未验证 提交 94107971 编写于 作者: B Bai Yifan 提交者: GitHub

[cherry-pick] 1.6 for english doc (#20388)

* cherry pick for 131b1dc3, test=develop, test=document_fix

* cherry pick for fb21a743, test=develop, test=document_fix
上级 71fb3bfd
...@@ -236,7 +236,7 @@ paddle.fluid.layers.prelu (ArgSpec(args=['x', 'mode', 'param_attr', 'name'], var ...@@ -236,7 +236,7 @@ paddle.fluid.layers.prelu (ArgSpec(args=['x', 'mode', 'param_attr', 'name'], var
paddle.fluid.layers.brelu (ArgSpec(args=['x', 't_min', 't_max', 'name'], varargs=None, keywords=None, defaults=(0.0, 24.0, None)), ('document', '49580538249a52c857fce75c94ad8af7')) paddle.fluid.layers.brelu (ArgSpec(args=['x', 't_min', 't_max', 'name'], varargs=None, keywords=None, defaults=(0.0, 24.0, None)), ('document', '49580538249a52c857fce75c94ad8af7'))
paddle.fluid.layers.leaky_relu (ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(0.02, None)), ('document', '1eb3009c69060299ec87949ee0d4b9ae')) paddle.fluid.layers.leaky_relu (ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(0.02, None)), ('document', '1eb3009c69060299ec87949ee0d4b9ae'))
paddle.fluid.layers.soft_relu (ArgSpec(args=['x', 'threshold', 'name'], varargs=None, keywords=None, defaults=(40.0, None)), ('document', '6455afd2498b00198f53f83d63d6c6a4')) paddle.fluid.layers.soft_relu (ArgSpec(args=['x', 'threshold', 'name'], varargs=None, keywords=None, defaults=(40.0, None)), ('document', '6455afd2498b00198f53f83d63d6c6a4'))
paddle.fluid.layers.flatten (ArgSpec(args=['x', 'axis', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', 'b52306659a21e6b118eed49fe2c155a1')) paddle.fluid.layers.flatten (ArgSpec(args=['x', 'axis', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', '424ff350578992f201f2c5c30959ef89'))
paddle.fluid.layers.sequence_mask (ArgSpec(args=['x', 'maxlen', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 'int64', None)), ('document', '6c3f916921b24edaad220f1fcbf039de')) paddle.fluid.layers.sequence_mask (ArgSpec(args=['x', 'maxlen', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 'int64', None)), ('document', '6c3f916921b24edaad220f1fcbf039de'))
paddle.fluid.layers.stack (ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,)), ('document', 'a76f347bf27ffe21b990340d5d9524d5')) paddle.fluid.layers.stack (ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,)), ('document', 'a76f347bf27ffe21b990340d5d9524d5'))
paddle.fluid.layers.pad2d (ArgSpec(args=['input', 'paddings', 'mode', 'pad_value', 'data_format', 'name'], varargs=None, keywords=None, defaults=([0, 0, 0, 0], 'constant', 0.0, 'NCHW', None)), ('document', '3f3abdb795a5c2aad8c2312249551ce5')) paddle.fluid.layers.pad2d (ArgSpec(args=['input', 'paddings', 'mode', 'pad_value', 'data_format', 'name'], varargs=None, keywords=None, defaults=([0, 0, 0, 0], 'constant', 0.0, 'NCHW', None)), ('document', '3f3abdb795a5c2aad8c2312249551ce5'))
...@@ -299,11 +299,11 @@ paddle.fluid.layers.huber_loss (ArgSpec(args=['input', 'label', 'delta'], vararg ...@@ -299,11 +299,11 @@ paddle.fluid.layers.huber_loss (ArgSpec(args=['input', 'label', 'delta'], vararg
paddle.fluid.layers.kldiv_loss (ArgSpec(args=['x', 'target', 'reduction', 'name'], varargs=None, keywords=None, defaults=('mean', None)), ('document', '18bc95c62d3300456c3c7da5278b47bb')) paddle.fluid.layers.kldiv_loss (ArgSpec(args=['x', 'target', 'reduction', 'name'], varargs=None, keywords=None, defaults=('mean', None)), ('document', '18bc95c62d3300456c3c7da5278b47bb'))
paddle.fluid.layers.npair_loss (ArgSpec(args=['anchor', 'positive', 'labels', 'l2_reg'], varargs=None, keywords=None, defaults=(0.002,)), ('document', '3828c4bd81c25af0ab955f52d453c587')) paddle.fluid.layers.npair_loss (ArgSpec(args=['anchor', 'positive', 'labels', 'l2_reg'], varargs=None, keywords=None, defaults=(0.002,)), ('document', '3828c4bd81c25af0ab955f52d453c587'))
