提交 93584eab 编写于 作者: T Travis CI

Deploy to GitHub Pages: c1075126

上级 d95d66cb
...@@ -23,17 +23,20 @@ ...@@ -23,17 +23,20 @@
- `framework::OperatorWithKernel`:继承自OperatorBase,Op有计算函数,称作有Kernel。 - `framework::OperatorWithKernel`:继承自OperatorBase,Op有计算函数,称作有Kernel。
- `class OpProtoAndCheckerMaker`:描述该Op的输入、输出、属性、注释,主要用于Python API接口生成 - `class OpProtoAndCheckerMaker`:描述该Op的输入、输出、属性、注释,主要用于Python API接口生成
依据是否包含kernel,将Op分为两种:包含Kernel的Op和不包含kernel的Op,前者Op的定义继承自`OperatorBase`,后者继承自`OperatorWithKernel`。本教程主要介绍带Kernel的Op如何写,简单总结Op需要包含的内容如下: 依据是否包含kernel,可以将Op分为两种:包含Kernel的Op和不包含kernel的Op,前者Op的定义继承自`OperatorBase`,后者继承自`OperatorWithKernel`。本教程主要介绍带Kernel的Op如何写,简单总结Op需要包含的内容如下:
内容 | 定义位置 内容 | 定义位置
-------------- | :---------------------- -------------- | :----------------------
OpProtoMake定义 | `.cc`文件,Backward Op不需要定义OpProtoMake OpProtoMake定义 | `.cc`文件,Backward Op不需要定义OpProtoMake
Op定义 | `.cc`文件 Op定义 | `.cc`文件
Kernel实现 | CPU、GPU共享Kernel在`.h`文件,否则,CPU可以在`.cc`文件,GPU可在`.cu`文件。 Kernel实现 | CPU、GPU共享Kernel实现在`.h`文件中,否则,CPU 实现在`.cc`文件中,GPU 实现在`.cu`文件中。
注册Op | Op注册在`.cc`文件;Kernel注册CPU在`.cc`文件,GPU在`.cu`文件 注册Op | Op注册实现在`.cc`文件;Kernel注册CPU实现在`.cc`文件中,GPU实现在`.cu`文件中
实现新的op都添加至目录[paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)下,文件命名以`*_op.h`(如有) 、 `*_op.cc` 、`*_op.cu`(如有)结尾。
下面以矩阵乘操作,即[MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc)为例来介绍如何写带Kernel的Operator。 下面以矩阵乘操作,即[MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc)为例来介绍如何写带Kernel的Operator。
...@@ -43,8 +46,8 @@ Kernel实现 | CPU、GPU共享Kernel在`.h`文件,否则,CPU可以在` ...@@ -43,8 +46,8 @@ Kernel实现 | CPU、GPU共享Kernel在`.h`文件,否则,CPU可以在`
### 1. 定义ProtoMaker类 ### 1. 定义ProtoMaker类
矩阵乘的公式:$Out = X * Y$, 可见该计算由两个输入,一个输出组成。首先定义`ProtoMaker`来描述该Op的输入、输出及注释: 矩阵乘的公式:$Out = X * Y$, 可见该计算由两个输入,一个输出组成。首先定义`ProtoMaker`来描述该Op的输入、输出及注释:
``` ```cpp
class MulOpMaker : public framework::OpProtoAndCheckerMaker { class MulOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
MulOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) MulOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
...@@ -59,20 +62,20 @@ The equation is: Out = X * Y ...@@ -59,20 +62,20 @@ The equation is: Out = X * Y
} }
}; };
``` ```
[`MulOpMaker`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L43)继承自`framework::OpProtoAndCheckerMaker`,构造函数包括2个: [`MulOpMaker`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L43)继承自`framework::OpProtoAndCheckerMaker`,构造函数包括2个参数
- `framework::OpProto` : 前者存储Op的输入输出和参数属性,将用于Python API接口的生成。 - `framework::OpProto` : 前者存储Op的输入输出和参数属性,将用于Python API接口的生成。
- `framework::OpAttrChecker` :后者用于检查参数属性的合法性。 - `framework::OpAttrChecker` :后者用于检查参数属性的合法性。
构造函数里通过`AddInput`添加输入参数,通过`AddOutput`添加输出参数,通过`AddComment`添加该Op的注释,这些函数会将对应内容添加到`OpProto`中。 构造函数里通过`AddInput`添加输入参数,通过`AddOutput`添加输出参数,通过`AddComment`添加该Op的注释,这些函数会将对应内容添加到`OpProto`中。
在`MulOp`中添加两个输入`X`和`Y`,添加了一个输出`Out`,并解释了各自含义,该命名尽可能的规范。 在`MulOp`中添加两个输入`X`和`Y`,添加了一个输出`Out`,并解释了各自含义,命名请遵守命名规范。
再举个[`ScaleOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37)的例子: 再举个[`ScaleOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37)的例子:
``` ```cpp
template <typename AttrType> template <typename AttrType>
class ScaleOpMaker : public framework::OpProtoAndCheckerMaker { class ScaleOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
...@@ -87,17 +90,17 @@ The equation is: Out = scale*X ...@@ -87,17 +90,17 @@ The equation is: Out = scale*X
