提交 96216052 编写于 作者: N nhzlx

1. fix trt multi thread bug

上级 30aad884
......@@ -103,6 +103,7 @@ class OpConverter {
void ConvertBlock(const framework::proto::BlockDesc& block,
const std::unordered_set<std::string>& parameters,
const framework::Scope& scope, TensorRTEngine* engine) {
std::unique_lock<std::mutex> lk(mut_);
for (int i = 0; i < block.ops_size(); i++) {
const auto& op = block.ops(i);
ConvertOp(op, parameters, scope, engine);
......@@ -125,6 +126,7 @@ class OpConverter {
std::unordered_map<std::string, OpConverter*> converters_;
// fluid inference scope
framework::Scope* scope_{nullptr};
std::mutex mut_;
};
} // namespace tensorrt
......
op_library(tensorrt_engine_op DEPS tensorrt_engine tensorrt_converter)
file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(tensorrt_engine);\n")
file(APPEND ${pybind_file} "USE_NO_KERNEL_OP(tensorrt_engine);\n")
nv_test(test_tensorrt_engine_op SRCS tensorrt_engine_op_test.cc
DEPS tensorrt_engine_op
analysis)
......@@ -21,8 +21,6 @@
namespace paddle {
DEFINE_int32(tensorrt_engine_batch_size, 1, "the batch_size of TensorRT");
namespace operators {
class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker {
......@@ -50,6 +48,6 @@ class TensorRTEngineInferVarType : public framework::VarTypeInference {
namespace ops = paddle::operators;
REGISTER_OPERATOR(tensorrt_engine, ops::TensorRTEngineOp,
ops::TensorRTEngineOpMaker, ops::TensorRTEngineOpMaker);
ops::TensorRTEngineOpMaker);
#endif // PADDLE_WITH_CUDA
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/tensorrt/tensorrt_engine_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
tensorrt_engine,
ops::TensorRTEngineKernel<paddle::platform::CUDADeviceContext, float>,
ops::TensorRTEngineKernel<paddle::platform::CUDADeviceContext, double>,
ops::TensorRTEngineKernel<paddle::platform::CUDADeviceContext, int>,
ops::TensorRTEngineKernel<paddle::platform::CUDADeviceContext, int64_t>);
......@@ -27,8 +27,6 @@
namespace paddle {
DECLARE_int32(tensorrt_engine_batch_size);
namespace operators {
using FluidDT = framework::proto::VarType_Type;
......@@ -49,7 +47,7 @@ TRT_DT FluidDataType2TRT(FluidDT type) {
return TRT_DT::kINT32;
}
nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t>& shape) {
nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t> &shape) {
PADDLE_ENFORCE_GT(shape.size(), 1UL,
"TensorRT' tensor input requires at least 2 dimensions");
PADDLE_ENFORCE_LE(shape.size(), 4UL,
......@@ -63,131 +61,121 @@ nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t>& shape) {
} // namespace // NOLINT
using inference::Singleton;
using inference::tensorrt::TRT_EngineManager;
using inference::tensorrt::TensorRTEngine;
class TensorRTEngineOp : public framework::OperatorBase {
private:
std::string engine_name_;
std::vector<std::string> input_names_;
std::unordered_set<std::string> param_names_;
mutable std::unique_ptr<TensorRTEngine> trt_engine_;
int max_batch_size_;
int workspace_size_;
class TensorRTEngineOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
TensorRTEngineOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: framework::OperatorBase(type, inputs, outputs, attrs) {
engine_name_ = Attr<std::string>("engine_uniq_key");
input_names_ = Inputs("Xs");
max_batch_size_ = Attr<int>("max_batch_size");
workspace_size_ = Attr<int>("workspace_size");
auto params = Attr<std::vector<std::string>>("parameters");
for (const auto &param : params) {
param_names_.insert(param);
}
}
protected:
void InferShape(framework::InferShapeContext* ctx) const override {}
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto input0 = ctx.Inputs("Xs").front();
framework::OpKernelType kt = framework::OpKernelType(
framework::ToDataType(ctx.scope()
.FindVar(input0)