paddle.fluid.layers.pixel_shuffle (ArgSpec(args=['x', 'upscale_factor'], varargs=None, keywords=None, defaults=None), ('document', '7e5cac851fd9bad344230e1044b6a565')) paddle.fluid.layers.pixel_shuffle (ArgSpec(args=['x', 'upscale_factor'], varargs=None, keywords=None, defaults=None), ('document', '7e5cac851fd9bad344230e1044b6a565'))
paddle.fluid.layers.fsp_matrix (ArgSpec(args=['x', 'y'], varargs=None, keywords=None, defaults=None), ('document', '20992b20d19c2e5983f366150827b4a6')) paddle.fluid.layers.fsp_matrix (ArgSpec(args=['x', 'y'], varargs=None, keywords=None, defaults=None), ('document', '3a4eb7cce366f5fd8bc38b42b6af5ba1'))
paddle.fluid.layers.continuous_value_model (ArgSpec(args=['input', 'cvm', 'use_cvm'], varargs=None, keywords=None, defaults=(True,)), ('document', 'c03490ffaa1b78258747157c313db4cd')) paddle.fluid.layers.continuous_value_model (ArgSpec(args=['input', 'cvm', 'use_cvm'], varargs=None, keywords=None, defaults=(True,)), ('document', 'c03490ffaa1b78258747157c313db4cd'))
paddle.fluid.layers.where (ArgSpec(args=['condition'], varargs=None, keywords=None, defaults=None), ('document', 'b1e1487760295e1ff55307b880a99e18')) paddle.fluid.layers.where (ArgSpec(args=['condition'], varargs=None, keywords=None, defaults=None), ('document', 'b1e1487760295e1ff55307b880a99e18'))
paddle.fluid.layers.sign (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', 'fa2f457a81714430c5677c2d68744728')) paddle.fluid.layers.sign (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', 'fa2f457a81714430c5677c2d68744728'))
paddle.fluid.layers.deformable_conv (ArgSpec(args=['input', 'offset', 'mask', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'deformable_groups', 'im2col_step', 'param_attr', 'bias_attr', 'modulated', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, None, None, True, None)), ('document', '335193ac57d41d7199f8d26d30c069b1')) paddle.fluid.layers.deformable_conv (ArgSpec(args=['input', 'offset', 'mask', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'deformable_groups', 'im2col_step', 'param_attr', 'bias_attr', 'modulated', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, None, None, True, None)), ('document', '3e090f9e90b9c24d07348243bf137b56'))
paddle.fluid.layers.unfold (ArgSpec(args=['x', 'kernel_sizes', 'strides', 'paddings', 'dilations', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None)), ('document', '3f884662ad443d9ecc2b3734b4f61ad6')) paddle.fluid.layers.unfold (ArgSpec(args=['x', 'kernel_sizes', 'strides', 'paddings', 'dilations', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None)), ('document', '3f884662ad443d9ecc2b3734b4f61ad6'))
paddle.fluid.layers.deformable_roi_pooling (ArgSpec(args=['input', 'rois', 'trans', 'no_trans', 'spatial_scale', 'group_size', 'pooled_height', 'pooled_width', 'part_size', 'sample_per_part', 'trans_std', 'position_sensitive', 'name'], varargs=None, keywords=None, defaults=(False, 1.0, [1, 1], 1, 1, None, 1, 0.1, False, None)), ('document', 'e0e7bf35da2287efb015546f1b8350df')) paddle.fluid.layers.deformable_roi_pooling (ArgSpec(args=['input', 'rois', 'trans', 'no_trans', 'spatial_scale', 'group_size', 'pooled_height', 'pooled_width', 'part_size', 'sample_per_part', 'trans_std', 'position_sensitive', 'name'], varargs=None, keywords=None, defaults=(False, 1.0, [1, 1], 1, 1, None, 1, 0.1, False, None)), ('document', 'e0e7bf35da2287efb015546f1b8350df'))
paddle.fluid.layers.filter_by_instag (ArgSpec(args=['ins', 'ins_tag', 'filter_tag', 'is_lod'], varargs=None, keywords=None, defaults=None), ('document', '7703a2088af8de4128b143ff1164ca4a')) paddle.fluid.layers.filter_by_instag (ArgSpec(args=['ins', 'ins_tag', 'filter_tag', 'is_lod'], varargs=None, keywords=None, defaults=None), ('document', '7703a2088af8de4128b143ff1164ca4a'))
