
ThreadLocalD
<
std
::
vector
<
MemoryHandle
*>>
ConvBaseProjection
::
convMem_
;
ConvBaseProjection
::
ConvBaseProjection
(
const
ProjectionConfig
&
config
,
ParameterPtr
parameter
,
bool
useGpu
)
:
Projection
(
config
,
parameter
,
useGpu
)
{
CHECK
(
useGpu
);
// only support GPU
getConvParams
();
initCudnn
();
size_t
height
=
filterH_
*
filterW_
*
channels_
/
groups_
;
size_t
width
=
numFilters_
;
weight_
.
reset
(
new
Weight
(
height
,
width
,
parameter
));
weightOffset_
=
height
*
width
/
groups_
;
}
void
ConvBaseProjection
::
getConvParams
()
{
const
ConvConfig
&
conf
=
config_
.
conv_conf
();
paddingH_
=
conf
.
padding_y
();
paddingW_
=
conf
.
padding
();
strideH_
=
conf
.
stride_y
();
strideW_
=
conf
.
stride
();
filterH_
=
conf
.
filter_size_y
();
filterW_
=
conf
.
filter_size
();
configImgH_
=
conf
.
has_img_size_y
()
?
conf
.
img_size_y
()
:
conf
.
img_size
();
configImgW_
=
conf
.
img_size
();
configOutH_
=
conf
.
has_output_y
()
?
conf
.
output_y
()
:
conf
.
output_x
();
configOutW_
=
conf
.
output_x
();
configChannels_
=
conf
.
channels
();
configNumFilters_
=
config_
.
num_filters
();
isDeconv_
=
(
config_
.
type
()
==
"conv"
)
?
false
:
true
;
channels_
=
(
isDeconv_
)
?
configNumFilters_
:
configChannels_
;
numFilters_
=
(
isDeconv_
)
?
configChannels_
:
configNumFilters_
;
groups_
=
conf
.
groups
();
CHECK_EQ
(
channels_
%
groups_
,
0
);
CHECK_EQ
(
numFilters_
%
groups_
,
0
);
}
void
ConvBaseProjection
::
initCudnn
()
{
hl_create_filter_descriptor
(
&
filterDesc_
,
channels_
/
groups_
,
numFilters_
/
groups_
,
filterH_
,
filterW_
);
hl_create_tensor_descriptor
(
&
imageDesc_
);
hl_create_tensor_descriptor
(
&
outputDesc_
);
hl_create_convolution_descriptor
(
&
convDesc_
,
imageDesc_
,
filterDesc_
,
paddingH_
,
paddingW_
,
strideH_
,
strideW_
);
// initialize all to default algorithms
fwdAlgo_
=
0
;
bwdFilterAlgo_
=
0
;
bwdDataAlgo_
=
0
;
fwdLimitBytes_
=
0
;
bwdDataLimitBytes_
=
0
;
bwdFilterLimitBytes_
=
0
;
workSpaceInBytes_
=
0
;
batchNum_
=
0
;
isSelectAlgo_
=
false
;
}
void
ConvBaseProjection
::
reshapeTensorDesc
(
int
batchSize
)
{
// The stride between two consecutive samples in the output of ConvProjection
// may not be numFilters_ * outputH_ * outputW_ (conv) or
// channels_ * imageH_ * imageW_ (deconv)
// for example, in the case of layer ConcatenateLayer2 with two
// ConvProjection, the stride is the output_size of layer ConcatenateLayer2.
// So the calculation of nStride is different from CudnnConvLayer.
size_t
nStrideImage
,
nStrideOutput
;
if
(
isDeconv_
)
{
nStrideImage
=
out_
->
value
->
getStride
();
nStrideOutput
=
numFilters_
*
outputH_
*
outputW_
;
}
else
{
nStrideImage
=
channels_
*
imageH_
*
imageW_
;
nStrideOutput
=
out_
->
value
->
getStride
();
}
hl_tensor_reshape
(
imageDesc_
,
batchSize
,
channels_
/
groups_
,
imageH_
,
imageW_
,
nStrideImage
,
imageH_
*
imageW_
,
imageW_
,
1
);
hl_tensor_reshape
(
outputDesc_
,
batchSize
,
numFilters_
/
groups_
,
outputH_
,
outputW_
,
nStrideOutput
,
outputH_
*
outputW_
,
outputW_
,
1
);
hl_reset_convolution_descriptor
(
convDesc_
,
imageDesc_
,
filterDesc_
,
paddingH_
,
paddingW_
,
strideH_
,
strideW_
);
}
void
ConvBaseProjection
::
reshape
(
int
batchSize
)
{
size_t
width
=
calOutputSize
();
CHECK_EQ
(
width
,
out_
->
value
->
getWidth
());
CHECK_EQ
(
calInputSize
(),
in_
->
value
->
getWidth
());
isSelectAlgo_
=
(
batchSize
==
batchNum_
);
batchNum_
=
batchSize
;
if
(
!
isSelectAlgo_
)
{
reshapeTensorDesc
(
batchSize
);
hl_conv_workspace
(
imageDesc_
,
outputDesc_
,
filterDesc_
,
convDesc_
,
&
fwdAlgo_
,
&
fwdLimitBytes_
,
&
bwdDataAlgo_
,
&
bwdDataLimitBytes_
,
&
bwdFilterAlgo_
,
&
bwdFilterLimitBytes_
);
size_t
maxWorkSpace
=
0
;
maxWorkSpace
=
std
::
max
(
fwdLimitBytes_
,
bwdDataLimitBytes_
);
maxWorkSpace
=
std
::
max
(
maxWorkSpace
,
bwdFilterLimitBytes_
);
workSpaceInBytes_
=
maxWorkSpace
;
VLOG
(
3
)
<<
getName
()
<<
" Fwd / BwdData / BwdFilter algo: "
<<
fwdAlgo_
<<
" / "
<<
bwdDataAlgo_
<<
" / "
<<
bwdFilterAlgo_
;
}
isSelectAlgo_
=
true
;
}
void
*
ConvBaseProjection
::
getSpaceBytes
(
size_t
size
)
{
std
::
vector
<
MemoryHandle
*>
&
convMem
=
*
convMem_
;
if
(
convMem
.
empty
())
{
int
numDevices
=
hl_get_device_count
();
convMem
.
resize
(
numDevices
);
}
int
devId
=
hl_get_device
();
MemoryHandle
**
localMem
=
&
(
convMem
[
devId
]);
if
(
NULL
==
*
localMem
||
size
>
(
*
localMem
)
->
getAllocSize
())
{
*
localMem
=
new
GpuMemoryHandle
(
size
);
}
return
(
*
localMem
)
->
getBuf
();
}
ConvBaseProjection
::~
ConvBaseProjection
()
{
hl_destroy_tensor_descriptor
(
imageDesc_
);
hl_destroy_tensor_descriptor
(
outputDesc_
);
hl_destroy_filter_descriptor
(
filterDesc_
);
hl_destroy_convolution_descriptor
(
convDesc_
);
}
}
// namespace paddle
paddle/gserver/layers/ConvBaseProjection.h
0 → 100644
浏览文件 @
96f42d8e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Projection.h"
#include "paddle/math/MathUtils.h"
namespace
paddle
{
/**
* @brief Base class for ConvProjection and ConvTransProjection.
*/
class
ConvBaseProjection
:
public
Projection
{
public:
/**
* Constructor.
*/
ConvBaseProjection
(
const
ProjectionConfig
&
config
,
ParameterPtr
parameter
,
bool
useGpu
);
~
ConvBaseProjection
();
protected:
void
getConvParams
();
void
initCudnn
();
void
reshapeTensorDesc
(
int
batchSize
);
void
reshape
(
int
batchSize
);
virtual
size_t
calOutputSize
()
=
0
;
virtual
size_t
calInputSize
()
=
0
;
static
void
*
getSpaceBytes
(
size_t
size
);
/// True if it's deconv projection layer, false if it's ConvProjection layer
bool
isDeconv_
;
/// imageH_ and imageW_ / outputH_ and outputW_
/// is calculated from the input layer.
int
imageH_
,
imageW_
;
int
outputH_
,
outputW_
;
/// configImgH_ and configImgW_ / configOutH_ and configOutW_
/// is obtained from config.
int
configImgH_
,
configImgW_
;
int
configOutH_
,
configOutW_
;
/// channels_ and numFilters_ are defined in terms of convolution semantics
int
channels_
,
numFilters_
;
/// configChannels and configNumFilters_ are obtained from config
/// For Conv they are the same as channels_ and numFilters
/// For ConvTrans they are opposite to channels_ and numFilters
int
configChannels_
,
configNumFilters_
;
int
paddingH_
,
paddingW_
;
int
strideH_
,
strideW_
;
int
filterH_
,
filterW_
;
/// One group offset of input data.
int
inputOffset_
;
/// One group offset of output data.
int
outputOffset_
;
/// One group offset of weight.
int
weightOffset_
;
int
groups_
;
/// Cudnn tensor descriptor for input.
hl_tensor_descriptor
imageDesc_
;
/// Cudnn tensor descriptor for output.
hl_tensor_descriptor
outputDesc_
;
/// Cudnn tensor descriptor for filter.
hl_filter_descriptor
filterDesc_
;
/// Cudnn tensor descriptor for a convolution operation.
hl_convolution_descriptor
convDesc_
;
/// Record the algorithm for forward convolution, which is obtained by cudnn
/// api to search the best suited algorithm.
int
fwdAlgo_
;
/// Record the algorithm for computing convolution gradient with respect to
/// filter coefficients.
int
bwdFilterAlgo_
;
/// Record the algorithm for computing convolution gradient with respect to
/// the output.
int
bwdDataAlgo_
;
/// Amount of GPU memory needed as workspace to be able to execute a
/// forward convolution with the specified algo.
size_t
fwdLimitBytes_
;
/// Amount of GPU memory needed as workspace to be able to execute a
/// backwardFilter with the specified algo.
size_t
bwdDataLimitBytes_
;
/// Amount of GPU memory needed as workspace to be able to execute a
/// backwardData with the specified algo.
size_t
bwdFilterLimitBytes_
;
/// Size of total work space.
size_t
workSpaceInBytes_
;
/// Whether to call cuDNN api to choose conv algorithm.
bool
isSelectAlgo_
;
/// batchNum is used to record batch size. If the batch size is changed,
/// the selection algorithm will be called.
int
batchNum_
;
bool
bias_
;
std
::
unique_ptr
<
Weight
>
weight_
;
static
ThreadLocalD
<
std
::
vector
<
MemoryHandle
*>>
convMem_
;
};
}
// namespace paddle
paddle/gserver/layers/ConvOperator.cpp
浏览文件 @
96f42d8e
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "Operator.h"
#include "
Conv
Operator.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Matrix.h"
...
@@ -27,120 +27,8 @@ namespace paddle {
...
@@ -27,120 +27,8 @@ namespace paddle {
* The config file api is conv_operator.
* The config file api is conv_operator.
*/
*/
class
ConvOperator
:
public
Operator
{
public:
ConvOperator
(
const
OperatorConfig
&
config
,
bool
useGpu
);
/**
* Free workspace in device and destroy cudnn tensor descriptor.
*/
virtual
~
ConvOperator
()
{
if
(
workSpaceInBytes_
!=
0
)
{
hl_free_mem_device
(
workSpace_
);
workSpaceInBytes_
=
0
;
}
hl_destroy_tensor_descriptor
(
inputDesc_
);
hl_destroy_tensor_descriptor
(
outputDesc_
);
hl_destroy_filter_descriptor
(
filterDesc_
);
hl_destroy_convolution_descriptor
(
convDesc_
);
}
virtual
void
forward
();
virtual
void
backward
();
private:
/**
* Get convolution parameters from layer config and
* initialize member variables.
*/
void
getConvParams
();
/**
* Allocate Gpu Memory for cudnn convolution algorithms.
*/
void
allocConvWorkSpace
(
size_t
maxWorkSpace
);
/**
* Create cudnn tensor descriptor for convolution operation.
*/
void
computeConvSizes
();
/**
* Reshape cudnn tensor descriptor.
*/
void
reshapeImageDescriptors
();
/**
* Reshape cudnn tensor descriptor.
*/
void
reshape
(
int
batchSize
);
/**
* Check filter size is equal to the size calculated by parameters from
* layer config.
*/
void
checkFilterSize
(
const
MatrixPtr
&
filter
)
{
CHECK_EQ
(
static_cast
<
int
>
(
filter
->
getWidth
()),
filterSize_
*
filterSizeY_
*
channels_
*
numFilters_
);
}
/// Most of member variables are same with CudnnConvLayer.
/// There is no explanation here.
int
imageH_
,
imageW_
,
outputH_
,
outputW_
;
hl_tensor_descriptor
inputDesc_
;
hl_tensor_descriptor
outputDesc_
;
hl_filter_descriptor
filterDesc_
;
hl_convolution_descriptor
convDesc_
;
bool
caffeMode_
;
int
inputOffset_
,
outputOffset_
,
weightOffset_
;
int
numFilters_
;
int
padding_
,
stride_
,
filterSize_
,
channels_
,
imgSize_
,
imgSizeY_
;
int
paddingY_
,
strideY_
,
filterSizeY_
;
int
imgPixels_
,
filterPixels_
,
filterChannels_
,
outputX_
,
outputY_
,
outputs_
;
/// Following member variables are same with CudnnConvLayer.