->GetMutable<framework::LoDTensor>()
->type()),
ctx.GetPlace());
return kt;
void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override {
RunTrt(scope, dev_place);
}
};
template <typename DeviceContext, typename T>
class TensorRTEngineKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto engine_name = context.Attr<std::string>("engine_uniq_key");
int max_batch_size = context.Attr<int>("max_batch_size");
if (!Singleton<TRT_EngineManager>::Global().HasEngine(engine_name)) {
Prepare(context);
void RunTrt(const framework::Scope &scope,
const platform::Place &dev_place) const {
int runtime_batch = 1;
if (trt_engine_.get() == nullptr) {
trt_engine_.reset(new TensorRTEngine(
max_batch_size_, workspace_size_, nullptr,
boost::get<platform::CUDAPlace>(dev_place).device));
Prepare(scope, dev_place, trt_engine_.get());
}
auto* engine = Singleton<TRT_EngineManager>::Global().Get(engine_name);
auto input_names = context.op().Inputs("Xs");
PADDLE_ENFORCE(!input_names.empty(), "should pass more than one inputs");
PADDLE_ENFORCE_LE(FLAGS_tensorrt_engine_batch_size, max_batch_size);
auto *engine = trt_engine_.get();
PADDLE_ENFORCE(!input_names_.empty(), "should pass more than one inputs");
std::vector<std::string> output_maps =
context.Attr<std::vector<std::string>>("output_name_mapping");
Attr<std::vector<std::string>>("output_name_mapping");
auto params = context.Attr<std::vector<std::string>>("parameters");
std::unordered_set<std::string> parameters;
for (const auto& param : params) {
parameters.insert(param);
}
// Convert input tensor from fluid to engine.
for (const auto& x : context.Inputs("Xs")) {
if (parameters.count(x)) continue;
for (const auto &x : Inputs("Xs")) {
if (param_names_.count(x)) continue;
// convert input and copy to TRT engine's buffer
auto& t = inference::analysis::GetFromScope<framework::LoDTensor>(
context.scope(), x);
auto &t =
inference::analysis::GetFromScope<framework::LoDTensor>(scope, x);
auto t_shape = framework::vectorize(t.dims());
runtime_batch = t_shape[0];
if (platform::is_cpu_place(t.place())) {
engine->SetInputFromCPU(x, static_cast<const void*>(t.data<void>()),
engine->SetInputFromCPU(x, static_cast<const void *>(t.data<void>()),
t.memory_size());
} else {
engine->SetInputFromGPU(x, static_cast<const void*>(t.data<void>()),
engine->SetInputFromGPU(x, static_cast<const void *>(t.data<void>()),
t.memory_size());
}
}
PADDLE_ENFORCE_LE(runtime_batch, max_batch_size_);
// Execute the engine.
PADDLE_ENFORCE_GT(FLAGS_tensorrt_engine_batch_size, 0);
engine->Execute(FLAGS_tensorrt_engine_batch_size);
engine->Execute(runtime_batch);
// Convert output tensor from engine to fluid
int output_index = 0;
VLOG(4) << "TensorRT Engine Op Outputs:";
for (const auto& y : context.Outputs("Ys")) {
for (const auto &y : Outputs("Ys")) {
VLOG(4) << y;
// convert output and copy to fluid.
nvinfer1::ITensor* trt_t = engine->GetITensor(output_maps[output_index]);
nvinfer1::ITensor *trt_t = engine->GetITensor(output_maps[output_index]);
auto dims = trt_t->getDimensions();
// Use the output ITensor's dims to reshape the Fluid Tensor.
// The ITensor doesn't contain the batch size dim.
std::vector<int> ddim;
ddim.push_back(FLAGS_tensorrt_engine_batch_size);
ddim.push_back(runtime_batch);
for (int i = 0; i < dims.nbDims; i++) {
ddim.push_back(dims.d[i]);
}
auto* fluid_v = context.scope().FindVar(y);
auto *fluid_v = scope.FindVar(y);
PADDLE_ENFORCE_NOT_NULL(fluid_v, "no output variable called %s", y);
auto* fluid_t = fluid_v->GetMutable<framework::LoDTensor>();
auto *fluid_t = fluid_v->GetMutable<framework::LoDTensor>();
fluid_t->Resize(framework::make_ddim(ddim));
// TODO(Superjomn) find some way to determine which device to output the
// tensor.