...@@ -426,7 +426,7 @@ paddle.fluid.layers.generate_proposals (ArgSpec(args=['scores', 'bbox_deltas', ' ...@@ -426,7 +426,7 @@ paddle.fluid.layers.generate_proposals (ArgSpec(args=['scores', 'bbox_deltas', '
paddle.fluid.layers.generate_mask_labels (ArgSpec(args=['im_info', 'gt_classes', 'is_crowd', 'gt_segms', 'rois', 'labels_int32', 'num_classes', 'resolution'], varargs=None, keywords=None, defaults=None), ('document', 'b319b10ddaf17fb4ddf03518685a17ef')) paddle.fluid.layers.generate_mask_labels (ArgSpec(args=['im_info', 'gt_classes', 'is_crowd', 'gt_segms', 'rois', 'labels_int32', 'num_classes', 'resolution'], varargs=None, keywords=None, defaults=None), ('document', 'b319b10ddaf17fb4ddf03518685a17ef'))
paddle.fluid.layers.iou_similarity (ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e24478fd1fcf1727d4947fe14356b3d4')) paddle.fluid.layers.iou_similarity (ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e24478fd1fcf1727d4947fe14356b3d4'))
paddle.fluid.layers.box_coder (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name', 'axis'], varargs=None, keywords=None, defaults=('encode_center_size', True, None, 0)), ('document', '511d7033c0cfce1a5b88c04ad6e7ed5b')) paddle.fluid.layers.box_coder (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name', 'axis'], varargs=None, keywords=None, defaults=('encode_center_size', True, None, 0)), ('document', '511d7033c0cfce1a5b88c04ad6e7ed5b'))
paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e308ce1661cb722b220a6f482f85b9e4')) paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2183f03c4f16712dcef6a474dbcefa24'))
paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gt_box', 'gt_label', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'gt_score', 'use_label_smooth', 'name'], varargs=None, keywords=None, defaults=(None, True, None)), ('document', 'df35e6510e8db0844320ec77dc8b7dc4')) paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gt_box', 'gt_label', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'gt_score', 'use_label_smooth', 'name'], varargs=None, keywords=None, defaults=(None, True, None)), ('document', 'df35e6510e8db0844320ec77dc8b7dc4'))
paddle.fluid.layers.yolo_box (ArgSpec(args=['x', 'img_size', 'anchors', 'class_num', 'conf_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '7f255b1f6a548f8fa78bbbc06285fc46')) paddle.fluid.layers.yolo_box (ArgSpec(args=['x', 'img_size', 'anchors', 'class_num', 'conf_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '7f255b1f6a548f8fa78bbbc06285fc46'))
paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ce2bfbd685f2a36eda400e00569908cb')) paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ce2bfbd685f2a36eda400e00569908cb'))
......
...@@ -792,17 +792,19 @@ def polygon_box_transform(input, name=None): ...@@ -792,17 +792,19 @@ def polygon_box_transform(input, name=None):
${comment} ${comment}
Args: Args:
input(${input_type}): ${input_comment} input(Variable): The input with shape [batch_size, geometry_channels, height, width].
A Tensor with type float32, float64.
name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
Generally, no setting is required. Default: None.
Returns: Returns:
output(${output_type}): ${output_comment} Variable: The output with the same shape as input. A Tensor with type float32, float64.
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
input = fluid.layers.data(name='input', shape=[4, 10, 5, 5], input = fluid.data(name='input', shape=[4, 10, 5, 5], dtype='float32')
append_batch_size=False, dtype='float32')
out = fluid.layers.polygon_box_transform(input) out = fluid.layers.polygon_box_transform(input)
""" """
helper = LayerHelper("polygon_box_transform", **locals()) helper = LayerHelper("polygon_box_transform", **locals())
......