/// There is no explanation here.
int
fwdAlgo_
,
bwdFilterAlgo_
,
bwdDataAlgo_
;
size_t
fwdLimitBytes_
,
bwdDataLimitBytes_
,
bwdFilterLimitBytes_
;
size_t
workSpaceInBytes_
;
void
*
workSpace_
;
bool
isSelectAlgo_
;
};
REGISTER_OPERATOR
(
conv
,
ConvOperator
);
REGISTER_OPERATOR
(
conv
,
ConvOperator
);
ConvOperator
::
ConvOperator
(
const
OperatorConfig
&
config
,
bool
useGpu
)
:
Operator
(
config
,
useGpu
)
{
CHECK
(
useGpu
);
CHECK_EQ
(
config_
.
input_indices_size
(),
2L
);
caffeMode_
=
true
;
getConvParams
();
computeConvSizes
();
// initialize all to default algorithms
fwdAlgo_
=
0
;
bwdFilterAlgo_
=
0
;
bwdDataAlgo_
=
0
;
fwdLimitBytes_
=
0
;
bwdDataLimitBytes_
=
0
;
bwdFilterLimitBytes_
=
0
;
workSpaceInBytes_
=
0
;
workSpace_
=
nullptr
;
isSelectAlgo_
=
false
;
}
void
ConvOperator
::
allocConvWorkSpace
(
size_t
maxWorkSpace
)
{
if
(
maxWorkSpace
>
workSpaceInBytes_
)
{
if
(
workSpaceInBytes_
!=
0
)
{
hl_free_mem_device
(
workSpace_
);
}
// total amount of storage needed
workSpace_
=
hl_malloc_device
(
maxWorkSpace
);
workSpaceInBytes_
=
maxWorkSpace
;
}
}
void
ConvOperator
::
reshape
(
int
batchSize
)
{
void
ConvOperator
::
reshape
(
int
batchSize
)
{
imageH_
=
ins_
[
0
]
->
getFrameHeight
();
imageH_
=
ins_
[
0
]
->
getFrameHeight
();
imageW_
=
ins_
[
0
]
->
getFrameWidth
();
imageW_
=
ins_
[
0
]
->
getFrameWidth
();
...
@@ -148,106 +36,25 @@ void ConvOperator::reshape(int batchSize) {
...
@@ -148,106 +36,25 @@ void ConvOperator::reshape(int batchSize) {
if
(
imageW_
==
0
)
imageW_
=
imgSize_
;
if
(
imageW_
==
0
)
imageW_
=
imgSize_
;
outputH_
=
outputSize
(
imageH_
,
filterSizeY_
,
paddingY_
,
strideY_
,
caffeMode_
);
outputH_
=
outputSize
(
imageH_
,
filterSizeY_
,
paddingY_
,
strideY_
,
caffeMode_
);
outputW_
=
outputSize
(
imageW_
,
filterSize_
,
padding_
,
stride_
,
caffeMode_
);
outputW_
=
outputSize
(
imageW_
,
filterSize_
,
padding_
,
stride_
,
caffeMode_
);
/// Check that the outputSizes are consistent with config
CHECK_EQ
(
outputH_
,
outputY_
);
CHECK_EQ
(
outputW_
,
outputX_
);
out_
->
setFrameHeight
(
outputH_
);
out_
->
setFrameHeight
(
outputH_
);
out_
->
setFrameWidth
(
outputW_
);
out_
->
setFrameWidth
(
outputW_
);
reshapeImageDescriptors
();
reshapeImageDescriptors
();
if
(
!
isSelectAlgo_
)
{
inputOffset_
=
channels_
*
imageH_
*
imageW_
;
hl_conv_workspace
(
inputDesc_
,
outputOffset_
=
numFilters_
*
outputH_
*
outputW_
;
outputDesc_
,
weightOffset_
=
numFilters_
*
channels_
*
filterSize_
*
filterSizeY_
;
filterDesc_
,
convDesc_
,
&
fwdAlgo_
,
&
fwdLimitBytes_
,
&
bwdDataAlgo_
,
&
bwdDataLimitBytes_
,
&
bwdFilterAlgo_
,
&
bwdFilterLimitBytes_
);
size_t
maxWorkSpace
=
0
;
maxWorkSpace
=
std
::
max
(
fwdLimitBytes_
,
bwdDataLimitBytes_
);
maxWorkSpace
=
std
::
max
(
maxWorkSpace
,
bwdFilterLimitBytes_
);
allocConvWorkSpace
(
maxWorkSpace
);
if
(
!
isSelectAlgo_
)
{
allocConvWorkSpace
();
}
}
isSelectAlgo_
=
true
;
isSelectAlgo_
=
true
;
}
}
void
ConvOperator
::
computeConvSizes
()
{
hl_create_filter_descriptor
(
&
filterDesc_
,
channels_
,
numFilters_
,
filterSizeY_
,
filterSize_
);
hl_create_tensor_descriptor
(
&
inputDesc_
);
int
outputX
=
outputSize
(
imgSize_
,
filterSize_
,
padding_
,
stride_
,
caffeMode_
);
int
outputY
=
outputSize
(
imgSizeY_
,
filterSizeY_
,
paddingY_
,
strideY_
,
caffeMode_
);
CHECK_EQ
(
outputX
,
outputX_
);
CHECK_EQ
(
outputY
,
outputY_
);
hl_create_tensor_descriptor
(
&
outputDesc_
);
hl_create_convolution_descriptor
(
&
convDesc_
,
inputDesc_
,
filterDesc_
,
paddingY_
,
padding_
,
strideY_
,
stride_
);
}
void
ConvOperator
::
reshapeImageDescriptors
()
{
hl_tensor_reshape
(
inputDesc_
,
1
,
channels_
,
imageH_
,
imageW_
,
channels_
*
imageH_
*
imageW_
,
imageH_
*
imageW_
,
imageW_
,
1
);
hl_tensor_reshape
(
outputDesc_
,
1
,
numFilters_
,
outputH_
,
outputW_
,
numFilters_
*
outputH_
*
outputW_
,
outputH_
*
outputW_
,
outputW_
,
1
);
hl_reset_convolution_descriptor
(
convDesc_
,
inputDesc_
,
filterDesc_
,
paddingY_
,
padding_
,
strideY_
,
stride_
);
inputOffset_
=
channels_
*
imageH_
*
imageW_
;
outputOffset_
=
numFilters_
*
outputH_
*
outputW_
;
weightOffset_
=
numFilters_
*
channels_
*
filterSize_
*
filterSize_
;
}
void
ConvOperator
::
getConvParams
()
{
numFilters_
=
config_
.
num_filters
();
const
ConvConfig
&
conf
=
config_
.
conv_conf
();
padding_
=
conf
.
padding
();
stride_
=
conf
.
stride
();
filterSize_
=
conf
.
filter_size
();
paddingY_
=
conf
.
padding_y
();
strideY_
=
conf
.
stride_y
();
filterSizeY_
=
conf
.
filter_size_y
();
filterPixels_
=
filterSize_
*
filterSizeY_
;
channels_
=
conf
.
channels
();
imgSize_
=
conf
.
img_size
();
imgSizeY_
=
conf
.
has_img_size_y
()
?
conf
.
img_size_y
()
:
conf
.
img_size
();
imgPixels_
=
imgSize_
*
imgSizeY_
;
CHECK_EQ
(
conf
.
groups
(),
1U
);
filterChannels_
=
conf
.
filter_channels
();
outputX_
=
conf
.
output_x
();
outputY_
=
conf
.
has_output_y
()
?
conf
.
output_y
()
:
conf
.
output_x
();
outputs_
=
outputX_
*
outputX_
;
}
void
ConvOperator
::
forward
()
{
void
ConvOperator
::
forward
()
{
size_t
batchSize
=
ins_
[
0
]
->
value
->
getHeight
();
size_t
batchSize
=
ins_
[
0
]
->
value
->
getHeight
();
reshape
(
batchSize
);
reshape
(
batchSize
);
...
@@ -264,7 +71,7 @@ void ConvOperator::forward() {
...
@@ -264,7 +71,7 @@ void ConvOperator::forward() {
real
*
inputData
=
ins_
[
0
]
->
value
->
getData
()
+
inputOffset_
*
batchId
;
real
*
inputData
=
ins_
[
0
]
->
value
->
getData
()
+
inputOffset_
*
batchId
;
real
*
wgtData
=
ins_
[
1
]
->
value
->
getData
()
+
weightOffset_
*
batchId
;
real
*
wgtData
=
ins_
[
1
]
->
value
->
getData
()
+
weightOffset_
*
batchId
;
real
*
outData
=
out_
->
value
->
getData
()
+
outputOffset_
*
batchId
;
real
*
outData
=
out_
->
value
->
getData
()
+
outputOffset_
*
batchId
;
hl_convolution_forward
(
i
nput
Desc_
,
hl_convolution_forward
(
i
mage
Desc_
,
inputData
,
inputData
,
outputDesc_
,
outputDesc_
,
outData
,
outData
,
...
@@ -287,7 +94,7 @@ void ConvOperator::backward() {
...
@@ -287,7 +94,7 @@ void ConvOperator::backward() {
if
(
ins_
[
1
]
->
grad
)
{
if
(
ins_
[
1
]
->
grad
)
{
real
*
inputData
=
ins_
[
0
]
->
value
->
getData
()
+
inputOffset_
*
batchId
;
real
*
inputData
=
ins_
[
0
]
->
value
->
getData
()
+
inputOffset_
*
batchId
;
real
*
weightGrad
=
ins_
[
1
]
->
grad
->
getData
()
+
weightOffset_
*
batchId
;
real
*
weightGrad
=
ins_
[
1
]
->
grad
->
getData
()
+
weightOffset_
*
batchId
;
hl_convolution_backward_filter
(
i
nput
Desc_
,
hl_convolution_backward_filter
(
i
mage
Desc_
,
inputData
,
inputData
,
outputDesc_
,
outputDesc_
,
outGrad
,
outGrad
,
...
@@ -303,7 +110,7 @@ void ConvOperator::backward() {
...
@@ -303,7 +110,7 @@ void ConvOperator::backward() {
if
(
NULL
!=
preGrad
)
{
if
(
NULL
!=
preGrad
)
{
real
*
inputGrad
=
preGrad
->
getData
()
+
inputOffset_
*
batchId
;
real
*
inputGrad
=
preGrad
->
getData
()
+
inputOffset_
*
batchId
;
real
*
wgtData
=
ins_
[
1
]
->
value
->
getData
()
+
weightOffset_
*
batchId
;
real
*
wgtData
=
ins_
[
1
]
->
value
->
getData
()
+
weightOffset_
*
batchId
;
hl_convolution_backward_data
(
i
nput
Desc_
,
hl_convolution_backward_data
(
i
mage
Desc_
,
inputGrad
,
inputGrad
,
outputDesc_
,
outputDesc_
,
outGrad
,
outGrad
,
...
...
paddle/gserver/layers/ConvOperator.h
0 → 100644
浏览文件 @
96f42d8e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "ConvBaseOperator.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
/**
* @brief ConvOperator takes two inputs to perform the convolution.
* The first input is the image, and the second input is the convolution kernel.
* The height of data for two inputs are the same. Each data of the first input
* is convolved with each data of the second input indepedently.
*
* The config file api is conv_operator.
*/
class
ConvOperator
:
public
ConvBaseOperator
{
public:
ConvOperator
(
const
OperatorConfig
&
config
,
bool
useGpu
)
:
ConvBaseOperator
(
config
,
useGpu
)
{}
/**
* Free workspace in device and destroy cudnn tensor descriptor.
*/
virtual
~
ConvOperator
()
{}
void
forward
()
override
;
void
backward
()
override
;
void
reshape
(
int
batchSize
)
override
;
};
}
// namespace paddle
paddle/gserver/layers/ConvProjection.cpp
浏览文件 @
96f42d8e
...
@@ -19,149 +19,32 @@ namespace paddle {
...