// if (platform::is_cpu_place(fluid_t->place())) {
// TODO(Superjomn) change this float to dtype size.
auto size = inference::analysis::AccuDims(dims.d, dims.nbDims) *
FLAGS_tensorrt_engine_batch_size;
auto size =
inference::analysis::AccuDims(dims.d, dims.nbDims) * runtime_batch;
engine->GetOutputInGPU(
output_maps[output_index],
fluid_t->mutable_data<float>(platform::CUDAPlace(
boost::get<platform::CUDAPlace>(context.GetPlace()).device)),
boost::get<platform::CUDAPlace>(dev_place).device)),
size * sizeof(float));
output_index += 1;
}
cudaStreamSynchronize(*engine->stream());
}
protected:
void Prepare(const framework::ExecutionContext& context) const {
void Prepare(const framework::Scope &scope, const platform::Place &dev_place,
TensorRTEngine *engine) const {
VLOG(4) << "Prepare engine";
// Get the ProgramDesc and pass to convert.
framework::proto::BlockDesc block_desc;
block_desc.ParseFromString(context.Attr<std::string>("subgraph"));
int max_batch_size = context.Attr<int>("max_batch_size");
int workspace_size = context.Attr<int>("workspace_size");
auto params = context.Attr<std::vector<std::string>>("parameters");
std::unordered_set<std::string> parameters;
for (const auto& param : params) {
parameters.insert(param);
}
block_desc.ParseFromString(Attr<std::string>("subgraph"));
std::vector<std::string> output_maps =
context.Attr<std::vector<std::string>>("output_name_mapping");
// TODO(Superjomn) replace this with a different stream
auto* engine = Singleton<TRT_EngineManager>::Global().Create(
max_batch_size, workspace_size, nullptr /*engine hold its own stream*/,
context.Attr<std::string>("engine_uniq_key"),
boost::get<platform::CUDAPlace>(context.GetPlace()).device);
Attr<std::vector<std::string>>("output_name_mapping");
engine->InitNetwork();
......@@ -195,39 +183,33 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
VLOG(4) << "parsed var size " << block.AllVars().size();
// Add inputs
VLOG(4) << "declare inputs";
for (auto& input : context.Inputs("Xs")) {
if (parameters.count(input)) continue;
for (auto &input : Inputs("Xs")) {
if (param_names_.count(input)) continue;
VLOG(4) << "declare input " << input;
auto* var = block.FindVar(input);
auto &t =
inference::analysis::GetFromScope<framework::LoDTensor>(scope, input);
auto t_shape = framework::vectorize(t.dims());
auto *var = block.FindVar(input);
// TensorRT engine need to create parameters. The parameter's description
// should be set in
PADDLE_ENFORCE(var, "no variable called %s", input);
PADDLE_ENFORCE_EQ(var->GetType(), FluidDT::VarType_Type_LOD_TENSOR,
"TensorRT engine only takes LoDTensor as input");
auto shape = var->GetShape();
// For the special batch_size placeholder -1, drop it and pass the real
// shape of data.
// TODO(Superjomn) fix this with batch broadcast, or it can't handle
// variational batch size.
if (shape[0] == -1) {
shape[0] = FLAGS_tensorrt_engine_batch_size;
}
engine->DeclareInput(
input, FluidDataType2TRT(
var->Proto()->type().lod_tensor().tensor().data_type()),
Vec2TRT_Dims(shape));
Vec2TRT_Dims(t_shape));
}
inference::Singleton<inference::tensorrt::OpConverter>::Global()
.ConvertBlock(block_desc, parameters, context.scope(), engine);
.ConvertBlock(block_desc, param_names_, scope, engine);
// Add outputs
for (auto& output : output_maps) {
if (!engine->HasDeclared(output)) {
engine->DeclareOutput(output);
}
for (auto &output : output_maps) {
engine->DeclareOutput(output);
}
engine->FreezeNetwork();
}
};
......
......@@ -24,8 +24,6 @@ limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
USE_CUDA_ONLY_OP(tensorrt_engine);
namespace paddle {
namespace operators {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册