...@@ -11359,8 +11359,9 @@ def soft_relu(x, threshold=40.0, name=None): ...@@ -11359,8 +11359,9 @@ def soft_relu(x, threshold=40.0, name=None):
def flatten(x, axis=1, name=None): def flatten(x, axis=1, name=None):
""" """
**Flatten layer** **Flatten op**
Flattens the input tensor into a 2D matrix.
Flatten the input tensor into a 2D matrix.
For Example: For Example:
...@@ -11389,21 +11390,20 @@ def flatten(x, axis=1, name=None): ...@@ -11389,21 +11390,20 @@ def flatten(x, axis=1, name=None):
Out.shape = (1, 3 * 100 * 100 * 4) Out.shape = (1, 3 * 100 * 100 * 4)
Args: Args:
x (Variable): A tensor of rank >= axis. x (Variable): A tensor of rank >= axis. A tensor with type float32,
float64, int8, int32, int64.
axis (int): Indicate up to which input dimensions (exclusive) should axis (int): Indicate up to which input dimensions (exclusive) should
be flattened to the outer dimension of the output. be flattened to the outer dimension of the output.
The value for axis must be in the range [0, R], where R The value for axis must be in the range [0, R], where R
is the rank of the input tensor. When axis = 0, the shape is the rank of the input tensor. Default: 1.
of the output tensor is (1, (d_0 X d_1 ... d_n), where the name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
shape of the input tensor is (d_0, d_1, ... d_n). Generally, no setting is required. Default: None.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns: Returns:
Variable: A 2D tensor with the contents of the input tensor, with input \ Variable: A 2D tensor with the contents of the input tensor, with input \
dimensions up to axis flattened to the outer dimension of \ dimensions up to axis flattened to the outer dimension of \
the output and remaining input dimensions flattened into the \ the output and remaining input dimensions flattened into the \
inner dimension of the output. inner dimension of the output. A Tensor with type same as input x.
Raises: Raises:
ValueError: If x is not a variable. ValueError: If x is not a variable.
...@@ -11414,8 +11414,10 @@ def flatten(x, axis=1, name=None): ...@@ -11414,8 +11414,10 @@ def flatten(x, axis=1, name=None):
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32") x = fluid.data(name="x", shape=[4, 4, 3], dtype="float32")
# x shape is [4, 4, 3]
out = fluid.layers.flatten(x=x, axis=2) out = fluid.layers.flatten(x=x, axis=2)
# out shape is [16, 3]
""" """
helper = LayerHelper('flatten', **locals()) helper = LayerHelper('flatten', **locals())
...@@ -14989,7 +14991,7 @@ def fsp_matrix(x, y): ...@@ -14989,7 +14991,7 @@ def fsp_matrix(x, y):
**FSP matrix op** **FSP matrix op**
This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps. This op is used to calculate the flow of solution procedure (FSP) matrix of two 4-D Tensor feature maps.
Given feature map x with shape [x_channel, h, w] and feature map y with shape Given feature map x with shape [x_channel, h, w] and feature map y with shape
[y_channel, h, w], we can get the fsp matrix of x and y in two steps: [y_channel, h, w], we can get the fsp matrix of x and y in two steps:
...@@ -15001,22 +15003,25 @@ def fsp_matrix(x, y): ...@@ -15001,22 +15003,25 @@ def fsp_matrix(x, y):
Args: Args:
x (Variable): A feature map with shape [batch_size, x_channel, height, width]. x (Variable): A 4-D Tensor feature map with shape [batch_size, x_channel, height, width].
y (Variable): A feature map with shape [batch_size, y_channel, height, width]. A Tensor with type float32, float64.
y (Variable): A 4-D Tensor feature map with shape [batch_size, y_channel, height, width].
The y_channel can be different with the x_channel of Input(X) The y_channel can be different with the x_channel of Input(X)
while the other dimensions must be the same with Input(X)'s. while the other dimensions must be the same with Input(X)'s. A Tensor with
type float32, float64.
Returns: Returns:
fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel]. fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
The x_channel is the channel of x and the y_channel is the channel of y. The x_channel is the channel of x and the y_channel is the channel of y. A Tensor with
type float32, float64.
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
data = fluid.layers.data(name='data', shape=[3, 32, 32]) data = fluid.data(name='data', shape=[None, 3, 32, 32])
feature_map_0 = fluid.layers.conv2d(data, num_filters=2, feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
filter_size=3) filter_size=3)
feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2, feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
...@@ -15271,7 +15276,7 @@ def deformable_conv(input, ...@@ -15271,7 +15276,7 @@ def deformable_conv(input,
modulated=True, modulated=True,
name=None): name=None):
""" """
**Deformable Convolution Layer** **Deformable Convolution op**
Compute 2-D deformable convolution on 4-D input. Compute 2-D deformable convolution on 4-D input.