@@ -19,149 +19,32 @@ namespace paddle {
REGISTER_PROJECTION
(
conv
,
ConvProjection
);
REGISTER_PROJECTION
(
conv
,
ConvProjection
);
ThreadLocalD
<
std
::
vector
<
MemoryHandle
*>>
ConvProjection
::
convMem_
;
size_t
ConvProjection
::
calOutputSize
()
{
imageH_
=
in_
->
getFrameHeight
();
ConvProjection
::
ConvProjection
(
const
ProjectionConfig
&
config
,
imageW_
=
in_
->
getFrameWidth
();
ParameterPtr
parameter
,
if
(
imageH_
==
0
)
imageH_
=
configImgH_
;
bool
useGpu
)
if
(
imageW_
==
0
)
imageW_
=
configImgW_
;
:
Projection
(
config
,
parameter
,
useGpu
)
{
outputH_
=
outputSize
(
imageH_
,
CHECK
(
useGpu
);
// only support GPU
filterH_
,
getConvParams
();
paddingH_
,
initCudnn
();
strideH_
,
/* caffeMode */
true
);
size_t
height
=
filterH_
*
filterW_
*
channels_
/
groups_
;
outputW_
=
outputSize
(
imageW_
,
size_t
width
=
numFilters_
;
filterW_
,
weight_
.
reset
(
new
Weight
(
height
,
width
,
parameter
));
paddingW_
,
weightOffset_
=
height
*
width
/
groups_
;
strideW_
,
}
/* caffeMode */
true
);
void
ConvProjection
::
getConvParams
()
{
const_cast
<
Argument
*>
(
out_
)
->
setFrameHeight
(
outputH_
);
const
ConvConfig
&
conf
=
config_
.
conv_conf
();
const_cast
<
Argument
*>
(
out_
)
->
setFrameWidth
(
outputW_
);
paddingH_
=
conf
.
padding_y
();
paddingW_
=
conf
.
padding
();
inputOffset_
=
(
configChannels_
/
groups_
)
*
imageH_
*
imageW_
;
outputOffset_
=
(
configNumFilters_
/
groups_
)
*
outputH_
*
outputW_
;
strideH_
=
conf
.
stride_y
();
return
outputH_
*
outputW_
*
configNumFilters_
;
strideW_
=
conf
.
stride
();
filterH_
=
conf
.
filter_size_y
();
filterW_
=
conf
.
filter_size
();
configImgH_
=
conf
.
has_img_size_y
()
?
conf
.
img_size_y
()
:
conf
.
img_size
();
configImgW_
=
conf
.
img_size
();
channels_
=
conf
.
channels
();
numFilters_
=
config_
.
num_filters
();
groups_
=
conf
.
groups
();
CHECK_EQ
(
channels_
%
groups_
,
0
);
CHECK_EQ
(
numFilters_
%
groups_
,
0
);
}
void
ConvProjection
::
initCudnn
()
{
hl_create_filter_descriptor
(
&
filterDesc_
,
channels_
/
groups_
,
numFilters_
/
groups_
,
filterH_
,
filterW_
);
hl_create_tensor_descriptor
(
&
inputDesc_
);
hl_create_tensor_descriptor
(
&
outputDesc_
);
hl_create_convolution_descriptor
(
&
convDesc_
,
inputDesc_
,
filterDesc_
,
paddingH_
,
paddingW_
,
strideH_
,
strideW_
);
// initialize all to default algorithms
fwdAlgo_
=
0
;
bwdFilterAlgo_
=
0
;
bwdDataAlgo_
=
0
;
fwdLimitBytes_
=
0
;
bwdDataLimitBytes_
=
0
;
bwdFilterLimitBytes_
=
0
;
workSpaceInBytes_
=
0
;
batchNum_
=
0
;
isSelectAlgo_
=
false
;
}
void
ConvProjection
::
reshapeTensorDesc
(
int
batchSize
)
{
hl_tensor_reshape
(
inputDesc_
,
batchSize
,
channels_
/
groups_
,
imageH_
,
imageW_
,
channels_
*
imageH_
*
imageW_
,
imageH_
*
imageW_
,
imageW_
,
1
);
hl_reset_convolution_descriptor
(
convDesc_
,
inputDesc_
,
filterDesc_
,
paddingH_
,
paddingW_
,
strideH_
,
strideW_
);
// The stride between two consecutive images in ConvProjection may not be 1,
// for example, in the case of layer ConcatenateLayer2 with two
// ConvProjection, the stride is the output_size of layer ConcatenateLayer2.
// So the calculation of nStride is different from CudnnConvLayer.
// In fact, only "nStride = out_->value->getStride()" is ok.
size_t
nStride
=
numFilters_
*
outputH_
*
outputW_
;
if
(
out_
->
value
->
isContiguous
())
{
CHECK_EQ
(
nStride
,
out_
->
value
->
getWidth
());
}
else
{
nStride
=
out_
->
value
->
getStride
();
}
hl_tensor_reshape
(
outputDesc_
,
batchSize
,
numFilters_
/
groups_
,
outputH_
,
outputW_
,
nStride
,
outputH_
*
outputW_
,
outputW_
,
1
);
}
}
void
ConvProjection
::
reshape
(
int
batchSize
)
{
size_t
ConvProjection
::
calInputSize
()
{
size_t
width
=
calOutputSize
();
return
static_cast
<
size_t
>
(
configChannels_
*
imageH_
*
imageW_
);
CHECK_EQ
(
width
,
out_
->
value
->
getWidth
());
CHECK_EQ
(
static_cast
<
size_t
>
(
channels_
*
imageH_
*
imageW_
),
in_
->
value
->
getWidth
())
<<
"Wrong input size for convolution"
<<
" channels="
<<
channels_
<<
" imageH="
<<
imageH_
<<
" imageW="
<<
imageW_
<<
" inputSize="
<<
in_
->
value
->
getWidth
();
isSelectAlgo_
=
(
batchSize
==
batchNum_
);
batchNum_
=
batchSize
;
if
(
!
isSelectAlgo_
)
{
reshapeTensorDesc
(
batchSize
);
hl_conv_workspace
(
inputDesc_
,
outputDesc_
,
filterDesc_
,
convDesc_
,
&
fwdAlgo_
,
&
fwdLimitBytes_
,
&
bwdDataAlgo_
,
&
bwdDataLimitBytes_
,
&
bwdFilterAlgo_
,
&
bwdFilterLimitBytes_
);
size_t
maxWorkSpace
=
0
;
maxWorkSpace
=
std
::
max
(
fwdLimitBytes_
,
bwdDataLimitBytes_
);
maxWorkSpace
=
std
::
max
(
maxWorkSpace
,
bwdFilterLimitBytes_
);
workSpaceInBytes_
=
maxWorkSpace
;
VLOG
(
3
)
<<
getName
()
<<
" Fwd / BwdData / BwdFilter algo: "
<<
fwdAlgo_
<<
" / "
<<
bwdDataAlgo_
<<
" / "
<<
bwdFilterAlgo_
;
}
isSelectAlgo_
=
true
;
}
}
void
ConvProjection
::
forward
()
{
void
ConvProjection
::
forward
()
{
...
@@ -179,7 +62,7 @@ void ConvProjection::forward() {
...
@@ -179,7 +62,7 @@ void ConvProjection::forward() {
real
*
inputData
=
in_
->
value
->
getData
()
+
g
*
inputOffset_
;
real
*
inputData
=
in_
->
value
->
getData
()
+
g
*
inputOffset_
;
real
*
wgtData
=
weight_
->
getW
()
->
getData
()
+
g
*
weightOffset_
;
real
*
wgtData
=
weight_
->
getW
()
->
getData
()
+
g
*
weightOffset_
;
real
*
outData
=
out_
->
value
->
getData
()
+
g
*
outputOffset_
;
real
*
outData
=
out_
->
value
->
getData
()
+
g
*
outputOffset_
;
hl_convolution_forward
(
i
nput
Desc_
,
hl_convolution_forward
(
i
mage
Desc_
,
inputData
,
inputData
,
outputDesc_
,
outputDesc_
,
outData
,
outData
,
...
@@ -205,7 +88,7 @@ void ConvProjection::backward(const UpdateCallback &callback) {
...
@@ -205,7 +88,7 @@ void ConvProjection::backward(const UpdateCallback &callback) {
if
(
weight_
->
getWGrad
())
{
if
(
weight_
->
getWGrad
())
{
real
*
inputData
=
in_
->
value
->
getData
()
+
g
*
inputOffset_
;
real
*
inputData
=
in_
->
value
->
getData
()
+
g
*
inputOffset_
;
real
*
weightGrad
=
weight_
->
getWGrad
()
->
getData
()
+
g
*
weightOffset_
;
real
*
weightGrad
=
weight_
->
getWGrad
()
->
getData
()
+
g
*
weightOffset_
;
hl_convolution_backward_filter
(
i
nput
Desc_
,
hl_convolution_backward_filter
(
i
mage
Desc_
,
inputData
,
inputData
,
outputDesc_
,
outputDesc_
,
outGrad
,
outGrad
,
...
@@ -221,7 +104,7 @@ void ConvProjection::backward(const UpdateCallback &callback) {
...
@@ -221,7 +104,7 @@ void ConvProjection::backward(const UpdateCallback &callback) {
if
(
NULL
!=
preGrad
)
{
if
(
NULL
!=
preGrad
)
{
real
*
inputGrad
=
preGrad
->
getData
()
+
g
*
inputOffset_
;
real
*
inputGrad
=
preGrad
->
getData
()
+
g
*
inputOffset_
;
real
*
wgtData
=
weight_
->
getW
()
->
getData
()
+
g
*
weightOffset_
;
real
*
wgtData
=
weight_
->
getW
()
->
getData
()
+
g
*
weightOffset_
;
hl_convolution_backward_data
(
i
nput
Desc_
,
hl_convolution_backward_data
(
i
mage
Desc_
,
inputGrad
,
inputGrad
,
outputDesc_
,
outputDesc_
,
outGrad
,
outGrad
,
...
@@ -237,26 +120,4 @@ void ConvProjection::backward(const UpdateCallback &callback) {
...
@@ -237,26 +120,4 @@ void ConvProjection::backward(const UpdateCallback &callback) {
weight_
->
getParameterPtr
()
->
incUpdate
(
callback
);
weight_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
void
*
ConvProjection
::
getSpaceBytes
(
size_t
size
)
{
std
::
vector
<
MemoryHandle
*>
&
convMem
=
*
convMem_
;
if
(
convMem
.
empty
())
{
int
numDevices
=
hl_get_device_count
();
convMem
.
resize
(
numDevices
);
}
int
devId
=
hl_get_device
();
MemoryHandle
**
localMem
=
&
(
convMem
[
devId
]);
if
(
NULL
==
*
localMem
||
size
>
(
*
localMem
)
->
getAllocSize
())
{
*
localMem
=
new
GpuMemoryHandle
(
size
);
}
return
(
*
localMem
)
->
getBuf
();
}
ConvProjection
::~
ConvProjection
()
{
hl_destroy_tensor_descriptor
(
inputDesc_
);
hl_destroy_tensor_descriptor
(
outputDesc_
);
hl_destroy_filter_descriptor
(
filterDesc_
);
hl_destroy_convolution_descriptor
(
convDesc_
);
}
}
// namespace paddle
}
// namespace paddle
paddle/gserver/layers/ConvProjection.h
浏览文件 @
96f42d8e
...
@@ -14,7 +14,7 @@ limitations under the License. */
...
@@ -14,7 +14,7 @@ limitations under the License. */
#pragma once
#pragma once
#include "Projection.h"
#include "
ConvBase
Projection.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/MathUtils.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -22,109 +22,22 @@ namespace paddle {
...
@@ -22,109 +22,22 @@ namespace paddle {
/**
/**
* @brief Convolution projection do the same calculation with CudnnConvLayer.
* @brief Convolution projection do the same calculation with CudnnConvLayer.
*/
*/
class
ConvProjection
:
public
Projection
{
class
ConvProjection
:
public
ConvBase
Projection
{
public:
public:
/**
/**
* Constructor.
* Constructor.
*/
*/
ConvProjection
(
const
ProjectionConfig
&
config
,
ConvProjection
(
const
ProjectionConfig
&
config
,
ParameterPtr
parameter
,
ParameterPtr
parameter
,
bool
useGpu
);
bool
useGpu
)
:
ConvBaseProjection
(
config
,
parameter
,
useGpu
)
{}
~
ConvProjection
()
;
~
ConvProjection
()
{}
virtual
void
forward
();
virtual
void
forward
();
virtual
void
backward
(
const
UpdateCallback
&
callback
);
virtual
void
backward
(
const
UpdateCallback
&
callback
);
virtual
size_t
calOutputSize
();
protected:
virtual
size_t
calInputSize
();
void
getConvParams
();
void
initCudnn
();
void
reshapeTensorDesc
(
int
batchSize
);
void
reshape
(
int
batchSize
);
size_t
calOutputSize
()
{
imageH_
=
in_
->
getFrameHeight
();
imageW_
=
in_
->
getFrameWidth
();
if
(
imageH_
==
0
)
imageH_
=
configImgH_
;
if
(
imageW_
==
0
)
imageW_
=
configImgW_
;
outputH_
=
outputSize
(
imageH_
,
filterH_
,
paddingH_
,
strideH_
,
/* caffeMode */
true
);
outputW_
=
outputSize
(
imageW_
,
filterW_
,
paddingW_
,
strideW_
,
/* caffeMode */
true
);
const_cast
<
Argument
*>
(
out_
)
->
setFrameHeight
(
outputH_
);
const_cast
<
Argument
*>
(
out_
)
->
setFrameWidth
(
outputW_
);
inputOffset_
=
(
channels_
/
groups_
)
*
imageH_
*
imageW_
;
outputOffset_
=
(
numFilters_
/
groups_
)
*
outputH_
*
outputW_
;
return
outputH_
*
outputW_
*
numFilters_
;
}
static
void
*
getSpaceBytes
(
size_t
size
);
/// imageH_ and imageW_ is calculated from the input layer.
int
imageH_
,
imageW_
;
/// configImgH_ and configImgW_ is obtained from config.
int
configImgH_
,
configImgW_
;
int
outputH_
,
outputW_
;
int
channels_
,
numFilters_
;
int
paddingH_
,
paddingW_
;
int
strideH_
,
strideW_
;
int
filterH_
,
filterW_
;
/// One group offset of input data.
int
inputOffset_
;
/// One group offset of output data.
int
outputOffset_
;
/// One group offset of weight.
int
weightOffset_
;
int
groups_
;
/// Cudnn tensor descriptor for input.
hl_tensor_descriptor
inputDesc_
;
/// Cudnn tensor descriptor for output.
hl_tensor_descriptor
outputDesc_
;
/// Cudnn tensor descriptor for filter.
hl_filter_descriptor
filterDesc_
;
/// Cudnn tensor descriptor for a convolution operation.
hl_convolution_descriptor
convDesc_
;
/// Record the algorithm for forward convolution, which is obtained by cudnn
/// api to search the best suited algorithm.
int
fwdAlgo_
;
/// Record the algorithm for computing convolution gradient with respect to
/// filter coefficients.
int
bwdFilterAlgo_
;
/// Record the algorithm for computing convolution gradient with respect to
/// the output.
int
bwdDataAlgo_
;
/// Amount of GPU memory needed as workspace to be able to execute a
/// forward convolution with the specified algo.
size_t
fwdLimitBytes_
;
/// Amount of GPU memory needed as workspace to be able to execute a
/// backwardFilter with the specified algo.
size_t
bwdDataLimitBytes_
;
/// Amount of GPU memory needed as workspace to be able to execute a
/// backwardData with the specified algo.
size_t
bwdFilterLimitBytes_
;
/// Size of total work space.
size_t
workSpaceInBytes_
;
/// Whether to call cuDNN api to choose conv algorithm.
bool
isSelectAlgo_
;
/// batchNum is used to record batch size. If the batch size is changed,
/// the selection algorithm will be called.
int
batchNum_
;
bool
bias_
;
std
::
unique_ptr
<
Weight
>
weight_
;
static
ThreadLocalD
<
std
::
vector
<
MemoryHandle
*>>
convMem_
;
};
};
}
// namespace paddle
}
// namespace paddle
paddle/gserver/layers/ConvTransOperator.cpp
0 → 100644
浏览文件 @
96f42d8e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ConvTransOperator.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
/**
* @brief ConvTransOperator takes two inputs to perform the convolution.
* The first input is the image, and the second input is the convolution kernel.
* The height of data for two inputs are the same. Each data of the first input
* is convolved with each data of the second input indepedently.
*
* The config file api is conv_operator.
*/
REGISTER_OPERATOR
(
convt
,
ConvTransOperator
);
void
ConvTransOperator
::
reshape
(
int
batchSize
)
{
outputH_
=
ins_
[
0
]
->
getFrameHeight
();
outputW_
=
ins_
[
0
]
->
getFrameWidth
();
if
(
outputH_
==
0
)
outputH_
=
outputY_
;
if
(
outputW_
==
0
)
outputW_
=
outputX_
;
imageH_
=
imageSize
(
outputH_
,
filterSizeY_
,
paddingY_
,
strideY_
,
caffeMode_
);
imageW_
=
imageSize
(
outputW_
,
filterSize_
,
padding_
,
stride_
,
caffeMode_
);
/// Check that the imageSizes are consistent with config
CHECK_EQ
(
imageH_
,
imgSizeY_
);
CHECK_EQ
(
imageW_
,
imgSize_
);
out_
->
setFrameHeight
(
imageH_
);
out_
->
setFrameWidth
(
imageW_
);
reshapeImageDescriptors
();
inputOffset_
=
numFilters_
*
outputH_
*
outputW_
;
outputOffset_
=
channels_
*
imageH_
*
imageW_
;
weightOffset_
=
numFilters_
*
channels_
*
filterSize_
*
filterSizeY_
;
if
(
!
isSelectAlgo_
)
{
allocConvWorkSpace
();
}
isSelectAlgo_
=
true
;
}
void
ConvTransOperator
::
forward
()
{
size_t
batchSize
=
ins_
[
0
]
->
value
->
getHeight
();
reshape
(
batchSize
);
CHECK_EQ
(
ins_
[
1
]
->
value
->
getHeight
(),
batchSize
);
checkFilterSize
(
ins_
[
1
]
->
value
);
Matrix
::
resizeOrCreate
(
out_
->
value
,
batchSize
,
imageH_
*
imageW_
*
channels_
,
false
,
useGpu_
);
{
AsyncGpuBlock
block
;
for
(
size_t
batchId
=
0
;
batchId
<
batchSize
;
++
batchId
)
{
real
*
inputData
=
ins_
[
0
]
->
value
->
getData
()
+
inputOffset_
*
batchId
;
real
*
wgtData
=
ins_
[
1
]
->
value
->
getData
()
+
weightOffset_
*
batchId
;
real
*
outData
=
out_
->
value
->
getData
()
+
outputOffset_
*
batchId
;
hl_convolution_backward_data
(
imageDesc_
,
outData
,
outputDesc_
,
inputData
,
filterDesc_
,
wgtData
,
convDesc_
,
workSpace_
,
workSpaceInBytes_
,
bwdDataAlgo_
);
}
}
}
void
ConvTransOperator
::
backward
()
{
size_t
batchSize
=
ins_
[
0
]
->
value
->
getHeight
();
{
AsyncGpuBlock
block
;
for
(
size_t
batchId
=
0
;
batchId
<
batchSize
;
++
batchId
)
{
real
*
outGrad
=
out_
->
grad
->
getData
()
+
outputOffset_
*
batchId
;
if
(
ins_
[
1
]
->
grad
)
{
real
*
inputData
=
ins_
[
0
]
->
value
->
getData
()
+
inputOffset_
*
batchId
;
real
*
weightGrad
=
ins_
[
1
]
->
grad
->
getData
()
+
weightOffset_
*
batchId
;
hl_convolution_backward_filter
(
imageDesc_
,
outGrad
,
outputDesc_
,
inputData
,
filterDesc_
,
weightGrad
,
convDesc_
,
workSpace_
,
workSpaceInBytes_
,
bwdFilterAlgo_
);
}
MatrixPtr
preGrad
=
ins_
[
0
]
->
grad
;
if
(
NULL
!=
preGrad
)
{
real
*
inputGrad
=
preGrad
->
getData
()
+
inputOffset_
*
batchId
;
real
*
wgtData
=
ins_
[
1
]
->
value
->
getData
()
+
weightOffset_
*
batchId
;
hl_convolution_forward
(
imageDesc_
,
outGrad
,
outputDesc_
,
inputGrad
,
filterDesc_
,
wgtData
,
convDesc_
,
workSpace_
,
workSpaceInBytes_
,
fwdAlgo_
);
}
}
}
}
}
// namespace paddle
paddle/gserver/layers/ConvTransOperator.h
0 → 100644
浏览文件 @
96f42d8e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "ConvBaseOperator.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
/**
* @brief ConvTransOperator takes two inputs to perform the convolution.
* The first input is the image, and the second input is the convolution kernel.
* The height of data for two inputs are the same. Each data of the first input
* is convolved with each data of the second input indepedently.
*
* The config file api is conv_operator.
*/
class
ConvTransOperator
:
public
ConvBaseOperator
{
public:
ConvTransOperator
(
const
OperatorConfig
&
config
,
bool
useGpu
)
:
ConvBaseOperator
(
config
,
useGpu
)
{}
/**
* Free workspace in device and destroy cudnn tensor descriptor.
*/
virtual
~
ConvTransOperator
()
{}
void
forward
()
override
;
void
backward
()
override
;
void
reshape
(
int
batchSize
)
override
;
};
}
// namespace paddle
paddle/gserver/layers/ConvTransProjection.cpp
0 → 100644
浏览文件 @
96f42d8e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ConvTransProjection.h"
#include "paddle/utils/Stat.h"
namespace
paddle
{
REGISTER_PROJECTION
(
convt
,
ConvTransProjection
);
size_t
ConvTransProjection
::
calOutputSize
()
{
outputH_
=
in_
->
getFrameHeight
();
outputW_
=
in_
->
getFrameWidth
();
if
(
outputH_
==
0
)
outputH_
=
configOutH_
;
if
(
outputW_
==
0
)
outputW_
=
configOutW_
;
imageH_
=
imageSize
(
outputH_
,
filterH_
,
paddingH_
,
strideH_
,
/* caffeMode */
true
);
imageW_
=
imageSize
(
outputW_
,
filterW_
,
paddingW_
,
strideW_
,
/* caffeMode */
true
);
const_cast
<
Argument
*>
(
out_
)
->
setFrameHeight
(
imageH_
);
const_cast
<
Argument
*>
(
out_
)
->
setFrameWidth
(
imageW_
);
inputOffset_
=
(
configChannels_
/
groups_
)
*
outputH_
*
outputW_
;
outputOffset_
=
(
configNumFilters_
/
groups_
)
*
imageH_
*
imageW_
;
return
imageH_
*
imageW_
*
configNumFilters_
;
}
size_t
ConvTransProjection
::
calInputSize
()
{
return
static_cast
<
size_t
>
(
configChannels_
*
outputH_
*
outputW_
);
}
void
ConvTransProjection
::
forward
()
{
int
batchSize
=
in_
->
value
->
getHeight
();
reshape
(
batchSize
);
void
*
workSpace
=
NULL
;
if
(
workSpaceInBytes_
>
0
)
{
workSpace
=
getSpaceBytes
(
workSpaceInBytes_
);
}
for
(
int
g
=
0
;
g
<
groups_
;
++
g
)
{
REGISTER_TIMER_INFO
(
"CudnnConvTransFwTimer"
,
getName
().
c_str
());
real
*
inData
=
in_
->
value
->
getData
()
+
g
*
inputOffset_
;
real
*
wgtData
=
weight_
->
getW
()
->
getData
()
+
g
*
weightOffset_
;
real
*
outData
=
out_
->
value
->
getData
()
+
g
*
outputOffset_
;
hl_convolution_backward_data
(
imageDesc_
,
outData
,
outputDesc_
,
inData
,
filterDesc_
,
wgtData
,
convDesc_
,
workSpace
,
bwdDataLimitBytes_
,
bwdDataAlgo_
);
}
}
void
ConvTransProjection
::
backward
(
const
UpdateCallback
&
callback
)
{
REGISTER_TIMER_INFO
(
"CudnnConvTransBpTimer"
,
getName
().
c_str
());
void
*
workSpace
=
NULL
;
if
(
workSpaceInBytes_
>
0
)
{
workSpace
=
getSpaceBytes
(
workSpaceInBytes_
);
}
for
(
int
g
=
0
;
g
<
groups_
;
++
g
)
{
real
*
outGrad
=
out_
->
grad
->
getData
()
+
g
*
outputOffset_
;
if
(
weight_
->
getWGrad
())
{
real
*
inData
=
in_
->
value
->
getData
()
+
g
*
inputOffset_
;
real
*
weightGrad
=
weight_
->
getWGrad
()
->
getData
()
+
g
*
weightOffset_
;
hl_convolution_backward_filter
(
imageDesc_
,
outGrad
,
outputDesc_
,
inData
,
filterDesc_
,
weightGrad
,
convDesc_
,
workSpace
,
bwdFilterLimitBytes_
,
bwdFilterAlgo_
);
}
MatrixPtr
preGrad
=
in_
->
grad
;
if
(
NULL
!=
preGrad
)
{
real
*
inGrad
=
preGrad
->
getData
()
+
g
*
inputOffset_
;
real
*
wgtData
=
weight_
->
getW
()
->
getData
()
+
g
*
weightOffset_
;
hl_convolution_forward
(
imageDesc_
,
outGrad
,
outputDesc_
,
inGrad
,
filterDesc_
,
wgtData
,
convDesc_
,
workSpace
,
fwdLimitBytes_
,
fwdAlgo_
);
}
}
weight_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
// namespace paddle
paddle/gserver/layers/ConvTransProjection.h
0 → 100644
浏览文件 @
96f42d8e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "ConvBaseProjection.h"
#include "paddle/math/MathUtils.h"
namespace
paddle
{
/**
* @brief Convolution projection do the same calculation with CudnnConvLayer.
*/
class
ConvTransProjection
:
public
ConvBaseProjection
{
public:
/**
* Constructor.
*/
ConvTransProjection
(
const
ProjectionConfig
&
config
,
ParameterPtr
parameter
,
bool
useGpu
)
:
ConvBaseProjection
(
config
,
parameter
,
useGpu
)
{}
~
ConvTransProjection
()
{}
virtual
void
forward
();
virtual
void
backward
(
const
UpdateCallback
&
callback
);
virtual
size_t
calOutputSize
();
virtual
size_t
calInputSize
();
};
}
// namespace paddle
paddle/gserver/layers/CudnnConvLayer.cpp
→
paddle/gserver/layers/CudnnConv
Base
Layer.cpp
浏览文件 @
96f42d8e
...
@@ -12,16 +12,16 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,16 +12,16 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "CudnnConvLayer.h"
#include "CudnnConv
Base
Layer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "paddle/utils/Stat.h"
namespace
paddle
{
namespace
paddle
{
REGISTER_LAYER
(
cudnn_conv
,
CudnnConvBaseLayer
);
REGISTER_LAYER
(
cudnn_convt
,
CudnnConvBaseLayer
);
REGISTER_LAYER
(
cudnn_conv
,
CudnnConvLayer
);
bool
CudnnConvBaseLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
bool
CudnnConvLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
if
(
!
ConvBaseLayer
::
init
(
layerMap
,
parameterMap
))
return
false
;
if
(
!
ConvBaseLayer
::
init
(
layerMap
,
parameterMap
))
return
false
;
CHECK
(
useGpu_
)
<<
"CudnnConvLayer only support gpu"
;
CHECK
(
useGpu_
)
<<
"CudnnConvLayer only support gpu"
;
...
@@ -33,7 +33,11 @@ bool CudnnConvLayer::init(const LayerMap &layerMap,
...
@@ -33,7 +33,11 @@ bool CudnnConvLayer::init(const LayerMap &layerMap,
CHECK
(
config_
.
shared_biases
());
CHECK
(
config_
.
shared_biases
());
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
ProjectionConfig
*
conf
=
new
ProjectionConfig
();
ProjectionConfig
*
conf
=
new
ProjectionConfig
();
conf
->
set_type
(
"conv"
);
if
(
isDeconv_
)
{
conf
->
set_type
(
"convt"
);
}
else
{
conf
->
set_type
(
"conv"
);
}
conf
->
set_num_filters
(
numFilters_
);
conf
->
set_num_filters
(
numFilters_
);
ConvConfig
*
convConf
=
conf
->
mutable_conv_conf
();
ConvConfig
*
convConf
=
conf
->
mutable_conv_conf
();
*
convConf
=
*
(
config_
.
mutable_inputs
(
i
)
->
mutable_conv_conf
());
*
convConf
=
*
(
config_
.
mutable_inputs
(
i
)
->
mutable_conv_conf
());
...