Given input image x, output feature map y, the deformable convolution operation can be expressed as follow: Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
...@@ -15290,7 +15295,7 @@ def deformable_conv(input, ...@@ -15290,7 +15295,7 @@ def deformable_conv(input,
y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)} y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}
Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location,
which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
<https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_. <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.
Example: Example:
...@@ -15316,12 +15321,16 @@ def deformable_conv(input, ...@@ -15316,12 +15321,16 @@ def deformable_conv(input,
W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
Args: Args:
input (Variable): The input image with [N, C, H, W] format. input (Variable): The input image with [N, C, H, W] format. A Tensor with type
float32, float64.
offset (Variable): The input coordinate offset of deformable convolution layer. offset (Variable): The input coordinate offset of deformable convolution layer.
Mask (Variable): The input mask of deformable covolution layer. A Tensor with type float32, float64.
Mask (Variable, Optional): The input mask of deformable covolution layer.
A Tensor with type float32, float64.It should be None when you use
deformable_conv_v2.
num_filters(int): The number of filter. It is as same as the output num_filters(int): The number of filter. It is as same as the output
image channel. image channel.
filter_size (int|tuple|None): The filter size. If filter_size is a tuple, filter_size (int|tuple): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W). it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square. Otherwise, the filter will be a square.
stride (int|tuple): The stride size. If stride is a tuple, it must stride (int|tuple): The stride size. If stride is a tuple, it must
...@@ -15345,24 +15354,24 @@ def deformable_conv(input, ...@@ -15345,24 +15354,24 @@ def deformable_conv(input,
than this value; if you face out of memory problem, you can try than this value; if you face out of memory problem, you can try
to use a smaller value here. to use a smaller value here.
Default: im2col_step = 64. Default: im2col_step = 64.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights param_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights
of deformable conv. If it is set to None or one attribute of ParamAttr, of deformable conv. If it is set to None or one attribute of ParamAttr,
deformable conv will create ParamAttr as param_attr. deformable conv will create ParamAttr as param_attr.
If the Initializer of the param_attr is not set, the parameter is If the Initializer of the param_attr is not set, the parameter is
initialized with :math:`Normal(0.0, std)`, and the initialized with :math:`Normal(0.0, std)`, and the
:math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None. :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of
deformable conv layer. If it is set to False, no bias will be added deformable conv layer. If it is set to False, no bias will be added
to the output units. If it is set to None or one attribute of ParamAttr, conv2d to the output units. If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None. is not set, the bias is initialized zero. Default: None.
modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \ modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
used while True. Default: True. used while True. Default: True.
name (str|None): A name for this layer(optional). If set None, the layer name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
will be named automatically. Default: None Generally, no setting is required. Default: None.
Returns: Returns:
Variable: The tensor variable storing the deformable convolution \ Variable: The tensor variable storing the deformable convolution \
result. result. A Tensor with type float32, float64.
Raises: Raises:
ValueError: If the shapes of input, filter_size, stride, padding and ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch. groups mismatch.
...@@ -15372,19 +15381,23 @@ def deformable_conv(input, ...@@ -15372,19 +15381,23 @@ def deformable_conv(input,
#deformable conv v2: #deformable conv v2:
import paddle.fluid as fluid import paddle.fluid as fluid
data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32') C_in, H_in, W_in = 3, 32, 32
offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32') filter_size, deformable_groups = 3, 1
mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32') data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
mask = fluid.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask, out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
num_filters=2, filter_size=3, padding=1, modulated=True) num_filters=2, filter_size=filter_size, padding=1, modulated=True)
#deformable conv v1: #deformable conv v1:
import paddle.fluid as fluid import paddle.fluid as fluid
data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32') C_in, H_in, W_in = 3, 32, 32
offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32') filter_size, deformable_groups = 3, 1
data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None, out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None,
num_filters=2, filter_size=3, padding=1, modulated=False) num_filters=2, filter_size=filter_size, padding=1, modulated=False)
""" """
num_channels = input.shape[1] num_channels = input.shape[1]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册