@@ -47,14 +51,13 @@ bool CudnnConvLayer::init(const LayerMap &layerMap,
...
@@ -47,14 +51,13 @@ bool CudnnConvLayer::init(const LayerMap &layerMap,
if
(
biases_
.
get
()
&&
sharedBiases_
)
{
if
(
biases_
.
get
()
&&
sharedBiases_
)
{
hl_create_tensor_descriptor
(
&
biasDesc_
);
hl_create_tensor_descriptor
(
&
biasDesc_
);
hl_create_tensor_descriptor
(
&
outputDesc_
);
hl_create_tensor_descriptor
(
&
outputDesc_
);
hl_tensor_reshape
(
biasDesc_
,
1
,
numFilters_
/
groups_
[
0
],
1
,
1
);
hl_tensor_reshape
(
biasDesc_
,
1
,
numFilters_
,
1
,
1
);
biasOffset_
=
numFilters_
/
groups_
[
0
];
}
}
return
true
;
return
true
;
}
}
void
CudnnConvLayer
::
forward
(
PassType
passType
)
{
void
CudnnConv
Base
Layer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
Layer
::
forward
(
passType
);
int
batchSize
=
getInput
(
0
).
getBatchSize
();
int
batchSize
=
getInput
(
0
).
getBatchSize
();
...
@@ -67,37 +70,41 @@ void CudnnConvLayer::forward(PassType passType) {
...
@@ -67,37 +70,41 @@ void CudnnConvLayer::forward(PassType passType) {
if
(
biases_
)
{
if
(
biases_
)
{
REGISTER_TIMER_INFO
(
"CudnnConvBiasTimer"
,
getName
().
c_str
());
REGISTER_TIMER_INFO
(
"CudnnConvBiasTimer"
,
getName
().
c_str
());
int
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
int
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
int
outH
,
outW
;
if
(
isDeconv_
)
{
outH
=
imgSizeH_
[
0
];
outW
=
imgSizeW_
[
0
];
}
else
{
outH
=
outputH_
[
0
];
outW
=
outputW_
[
0
];
}
hl_tensor_reshape
(
outputDesc_
,
hl_tensor_reshape
(
outputDesc_
,
batchSize
,
batchSize
,
numFilters_
/
groups_
[
0
]
,
numFilters_
,
out
putH_
[
0
]
,
out
H
,
out
putW_
[
0
]
,
out
W
,
numFilters_
*
out
putH_
[
0
]
*
outputW_
[
0
]
,
numFilters_
*
out
H
*
outW
,
out
putH_
[
0
]
*
outputW_
[
0
]
,
out
H
*
outW
,
out
putW_
[
0
]
,
out
W
,
1
);
1
);
outputOffset_
=
getOutputValue
()
->
getWidth
()
/
groups_
[
0
];
real
*
outData
=
getOutputValue
()
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
0
];
++
g
)
{
real
*
biasData
=
biases_
->
getW
()
->
getData
();
real
*
biasData
=
biases_
->
getW
()
->
getData
()
+
biasOffset_
*
g
;
hl_convolution_forward_add_bias
(
biasDesc_
,
biasData
,
outputDesc_
,
outData
);
real
*
outData
=
getOutputValue
()
->
getData
()
+
outputOffset_
*
g
;
hl_convolution_forward_add_bias
(
biasDesc_
,
biasData
,
outputDesc_
,
outData
);
}
}
}
forwardActivation
();
forwardActivation
();
}
}
void
CudnnConvLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
void
CudnnConv
Base
Layer
::
backward
(
const
UpdateCallback
&
callback
)
{
backwardActivation
();
backwardActivation
();
if
(
biases_
&&
biases_
->
getWGrad
())
{
if
(
biases_
&&
biases_
->
getWGrad
())
{
REGISTER_TIMER_INFO
(
"CudnnConvBpBiasTimer"
,
getName
().
c_str
());
REGISTER_TIMER_INFO
(
"CudnnConvBpBiasTimer"
,
getName
().
c_str
());
for
(
int
g
=
0
;
g
<
groups_
[
0
];
++
g
)
{
real
*
biasGrad
=
biases_
->
getWGrad
()
->
getData
();
real
*
biasGrad
=
biases_
->
getWGrad
()
->
getData
()
+
biasOffset_
*
g
;
real
*
outGrad
=
getOutputGrad
()
->
getData
();
real
*
outGrad
=
getOutputGrad
()
->
getData
()
+
outputOffset_
*
g
;
hl_convolution_backward_bias
(
biasDesc_
,
biasGrad
,
outputDesc_
,
outGrad
);
hl_convolution_backward_bias
(
biasDesc_
,
biasGrad
,
outputDesc_
,
outGrad
);
}
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
...
@@ -106,7 +113,7 @@ void CudnnConvLayer::backward(const UpdateCallback &callback) {
...
@@ -106,7 +113,7 @@ void CudnnConvLayer::backward(const UpdateCallback &callback) {
}
}
}
}
CudnnConv
Layer
::~
CudnnConv
Layer
()
{
CudnnConv
BaseLayer
::~
CudnnConvBase
Layer
()
{
if
(
biases_
)
{
if
(
biases_
)
{
hl_destroy_tensor_descriptor
(
biasDesc_
);
hl_destroy_tensor_descriptor
(
biasDesc_
);
hl_destroy_tensor_descriptor
(
outputDesc_
);
hl_destroy_tensor_descriptor
(
outputDesc_
);
...
...
paddle/gserver/layers/CudnnConvLayer.h
→
paddle/gserver/layers/CudnnConv
Base
Layer.h
浏览文件 @
96f42d8e
...
@@ -30,27 +30,24 @@ namespace paddle {
...
@@ -30,27 +30,24 @@ namespace paddle {
*
*
* The config file api is img_conv_layer.
* The config file api is img_conv_layer.
*/
*/
class
CudnnConvLayer
:
public
ConvBaseLayer
{
class
CudnnConv
Base
Layer
:
public
ConvBaseLayer
{
protected:
protected:
std
::
vector
<
std
::
unique_ptr
<
ProjectionConfig
>>
projConf_
;
std
::
vector
<
std
::
unique_ptr
<
ProjectionConfig
>>
projConf_
;
std
::
vector
<
std
::
unique_ptr
<
Projection
>>
projections_
;
std
::
vector
<
std
::
unique_ptr
<
Projection
>>
projections_
;
hl_tensor_descriptor
biasDesc_
;
hl_tensor_descriptor
biasDesc_
;
hl_tensor_descriptor
outputDesc_
;
hl_tensor_descriptor
outputDesc_
;
int
biasOffset_
;
int
outputOffset_
;
public:
public:
explicit
CudnnConvLayer
(
const
LayerConfig
&
config
)
:
ConvBaseLayer
(
config
)
{}
explicit
CudnnConvBaseLayer
(
const
LayerConfig
&
config
)
:
ConvBaseLayer
(
config
)
{}
~
CudnnConvLayer
();
~
CudnnConvBaseLayer
();
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
)
override
;
bool
init
(
const
LayerMap
&
layerMap
,
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
)
override
;
void
addBiases
();
void
bpropBiases
();
};
};
}
// namespace paddle
}
// namespace paddle
paddle/gserver/tests/test_ConvUnify.cpp
浏览文件 @
96f42d8e
...
@@ -34,8 +34,7 @@ DECLARE_double(checkgrad_eps);
...
@@ -34,8 +34,7 @@ DECLARE_double(checkgrad_eps);
DECLARE_bool
(
thread_local_rand_use_global_seed
);
DECLARE_bool
(
thread_local_rand_use_global_seed
);
DECLARE_bool
(
prev_batch_state
);
DECLARE_bool
(
prev_batch_state
);
// Do one forward pass of convTrans layer and check to see if its output
// Do one forward pass of ConvLayer using either exconv or cudnn_conv
// matches the given result
MatrixPtr
doOneConvTest
(
size_t
imgSize
,
MatrixPtr
doOneConvTest
(
size_t
imgSize
,
size_t
output_x
,
size_t
output_x
,
size_t
stride
,
size_t
stride
,
...
@@ -46,22 +45,35 @@ MatrixPtr doOneConvTest(size_t imgSize,
...
@@ -46,22 +45,35 @@ MatrixPtr doOneConvTest(size_t imgSize,
size_t
groups
,
size_t
groups
,
MatrixPtr
&
inputData
,
MatrixPtr
&
inputData
,
real
*
param
,
real
*
param
,
bool
useGpu
)
{
bool
useGpu
,
bool
isDeconv
=
false
)
{
TestConfig
config
;
TestConfig
config
;
config
.
biasSize
=
numfilters
;
config
.
biasSize
=
numfilters
;
string
layerType
;
if
(
useGpu
)
{
if
(
useGpu
)
{
config
.
layerConfig
.
set_type
(
"cudnn_conv"
)
;
layerType
=
(
isDeconv
)
?
"cudnn_convt"
:
"cudnn_conv"
;
}
else
{
}
else
{
config
.
layerConfig
.
set_type
(
"exconv"
)
;
layerType
=
(
isDeconv
)
?
"exconvt"
:
"exconv"
;
}
}
config
.
layerConfig
.
set_type
(
layerType
);
config
.
layerConfig
.
set_num_filters
(
numfilters
);
config
.
layerConfig
.
set_num_filters
(
numfilters
);
config
.
layerConfig
.
set_partial_sum
(
1
);
config
.
layerConfig
.
set_partial_sum
(
1
);
config
.
layerConfig
.
set_shared_biases
(
true
);
config
.
layerConfig
.
set_shared_biases
(
true
);
size_t
weightSize
=
channel
*
filter_size
*
filter_size
*
size_t
weightSize
=
channel
*
filter_size
*
filter_size
*
config
.
layerConfig
.
num_filters
()
/
groups
;
config
.
layerConfig
.
num_filters
()
/
groups
;
config
.
inputDefs
.
push_back
(
if
(
isDeconv
)
{
{
INPUT_DATA
,
"layer_0"
,
imgSize
*
imgSize
*
channel
,
weightSize
});
config
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_0"
,
output_x
*
output_x
*
channel
,
weightSize
});
config
.
layerConfig
.
set_size
(
imgSize
*
imgSize
*
config
.
layerConfig
.
num_filters
());
}
else
{
config
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_0"
,
imgSize
*
imgSize
*
channel
,
weightSize
});
config
.
layerConfig
.
set_size
(
output_x
*
output_x
*
config
.
layerConfig
.
num_filters
());
}
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
ConvConfig
*
conv
=
input
->
mutable_conv_conf
();
ConvConfig
*
conv
=
input
->
mutable_conv_conf
();
conv
->
set_filter_size
(
filter_size
);
conv
->
set_filter_size
(
filter_size
);
...
@@ -72,12 +84,15 @@ MatrixPtr doOneConvTest(size_t imgSize,
...
@@ -72,12 +84,15 @@ MatrixPtr doOneConvTest(size_t imgSize,
conv
->
set_stride
(
stride
);
conv
->
set_stride
(
stride
);
conv
->
set_stride_y
(
stride
);
conv
->
set_stride_y
(
stride
);
conv
->
set_groups
(
groups
);
conv
->
set_groups
(
groups
);
conv
->
set_filter_channels
(
channel
/
groups
);
conv
->
set_img_size
(
imgSize
);
conv
->
set_img_size
(
imgSize
);
conv
->
set_output_x
(
output_x
);
conv
->
set_output_x
(
output_x
);
config
.
layerConfig
.
set_size
(
conv
->
output_x
()
*
conv
->
output_x
()
*
if
(
isDeconv
)
{
config
.
layerConfig
.
num_filters
());
conv
->
set_filter_channels
(
numfilters
/
groups
);
}
else
{
conv
->
set_filter_channels
(
channel
/
groups
);
}
config
.
layerConfig
.
set_name
(
"conv"
);
config
.
layerConfig
.
set_name
(
"conv"
);
std
::
vector
<
DataLayerPtr
>
dataLayers
;
std
::
vector
<
DataLayerPtr
>
dataLayers
;
...
@@ -105,6 +120,8 @@ MatrixPtr doOneConvTest(size_t imgSize,
...
@@ -105,6 +120,8 @@ MatrixPtr doOneConvTest(size_t imgSize,
TEST
(
Layer
,
convParaUnified
)
{
TEST
(
Layer
,
convParaUnified
)
{
#ifndef PADDLE_ONLY_CPU
#ifndef PADDLE_ONLY_CPU
MatrixPtr
input
,
resultCpu
,
resultGpu
;
MatrixPtr
input
,
resultCpu
,
resultGpu
;
/// TEST1 for conv ///
input
=
Matrix
::
create
(
1
,
4
*
4
,
false
,
false
);
input
=
Matrix
::
create
(
1
,
4
*
4
,
false
,
false
);
real
inputData
[]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
};
real
inputData
[]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
};
real
param
[]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
9
,
8
,
7
,
6
,
5
,
4
,
3
,
2
,
1
};
real
param
[]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
9
,
8
,
7
,
6
,
5
,
4
,
3
,
2
,
1
};
...
@@ -121,7 +138,7 @@ TEST(Layer, convParaUnified) {
...
@@ -121,7 +138,7 @@ TEST(Layer, convParaUnified) {
/*groups*/
1
,
/*groups*/
1
,
input
,
input
,
param
,
param
,
false
);
/*useGpu*/
false
);
resultGpu
=
doOneConvTest
(
/* imgSize */
4
,
resultGpu
=
doOneConvTest
(
/* imgSize */
4
,
/* output_x */
2
,
/* output_x */
2
,
...
@@ -133,9 +150,42 @@ TEST(Layer, convParaUnified) {
...
@@ -133,9 +150,42 @@ TEST(Layer, convParaUnified) {
/*groups*/
1
,
/*groups*/
1
,
input
,
input
,
param
,
param
,
true
);
/*useGpu*/
true
);
checkMatrixEqual
(
resultCpu
,
resultGpu
);
checkMatrixEqual
(
resultCpu
,
resultGpu
);
/// TEST1 for deconv ///
input
=
Matrix
::
create
(
1
,
2
*
2
,
false
,
false
);
real
inputDataT
[]
=
{
1
,
2
,
3
,
4
};
input
->
setData
(
inputDataT
);
resultCpu
=
doOneConvTest
(
/* imgSize */
4
,
/* output_x */
2
,
/* stride */
1
,
/* padding */
0
,
/* filter_size */
3
,
/*channel*/
1
,
/*numfilters*/
2
,
/*groups*/
1
,
input
,
param
,
/*useGpu*/
false
,
/*isDeconv*/
true
);
resultGpu
=
doOneConvTest
(
/* imgSize */
4
,
/* output_x */
2
,
/* stride */
1
,
/* padding */
0
,
/* filter_size */
3
,
/*channel*/
1
,
/*numfilters*/
2
,
/*groups*/
1
,
input
,
param
,
/*useGpu*/
true
,
/*isDeconv*/
true
);
checkMatrixEqual
(
resultCpu
,
resultGpu
);
/// TEST2 for conv ///
input
=
Matrix
::
create
(
1
,
3
*
3
*
2
,
false
,
false
);
input
=
Matrix
::
create
(
1
,
3
*
3
*
2
,
false
,
false
);
real
inputData2
[]
=
{
real
inputData2
[]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
};
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
};
...
@@ -153,7 +203,7 @@ TEST(Layer, convParaUnified) {
...
@@ -153,7 +203,7 @@ TEST(Layer, convParaUnified) {
/*groups*/
1
,
/*groups*/
1
,
input
,
input
,
param2
,
param2
,
false
);
/*useGpu*/
false
);
resultGpu
=
doOneConvTest
(
/* imgSize */
3
,
resultGpu
=
doOneConvTest
(
/* imgSize */
3
,
/* output_x */
2
,
/* output_x */
2
,
...
@@ -165,9 +215,10 @@ TEST(Layer, convParaUnified) {
...
@@ -165,9 +215,10 @@ TEST(Layer, convParaUnified) {
/*groups*/
1
,
/*groups*/
1
,
input
,
input
,
param2
,
param2
,
true
);
/*useGpu*/
true
);
checkMatrixEqual
(
resultCpu
,
resultGpu
);
checkMatrixEqual
(
resultCpu
,
resultGpu
);
/// TEST3 for conv ///
real
param3
[]
=
{
1
,
2
,
3
,
4
,
4
,
3
,
2
,
1
};
real
param3
[]
=
{
1
,
2
,
3
,
4
,
4
,
3
,
2
,
1
};
resultCpu
=
doOneConvTest
(
/* imgSize */
3
,
resultCpu
=
doOneConvTest
(
/* imgSize */
3
,
...
@@ -180,7 +231,66 @@ TEST(Layer, convParaUnified) {
...
@@ -180,7 +231,66 @@ TEST(Layer, convParaUnified) {
/*groups*/
2
,
/*groups*/
2
,
input
,
input
,
param3
,
param3
,
false
);
/*useGpu*/
false
);
resultGpu
=
doOneConvTest
(
/* imgSize */
3
,
/* output_x */
2
,
/* stride */
1
,
/* padding */
0
,
/* filter_size */
2
,
/*channel*/
2
,
/*numfilters*/
2
,
/*groups*/
2
,
input
,
param3
,
/*useGpu*/
true
);
checkMatrixEqual
(
resultCpu
,
resultGpu
);
/// TEST2 for deconv ///
input
=
Matrix
::
create
(
1
,
2
*
2
*
2
,
false
,
false
);
real
inputData2T
[]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
};
input
->
setData
(
inputData2T
);
resultCpu
=
doOneConvTest
(
/* imgSize */
3
,
/* output_x */
2
,
/* stride */
1
,
/* padding */
0
,
/* filter_size */
2
,
/*channel*/
2
,
/*numfilters*/
2
,
/*groups*/
1
,
input
,
param2
,
/*useGpu*/
false
,
/*isDeconv*/
true
);
resultGpu
=
doOneConvTest
(
/* imgSize */
3
,
/* output_x */
2
,
/* stride */
1
,
/* padding */
0
,
/* filter_size */
2
,
/*channel*/
2
,
/*numfilters*/
2
,
/*groups*/
1
,
input
,
param2
,
/*useGpu*/
true
,
/*isDeconv*/
true
);
checkMatrixEqual
(
resultCpu
,
resultGpu
);
/// TEST3 for deconv ///
resultCpu
=
doOneConvTest
(
/* imgSize */
3
,
/* output_x */
2
,
/* stride */
1
,
/* padding */
0
,
/* filter_size */
2
,
/*channel*/
2
,
/*numfilters*/
2
,
/*groups*/
2
,
input
,
param3
,
/*useGpu*/
false
,
/*isDeconv*/
true
);
resultGpu
=
doOneConvTest
(
/* imgSize */
3
,
resultGpu
=
doOneConvTest
(
/* imgSize */
3
,
/* output_x */
2
,
/* output_x */
2
,
...
@@ -192,7 +302,8 @@ TEST(Layer, convParaUnified) {
...
@@ -192,7 +302,8 @@ TEST(Layer, convParaUnified) {
/*groups*/
2
,
/*groups*/
2
,
input
,
input
,
param3
,
param3
,
true
);
/*useGpu*/
true
,
/*isDeconv*/
true
);
checkMatrixEqual
(
resultCpu
,
resultGpu
);
checkMatrixEqual
(
resultCpu
,
resultGpu
);
#endif
#endif
}
}
...
...
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
96f42d8e
...
@@ -166,15 +166,19 @@ TEST(Projection, scaling) {
...
@@ -166,15 +166,19 @@ TEST(Projection, scaling) {
}
}
}
}
void
testProjectionConv
(
size_t
groups
)
{
void
testProjectionConv
(
size_t
groups
,
bool
isDeconv
)
{
const
int
NUM_FILTERS
=
18
;
const
int
NUM_FILTERS
=
18
;
const
int
FILTER_SIZE
=
2
;
const
int
FILTER_SIZE
=
2
;
const
int
FILTER_SIZE_Y
=
3
;
const
int
FILTER_SIZE_Y
=
4
;
const
int
CHANNELS
=
3
;
const
int
CHANNELS
=
3
;
const
int
IMAGE_SIZE
=
16
;
const
int
IMAGE_SIZE
=
16
;
ProjectionConfig
conf
;
ProjectionConfig
conf
;
conf
.
set_type
(
"conv"
);
if
(
isDeconv
)
{
conf
.
set_type
(
"convt"
);
}
else
{
conf
.
set_type
(
"conv"
);
}
conf
.
set_num_filters
(
NUM_FILTERS
);
conf
.
set_num_filters
(
NUM_FILTERS
);
ConvConfig
*
conv
=
conf
.
mutable_conv_conf
();
ConvConfig
*
conv
=
conf
.
mutable_conv_conf
();
...
@@ -186,7 +190,11 @@ void testProjectionConv(size_t groups) {
...
@@ -186,7 +190,11 @@ void testProjectionConv(size_t groups) {
conv
->
set_stride
(
2
);
conv
->
set_stride
(
2
);
conv
->
set_stride_y
(
2
);
conv
->
set_stride_y
(
2
);
conv
->
set_groups
(
groups
);
conv
->
set_groups
(
groups
);
conv
->
set_filter_channels
(
conv
->
channels
()
/
conv
->
groups
());
if
(
isDeconv
)
{
conv
->
set_filter_channels
(
NUM_FILTERS
/
conv
->
groups
());
}
else
{
conv
->
set_filter_channels
(
conv
->
channels
()
/
conv
->
groups
());
}
conv
->
set_img_size
(
IMAGE_SIZE
);
conv
->
set_img_size
(
IMAGE_SIZE
);
int
output_x
=
outputSize
(
conv
->
img_size
(),
int
output_x
=
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
filter_size
(),
...
@@ -199,8 +207,14 @@ void testProjectionConv(size_t groups) {
...
@@ -199,8 +207,14 @@ void testProjectionConv(size_t groups) {
conv
->
stride_y
(),
conv
->
stride_y
(),
/* caffeMode */
true
);
/* caffeMode */
true
);
conv
->
set_output_x
(
output_x
);
conv
->
set_output_x
(
output_x
);
conf
.
set_input_size
(
IMAGE_SIZE
*
IMAGE_SIZE
*
CHANNELS
);
conv
->
set_output_y
(
output_y
);
conf
.
set_output_size
(
output_x
*
output_y
*
NUM_FILTERS
);
if
(
isDeconv
)
{
conf
.
set_input_size
(
output_x
*
output_y
*
CHANNELS
);
conf
.
set_output_size
(
IMAGE_SIZE
*
IMAGE_SIZE
*
NUM_FILTERS
);
}
else
{
conf
.
set_input_size
(
IMAGE_SIZE
*
IMAGE_SIZE
*
CHANNELS
);
conf
.
set_output_size
(
output_x
*
output_y
*
NUM_FILTERS
);
}
testProjectionGrad
(
conf
,
testProjectionGrad
(
conf
,
INPUT_DATA
,
INPUT_DATA
,
...
@@ -215,8 +229,12 @@ void testProjectionConv(size_t groups) {
...
@@ -215,8 +229,12 @@ void testProjectionConv(size_t groups) {
#ifndef PADDLE_ONLY_CPU
#ifndef PADDLE_ONLY_CPU
TEST
(
Projection
,
conv
)
{
TEST
(
Projection
,
conv
)
{
testProjectionConv
(
1
);
/// test ConvProjection
testProjectionConv
(
3
);
testProjectionConv
(
1
,
false
);
testProjectionConv
(
3
,
false
);
/// test ConvTransProjection
testProjectionConv
(
1
,
true
);
testProjectionConv
(
3
,
true
);
}
}
#endif
#endif
...
@@ -385,11 +403,11 @@ void testConvTransLayer(const string& type, bool trans, bool useGpu) {
...
@@ -385,11 +403,11 @@ void testConvTransLayer(const string& type, bool trans, bool useGpu) {
config
.
layerConfig
.
set_partial_sum
(
1
);
config
.
layerConfig
.
set_partial_sum
(
1
);
config
.
layerConfig
.
set_shared_biases
(
true
);
config
.
layerConfig
.
set_shared_biases
(
true
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1024
,
288
});
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1024
,
384
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
ConvConfig
*
conv
=
input
->
mutable_conv_conf
();
ConvConfig
*
conv
=
input
->
mutable_conv_conf
();
conv
->
set_filter_size
(
2
);
conv
->
set_filter_size
(
2
);
conv
->
set_filter_size_y
(
3
);
conv
->
set_filter_size_y
(
4
);
conv
->
set_channels
(
16
);
conv
->
set_channels
(
16
);
conv
->
set_padding
(
0
);
conv
->
set_padding
(
0
);
conv
->
set_padding_y
(
1
);
conv
->
set_padding_y
(
1
);
...
@@ -416,6 +434,9 @@ TEST(Layer, convTransLayer) {
...
@@ -416,6 +434,9 @@ TEST(Layer, convTransLayer) {
for
(
auto
useGpu
:
{
false
,
true
})
{
for
(
auto
useGpu
:
{
false
,
true
})
{
testConvTransLayer
(
"exconvt"
,
/* trans= */
false
,
/* useGpu= */
useGpu
);
testConvTransLayer
(
"exconvt"
,
/* trans= */
false
,
/* useGpu= */
useGpu
);
}
}
#ifndef PADDLE_ONLY_CPU
testConvTransLayer
(
"cudnn_convt"
,
/* trans= */
false
,
/* useGpu= */
true
);
#endif
}
}
TEST
(
Layer
,
blockExpandLayer
)
{
TEST
(
Layer
,
blockExpandLayer
)
{
...
@@ -1482,16 +1503,20 @@ TEST(Layer, BatchNormalizationLayer) {
...
@@ -1482,16 +1503,20 @@ TEST(Layer, BatchNormalizationLayer) {
#endif
#endif
}
}
TEST
(
Operator
,
conv
)
{
void
testConvOperator
(
bool
isDe
conv
)
{
TestConfig
config
;
TestConfig
config
;
const
int
NUM_FILTERS
=
16
;
const
int
NUM_FILTERS
=
16
;
const
int
FILTER_SIZE
=
2
;
const
int
FILTER_SIZE
=
2
;
const
int
FILTER_SIZE_Y
=
3
;
const
int
FILTER_SIZE_Y
=
3
;
const
int
CHANNELS
=
3
;
const
int
CHANNELS
=
3
;
const
int
IMAGE_SIZE
=
16
;
const
int
IMAGE_SIZE
=
16
;
const
int
IMAGE_SIZE_Y
=
8
;
const
int
IMAGE_SIZE_Y
=
9
;
OperatorConfig
&
operatorConf
=
*
config
.
layerConfig
.
add_operator_confs
();
OperatorConfig
&
operatorConf
=
*
config
.
layerConfig
.
add_operator_confs
();
operatorConf
.
set_type
(
"conv"
);
if
(
isDeconv
)
{
operatorConf
.
set_type
(
"convt"
);
}
else
{
operatorConf
.
set_type
(
"conv"
);
}
ConvConfig
*
conv
=
operatorConf
.
mutable_conv_conf
();
ConvConfig
*
conv
=
operatorConf
.
mutable_conv_conf
();
operatorConf
.
set_num_filters
(
NUM_FILTERS
);
operatorConf
.
set_num_filters
(
NUM_FILTERS
);
conv
->
set_filter_size
(
FILTER_SIZE
);
conv
->
set_filter_size
(
FILTER_SIZE
);
...
@@ -1502,7 +1527,6 @@ TEST(Operator, conv) {
...
@@ -1502,7 +1527,6 @@ TEST(Operator, conv) {
conv
->
set_stride
(
2
);
conv
->
set_stride
(
2
);
conv
->
set_stride_y
(
2
);
conv
->
set_stride_y
(
2
);
conv
->
set_groups
(
1
);
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
conv
->
channels
()
/
conv
->
groups
());
conv
->
set_img_size
(
IMAGE_SIZE
);
conv
->
set_img_size
(
IMAGE_SIZE
);
conv
->
set_img_size_y
(
IMAGE_SIZE_Y
);
conv
->
set_img_size_y
(
IMAGE_SIZE_Y
);
conv
->
set_output_x
(
outputSize
(
conv
->
img_size
(),
conv
->
set_output_x
(
outputSize
(
conv
->
img_size
(),
...
@@ -1515,11 +1539,22 @@ TEST(Operator, conv) {
...
@@ -1515,11 +1539,22 @@ TEST(Operator, conv) {
conv
->
padding_y
(),
conv
->
padding_y
(),
conv
->
stride_y
(),
conv
->
stride_y
(),
/* caffeMode */
true
));
/* caffeMode */
true
));
config
.
layerConfig
.
set_size
(
conv
->
output_x
()
*
conv
->
output_y
()
*
NUM_FILTERS
);
config
.
inputDefs
.
push_back
(
if
(
isDeconv
)
{
{
INPUT_DATA
,
"layer_0"
,
IMAGE_SIZE
*
IMAGE_SIZE_Y
*
CHANNELS
,
0
});
conv
->
set_filter_channels
(
NUM_FILTERS
/
conv
->
groups
());
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
conv
->
output_x
()
*
conv
->
output_y
()
*
CHANNELS
,
0
});
config
.
layerConfig
.
set_size
(
IMAGE_SIZE
*
IMAGE_SIZE_Y
*
NUM_FILTERS
);
}
else
{
conv
->
set_filter_channels
(
conv
->
channels
()
/
conv
->
groups
());
config
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_0"
,
IMAGE_SIZE
*
IMAGE_SIZE_Y
*
CHANNELS
,
0
});
config
.
layerConfig
.
set_size
(
conv
->
output_x
()
*
conv
->
output_y
()
*
NUM_FILTERS
);
}
config
.
inputDefs
.
push_back
(
config
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
{
INPUT_DATA
,
"layer_1"
,
"layer_1"
,
...
@@ -1531,6 +1566,11 @@ TEST(Operator, conv) {
...
@@ -1531,6 +1566,11 @@ TEST(Operator, conv) {
testOperatorGrad
(
config
,
operatorConf
,
100
,
/*useGpu*/
true
,
false
);
testOperatorGrad
(
config
,
operatorConf
,
100
,
/*useGpu*/
true
,
false
);
}
}
TEST
(
Operator
,
conv
)
{
testConvOperator
(
/*isDeconv*/
true
);
testConvOperator
(
/*isDeconv*/
false
);
}
TEST
(
Layer
,
FeatureMapExpandLayer
)
{
TEST
(
Layer
,
FeatureMapExpandLayer
)
{
TestConfig
config
;
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"featmap_expand"
);
config
.
layerConfig
.
set_type
(
"featmap_expand"
);
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
96f42d8e
...
@@ -686,25 +686,17 @@ class ContextProjection(Projection):
...
@@ -686,25 +686,17 @@ class ContextProjection(Projection):
@
config_class
@
config_class
class
ConvProjection
(
Projection
):
class
ConvBaseProjection
(
Projection
):
type
=
'conv'
def
__init__
(
self
,
def
__init__
(
self
,
input_layer_name
,
input_layer_name
,
num_filters
=
None
,
num_filters
=
None
,
conv_conf
=
None
,
conv_conf
=
None
,
**
xargs
):
**
xargs
):
super
(
ConvProjection
,
self
).
__init__
(
input_layer_name
,
**
xargs
)
super
(
Conv
Base
Projection
,
self
).
__init__
(
input_layer_name
,
**
xargs
)
if
num_filters
is
not
None
:
if
num_filters
is
not
None
:
self
.
proj_conf
.
num_filters
=
num_filters
self
.
proj_conf
.
num_filters
=
num_filters
parse_conv
(
conv_conf
,
input_layer_name
,
self
.
proj_conf
.
conv_conf
,
num_filters
)
self
.
proj_conf
.
output_size
=
self
.
proj_conf
.
conv_conf
.
output_x
*
\
self
.
proj_conf
.
conv_conf
.
output_y
*
\
num_filters
def
calc_output_size
(
self
,
input_layer_config
):
def
calc_output_size
(
self
,
input_layer_config
):
return
self
.
proj_conf
.
output_size
return
self
.
proj_conf
.
output_size
...
@@ -723,6 +715,46 @@ class ConvProjection(Projection):
...
@@ -723,6 +715,46 @@ class ConvProjection(Projection):
return
None
return
None
@
config_class
class
ConvProjection
(
ConvBaseProjection
):
type
=
'conv'
def
__init__
(
self
,
input_layer_name
,
num_filters
=
None
,
conv_conf
=
None
,
**
xargs
):
super
(
ConvProjection
,
self
).
__init__
(
input_layer_name
,
**
xargs
)
parse_conv
(
conv_conf
,
self
.
input_layer_name
,
self
.
proj_conf
.
conv_conf
,
num_filters
)
self
.
proj_conf
.
output_size
=
self
.
proj_conf
.
conv_conf
.
output_x
*
\
self
.
proj_conf
.
conv_conf
.
output_y
*
\
num_filters
@
config_class
class
ConvTransProjection
(
ConvBaseProjection
):
type
=
'convt'
def
__init__
(
self
,
input_layer_name
,
num_filters
=
None
,
conv_conf
=
None
,
**
xargs
):
super
(
ConvTransProjection
,
self
).
__init__
(
input_layer_name
,
**
xargs
)
parse_conv
(
conv_conf
,
self
.
input_layer_name
,
self
.
proj_conf
.
conv_conf
,
num_filters
,
trans
=
True
)
self
.
proj_conf
.
output_size
=
self
.
proj_conf
.
conv_conf
.
img_size_y
*
\
self
.
proj_conf
.
conv_conf
.
img_size
*
\
num_filters
# Define a operator for mixed layer
# Define a operator for mixed layer
@
config_class
@
config_class
class
Operator
(
Cfg
):
class
Operator
(
Cfg
):
...
@@ -789,6 +821,36 @@ class ConvOperator(Operator):
...
@@ -789,6 +821,36 @@ class ConvOperator(Operator):
return
self
.
operator_conf
.
output_size
return
self
.
operator_conf
.
output_size
@
config_class
class
ConvTransOperator
(
Operator
):
type
=
'convt'
def
__init__
(
self
,
input_layer_names
,
num_filters
=
None
,
conv_conf
=
None
,
**
xargs
):
super
(
ConvTransOperator
,
self
).
__init__
(
input_layer_names
,
**
xargs
)
if
num_filters
is
not
None
:
self
.
operator_conf
.
num_filters
=
num_filters
parse_conv
(
conv_conf
,
MakeLayerNameInSubmodel
(
input_layer_names
[
0
]),
self
.
operator_conf
.
conv_conf
,
num_filters
,
trans
=
True
)
self
.
operator_conf
.
output_size
=
\
self
.
operator_conf
.
conv_conf
.
img_size
*
\
self
.
operator_conf
.
conv_conf
.
img_size_y
*
\
num_filters
config_assert
(
len
(
input_layer_names
)
==
2
,
"Conv is binary operator"
)
def
calc_output_size
(
self
,
input_sizes
):
return
self
.
operator_conf
.
output_size
# please refer to the comments in proto/ModelConfig.proto
# please refer to the comments in proto/ModelConfig.proto
@
config_class
@
config_class
class
Conv
(
Cfg
):
class
Conv
(
Cfg
):
...
@@ -1772,8 +1834,17 @@ class ConvTransLayerBase(LayerBase):
...
@@ -1772,8 +1834,17 @@ class ConvTransLayerBase(LayerBase):
use_gpu
=
int
(
g_command_config_args
.
get
(
"use_gpu"
,
0
))
use_gpu
=
int
(
g_command_config_args
.
get
(
"use_gpu"
,
0
))
parallel_nn
=
int
(
g_command_config_args
.
get
(
"parallel_nn"
,
0
))
parallel_nn
=
int
(
g_command_config_args
.
get
(
"parallel_nn"
,
0
))
# cudnn_convt has not been implemented so use exconvt only
# Automatically select cudnn_type for GPU and exconvt for CPU
self
.
layer_type
=
"exconvt"
# if set type=exconvt, but still reserve the way user specify
# exconvt or cudnn_convt manually.
if
self
.
layer_type
==
"cudnn_convt"
:
config_assert
(
use_gpu
,
"cudnn_convt only support GPU"
)
if
(
use_gpu
==
1
and
self
.
layer_type
!=
"exconvt"
and
(
parallel_nn
==
0
or
self
.
config
.
device
>
-
1
)):
self
.
layer_type
=
"cudnn_convt"
else
:
self
.
layer_type
=
"exconvt"
# need to specify layer in config
# need to specify layer in config
self
.
config
.
type
=
self
.
layer_type
self
.
config
.
type
=
self
.
layer_type
...
@@ -1790,10 +1861,9 @@ class ConvTransLayerBase(LayerBase):
...
@@ -1790,10 +1861,9 @@ class ConvTransLayerBase(LayerBase):
trans
=
True
)
trans
=
True
)
conv_conf
=
self
.
config
.
inputs
[
input_index
].
conv_conf
conv_conf
=
self
.
config
.
inputs
[
input_index
].
conv_conf
psize
=
self
.
calc_parameter_size
(
conv_conf
)
psize
=
self
.
calc_parameter_size
(
conv_conf
)
print
(
"output size for %s is %d "
%
(
name
,
conv_conf
.
output_x
))
self
.
create_input_parameter
(
input_index
,
psize
)
self
.
create_input_parameter
(
input_index
,
psize
)
self
.
set_
layer_size
(
self
.
set_
cnn_layer
(
name
,
conv_conf
.
img_size_y
,
conv_conf
.
img_size
,
(
conv_conf
.
img_size
**
2
)
*
self
.
config
.
num_filters
)
self
.
config
.
num_filters
)
psize
=
self
.
config
.
size
psize
=
self
.
config
.
size
if
shared_biases
:
if
shared_biases
:
...
@@ -1810,6 +1880,11 @@ class ConvTransLayer(ConvTransLayerBase):
...
@@ -1810,6 +1880,11 @@ class ConvTransLayer(ConvTransLayerBase):
layer_type
=
'exconvt'
layer_type
=
'exconvt'
@
config_layer
(
'cudnn_convt'
)
class
ConvTransLayer
(
ConvTransLayerBase
):
layer_type
=
'cudnn_convt'
@
config_layer
(
'norm'
)
@
config_layer
(
'norm'
)
class
NormLayer
(
LayerBase
):
class
NormLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
96f42d8e
...
@@ -712,8 +712,9 @@ class MixedLayerType(LayerOutput):
...
@@ -712,8 +712,9 @@ class MixedLayerType(LayerOutput):
assert
len
(
self
.
inputs
)
==
0
assert
len
(
self
.
inputs
)
==
0
return
self
return
self
def
__exit__
(
self
,
*
args
,
**
kwargs
):
def
__exit__
(
self
,
exc_type
,
exc_value
,
tb
):
del
args
,
kwargs
# unused parameter to suppress warning
if
exc_value
is
not
None
:
raise
exc_value
assert
len
(
self
.
inputs
)
!=
0
assert
len
(
self
.
inputs
)
!=
0
ml
=
MixedLayer
(
ml
=
MixedLayer
(
name
=
self
.
name
,
name
=
self
.
name
,
...
@@ -2044,8 +2045,9 @@ def img_conv_layer(input,
...
@@ -2044,8 +2045,9 @@ def img_conv_layer(input,
:param trans: true if it is a convTransLayer, false if it is a convLayer
:param trans: true if it is a convTransLayer, false if it is a convLayer
:type trans: bool
:type trans: bool
:param layer_type: specify the layer_type, default is None. If trans=True,
:param layer_type: specify the layer_type, default is None. If trans=True,
layer_type has to be "exconvt", otherwise layer_type
layer_type has to be "exconvt" or "cudnn_convt",
has to be either "exconv" or "cudnn_conv"
otherwise layer_type has to be either "exconv" or
"cudnn_conv"
:type layer_type: String
:type layer_type: String
:return: LayerOutput object.
:return: LayerOutput object.
:rtype: LayerOutput
:rtype: LayerOutput
...
@@ -2085,7 +2087,7 @@ def img_conv_layer(input,
...
@@ -2085,7 +2087,7 @@ def img_conv_layer(input,
if
layer_type
:
if
layer_type
:
if
trans
:
if
trans
:
assert
layer_type
in
[
"exconvt"
]
assert
layer_type
in
[
"exconvt"
,
"cudnn_convt"
]
else
:
else
:
assert
layer_type
in
[
"exconv"
,
"cudnn_conv"
]
assert
layer_type
in
[
"exconv"
,
"cudnn_conv"
]
lt
=
layer_type
lt
=
layer_type
...
@@ -3715,7 +3717,8 @@ def conv_operator(img,
...
@@ -3715,7 +3717,8 @@ def conv_operator(img,
padding
=
0
,
padding
=
0
,
filter_size_y
=
None
,
filter_size_y
=
None
,
stride_y
=
None
,
stride_y
=
None
,
padding_y
=
None
):
padding_y
=
None
,
trans
=
False
):
"""
"""
Different from img_conv_layer, conv_op is an Operator, which can be used
Different from img_conv_layer, conv_op is an Operator, which can be used
in mixed_layer. And conv_op takes two inputs to perform convolution.
in mixed_layer. And conv_op takes two inputs to perform convolution.
...
@@ -3771,7 +3774,9 @@ def conv_operator(img,
...
@@ -3771,7 +3774,9 @@ def conv_operator(img,
if
filter
.
size
is
not
None
:
if
filter
.
size
is
not
None
:
filter
.
size
=
filter_size
*
filter_size_y
*
num_filters
*
num_channels
filter
.
size
=
filter_size
*
filter_size_y
*
num_filters
*
num_channels
op
=
ConvOperator
(
opCls
=
ConvTransOperator
if
trans
else
ConvOperator
op
=
opCls
(
input_layer_names
=
[
img
.
name
,
filter
.
name
],
input_layer_names
=
[
img
.
name
,
filter
.
name
],
num_filters
=
num_filters
,
num_filters
=
num_filters
,
conv_conf
=
Conv
(
conv_conf
=
Conv
(
...
@@ -3783,6 +3788,7 @@ def conv_operator(img,
...
@@ -3783,6 +3788,7 @@ def conv_operator(img,
padding_y
=
padding_y
,
padding_y
=
padding_y
,
stride_y
=
stride_y
,
stride_y
=
stride_y
,
groups
=
1
))
groups
=
1
))
op
.
origin
=
[
img
,
filter
]
op
.
origin
=
[
img
,
filter
]
return
op
return
op
...
@@ -3798,7 +3804,8 @@ def conv_projection(input,
...
@@ -3798,7 +3804,8 @@ def conv_projection(input,
stride_y
=
None
,
stride_y
=
None
,
padding_y
=
None
,
padding_y
=
None
,
groups
=
1
,
groups
=
1
,
param_attr
=
None
):
param_attr
=
None
,
trans
=
False
):
"""
"""
Different from img_conv_layer and conv_op, conv_projection is an Projection,
Different from img_conv_layer and conv_op, conv_projection is an Projection,
which can be used in mixed_layer and conat_layer. It use cudnn to implement
which can be used in mixed_layer and conat_layer. It use cudnn to implement
...
@@ -3837,6 +3844,8 @@ def conv_projection(input,
...
@@ -3837,6 +3844,8 @@ def conv_projection(input,
:type groups: int
:type groups: int
:param param_attr: Convolution param attribute. None means default attribute
:param param_attr: Convolution param attribute. None means default attribute
:type param_attr: ParameterAttribute
:type param_attr: ParameterAttribute
:param trans: whether it is convTrans or conv
:type trans: boolean
:return: A DotMulProjection Object.
:return: A DotMulProjection Object.
:rtype: DotMulProjection
:rtype: DotMulProjection
"""
"""
...
@@ -3873,7 +3882,9 @@ def conv_projection(input,
...
@@ -3873,7 +3882,9 @@ def conv_projection(input,
param_attr
.
attr
[
"initial_strategy"
]
=
0
param_attr
.
attr
[
"initial_strategy"
]
=
0
param_attr
.
attr
[
"initial_smart"
]
=
False
param_attr
.
attr
[
"initial_smart"
]
=
False
proj
=
ConvProjection
(
projCls
=
ConvTransProjection
if
trans
else
ConvProjection
proj
=
projCls
(
input_layer_name
=
input
.
name
,
input_layer_name
=
input
.
name
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
conv_conf
=
Conv
(
conv_conf
=
Conv
(
...
...
python/paddle/trainer_config_helpers/tests/configs/projections.py
浏览文件 @
96f42d8e
...
@@ -34,11 +34,31 @@ flt = data_layer(name='filter', size=3 * 3 * 1 * 64)
...
@@ -34,11 +34,31 @@ flt = data_layer(name='filter', size=3 * 3 * 1 * 64)
with
mixed_layer
()
as
m7
:
with
mixed_layer
()
as
m7
:
m7
+=
conv_operator
(
m7
+=
conv_operator
(
img
=
img
,
filter
=
flt
,
num_filters
=
64
,
num_channels
=
1
,
filter_size
=
3
)
img
=
img
,
filter
=
flt
,
num_filters
=
64
,
num_channels
=
1
,
filter_size
=
3
)
m7
+=
conv_projection
(
img
,
filter_size
=
3
,
num_filters
=
64
,
num_channels
=
1
)
with
mixed_layer
()
as
m8
:
m8
+=
conv_operator
(
img
=
img
,
filter
=
flt
,
num_filters
=
64
,
num_channels
=
1
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
,
trans
=
True
)
m8
+=
conv_projection
(
img
,
filter_size
=
3
,
num_filters
=
64
,
num_channels
=
1
,
stride
=
2
,
padding
=
1
,
trans
=
True
)
end
=
mixed_layer
(
end
=
mixed_layer
(
input
=
[
input
=
[
full_matrix_projection
(
input
=
m5
),
full_matrix_projection
(
input
=
m5
),
trans_full_matrix_projection
(
input
=
m6
),
full_matrix_projection
(
input
=
m7
)
trans_full_matrix_projection
(
input
=
m6
),
full_matrix_projection
(
input
=
m7
),
full_matrix_projection
(
input
=
m8
)
],
],
size
=
100
,
size
=
100
,
layer_attr
=
ExtraAttr
(
layer_attr
=
ExtraAttr
(
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr
浏览文件 @
96f42d8e
...
@@ -33,6 +33,8 @@ layers {
...
@@ -33,6 +33,8 @@ layers {
bias_parameter_name: "___conv_0__.wbias"
bias_parameter_name: "___conv_0__.wbias"
num_filters: 64
num_filters: 64
shared_biases: true
shared_biases: true
height: 256
width: 256
}
}
layers {
layers {
name: "__batch_norm_0__"
name: "__batch_norm_0__"
...
@@ -58,6 +60,8 @@ layers {
...
@@ -58,6 +60,8 @@ layers {
}
}
bias_parameter_name: "___batch_norm_0__.wbias"
bias_parameter_name: "___batch_norm_0__.wbias"
moving_average_fraction: 0.9
moving_average_fraction: 0.9
height: 256
width: 256
}
}
layers {
layers {
name: "__crmnorm_0__"
name: "__crmnorm_0__"
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/projections.protostr
浏览文件 @
96f42d8e
...
@@ -154,13 +154,38 @@ layers {
...
@@ -154,13 +154,38 @@ layers {
inputs {
inputs {
input_layer_name: "img"
input_layer_name: "img"
}
}
inputs {
input_layer_name: "img"
proj_conf {
type: "conv"
name: "___mixed_6__.w1"
input_size: 1024
output_size: 57600
conv_conf {
filter_size: 3
channels: 1
stride: 1
padding: 0
groups: 1
filter_channels: 1
output_x: 30
img_size: 32
caffe_mode: true
filter_size_y: 3
padding_y: 0
stride_y: 1
output_y: 30
img_size_y: 32
}
}
}
inputs {
inputs {
input_layer_name: "filter"
input_layer_name: "filter"
}
}
operator_confs {
operator_confs {
type: "conv"
type: "conv"
input_indices: 0
input_indices: 0
input_indices:
1
input_indices:
2
input_sizes: 1024
input_sizes: 1024
input_sizes: 576
input_sizes: 576
output_size: 57600
output_size: 57600
...
@@ -186,38 +211,110 @@ layers {
...
@@ -186,38 +211,110 @@ layers {
layers {
layers {
name: "__mixed_7__"
name: "__mixed_7__"
type: "mixed"
type: "mixed"
size: 254016
active_type: ""
inputs {
input_layer_name: "img"
}
inputs {
input_layer_name: "img"
proj_conf {
type: "convt"
name: "___mixed_7__.w1"
input_size: 1024
output_size: 254016
conv_conf {
filter_size: 3
channels: 1
stride: 2
padding: 1
groups: 1
filter_channels: 64
output_x: 32
img_size: 63
caffe_mode: true
filter_size_y: 3
padding_y: 1
stride_y: 2
output_y: 32
img_size_y: 63
}
}
}
inputs {
input_layer_name: "filter"
}
operator_confs {
type: "convt"
input_indices: 0
input_indices: 2
input_sizes: 1024
input_sizes: 576
output_size: 254016
conv_conf {
filter_size: 3
channels: 1
stride: 2
padding: 1
groups: 1
filter_channels: 64
output_x: 32
img_size: 63
caffe_mode: true
filter_size_y: 3
padding_y: 1
stride_y: 2
output_y: 32
img_size_y: 63
}
num_filters: 64
}
}
layers {
name: "__mixed_8__"
type: "mixed"
size: 100
size: 100
active_type: ""
active_type: ""
inputs {
inputs {
input_layer_name: "__mixed_4__"
input_layer_name: "__mixed_4__"
input_parameter_name: "___mixed_
7
__.w0"
input_parameter_name: "___mixed_
8
__.w0"
proj_conf {
proj_conf {
type: "fc"
type: "fc"
name: "___mixed_
7
__.w0"
name: "___mixed_
8
__.w0"
input_size: 300
input_size: 300
output_size: 100
output_size: 100
}
}
}
}
inputs {
inputs {
input_layer_name: "__mixed_5__"
input_layer_name: "__mixed_5__"
input_parameter_name: "___mixed_
7
__.w1"
input_parameter_name: "___mixed_
8
__.w1"
proj_conf {
proj_conf {
type: "trans_fc"
type: "trans_fc"
name: "___mixed_
7
__.w1"
name: "___mixed_
8
__.w1"
input_size: 100
input_size: 100
output_size: 100
output_size: 100
}
}
}
}
inputs {
inputs {
input_layer_name: "__mixed_6__"
input_layer_name: "__mixed_6__"
input_parameter_name: "___mixed_
7
__.w2"
input_parameter_name: "___mixed_
8
__.w2"
proj_conf {
proj_conf {
type: "fc"
type: "fc"
name: "___mixed_
7
__.w2"
name: "___mixed_
8
__.w2"
input_size: 57600
input_size: 57600
output_size: 100
output_size: 100
}
}
}
}
inputs {
input_layer_name: "__mixed_7__"
input_parameter_name: "___mixed_8__.w3"
proj_conf {
type: "fc"
name: "___mixed_8__.w3"
input_size: 254016
output_size: 100
}
}
drop_rate: 0.5
drop_rate: 0.5
}
}
parameters {
parameters {
...
@@ -281,7 +378,7 @@ parameters {
...
@@ -281,7 +378,7 @@ parameters {
initial_smart: true
initial_smart: true
}
}
parameters {
parameters {
name: "___mixed_
7
__.w0"
name: "___mixed_
8
__.w0"
size: 30000
size: 30000
initial_mean: 0.0
initial_mean: 0.0
initial_std: 0.057735026919
initial_std: 0.057735026919
...
@@ -291,7 +388,7 @@ parameters {
...
@@ -291,7 +388,7 @@ parameters {
initial_smart: true
initial_smart: true
}
}
parameters {
parameters {
name: "___mixed_
7
__.w1"
name: "___mixed_
8
__.w1"
size: 10000
size: 10000
initial_mean: 0.0
initial_mean: 0.0
initial_std: 0.1
initial_std: 0.1
...
@@ -301,7 +398,7 @@ parameters {
...
@@ -301,7 +398,7 @@ parameters {
initial_smart: true
initial_smart: true
}
}
parameters {
parameters {
name: "___mixed_
7
__.w2"
name: "___mixed_
8
__.w2"
size: 5760000
size: 5760000
initial_mean: 0.0
initial_mean: 0.0
initial_std: 0.00416666666667
initial_std: 0.00416666666667
...
@@ -310,10 +407,20 @@ parameters {
...
@@ -310,10 +407,20 @@ parameters {
initial_strategy: 0
initial_strategy: 0
initial_smart: true
initial_smart: true
}
}
parameters {
name: "___mixed_8__.w3"
size: 25401600
initial_mean: 0.0
initial_std: 0.00198412698413
dims: 254016
dims: 100
initial_strategy: 0
initial_smart: true
}
input_layer_names: "test"
input_layer_names: "test"
input_layer_names: "img"
input_layer_names: "img"
input_layer_names: "filter"
input_layer_names: "filter"
output_layer_names: "__mixed_
7
__"
output_layer_names: "__mixed_
8
__"
sub_models {
sub_models {
name: "root"
name: "root"
layer_names: "test"
layer_names: "test"
...
@@ -328,10 +435,11 @@ sub_models {
...
@@ -328,10 +435,11 @@ sub_models {
layer_names: "filter"
layer_names: "filter"
layer_names: "__mixed_6__"
layer_names: "__mixed_6__"
layer_names: "__mixed_7__"
layer_names: "__mixed_7__"
layer_names: "__mixed_8__"
input_layer_names: "test"
input_layer_names: "test"
input_layer_names: "img"
input_layer_names: "img"
input_layer_names: "filter"
input_layer_names: "filter"
output_layer_names: "__mixed_
7
__"
output_layer_names: "__mixed_
8
__"
is_recurrent_layer_group: false
is_recurrent_layer_group: false
}
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录