} }
}; };
``` ```
在这个例子里,两处不同: 这个例子有两处不同:
- `AddInput("X","...").NotInGradient()` : 表示`X`这个输入不参与`ScaleOp`对应的梯度Op计算之中。 - `AddInput("X","...").NotInGradient()` : 表示`X`这个输入不参与`ScaleOp`对应的梯度Op计算之中。
- `AddAttr<AttrType>("scale", "...").SetDefault(1.0);` : 增加`scale`系数,作为参数属性,并且设置默认值为1.0。 - `AddAttr<AttrType>("scale", "...").SetDefault(1.0);` : 增加`scale`系数,作为参数属性,并且设置默认值为1.0。
### 2. 定义Operator类 ### 2. 定义Operator类
```c++ ```cpp
class MulOp : public framework::OperatorWithKernel { class MulOp : public framework::OperatorWithKernel {
public: public:
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
...@@ -121,20 +124,20 @@ class MulOp : public framework::OperatorWithKernel { ...@@ -121,20 +124,20 @@ class MulOp : public framework::OperatorWithKernel {
``` ```
[`MulOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L22)继承自`OperatorWithKernel`。`public`成员: [`MulOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L22)继承自`OperatorWithKernel`。`public`成员:
```c++ ```cpp
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
``` ```
这句表示使用基类`OperatorWithKernel`的构造函数,也可写成: 这句表示使用基类`OperatorWithKernel`的构造函数,也可写成:
```c++ ```cpp
MulOp(const std::string &type, const framework::VariableNameMap &inputs, MulOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs, const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {} : OperatorWithKernel(type, inputs, outputs, attrs) {}
``` ```
还需要重写`InferShape`接口。`InferShape`为const函数,不能修改Op的成员变量,参数为`const framework::InferShapeContext &ctx`,通过该参数可获取到输入输出以及属性。它的功能是: 还需要重写`InferShape`接口。`InferShape`为const函数,不能修改Op的成员变量,参数为`const framework::InferShapeContext &ctx`,通过该参数可获取到输入输出以及属性。它的功能是:
- 1). 做检查, 尽早报错:检查输入数据维度、类型等是否合法。 - 1). 做检查, 尽早报错:检查输入数据维度、类型等是否合法。
...@@ -144,7 +147,7 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs, ...@@ -144,7 +147,7 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs,
### 3. 定义OpKernel类 ### 3. 定义OpKernel类
```C++ ```cpp
template <typename Place, typename T> template <typename Place, typename T>
class MulKernel : public framework::OpKernel { class MulKernel : public framework::OpKernel {
public: public:
...@@ -163,36 +166,36 @@ class MulKernel : public framework::OpKernel { ...@@ -163,36 +166,36 @@ class MulKernel : public framework::OpKernel {
`MulKernel`继承自`framework::OpKernel`,带有模板参数: `MulKernel`继承自`framework::OpKernel`,带有模板参数:
- `typename Place`: 表示设备类型,不同设备(CPU、GPU)共享同一个Kernel时,需加该模板参数,不共享则不加,一个不共享的例子是[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。 - `typename Place`: 表示设备类型,不同设备(CPU、GPU)共享同一个Kernel时,需加该模板参数,不共享则不加,一个不共享的例子是[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。
- `typename T` : 表示数据类型,如`float`, `double`等。 - `typename T` : 表示数据类型,如`float`, `double`等。
`MulKernel`需要重写`Compute`接口,该接口参数为`const framework::ExecutionContext& context`, `ExecutionContext`相比`InferShapeContext`增加了设备类型,同样可获取到输入输出和属性参数,`Compute`函数里写具体实现时。 `MulKernel`需要重写`Compute`接口,该接口参数为`const framework::ExecutionContext& context`, `ExecutionContext`相比`InferShapeContext`增加了设备类型,同样可获取到输入输出和属性参数,`Compute`函数里写具体实现时。
注意,不同设备(CPU、GPU)共享一个Op定义,是否则共享同一个`OpKernel`,取决于`Compute`调用的函数是否支持不同设备。`MulOp`的CPU、GPU实现共享同一个`Kernel`,`OpKernel`不共享的例子可以参考[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。 注意,不同设备(CPU、GPU)共享一个Op定义,是否则共享同一个`OpKernel`,取决于`Compute`调用的函数是否支持不同设备。`MulOp`的CPU、GPU实现共享同一个`Kernel`,`OpKernel`不共享的例子可以参考[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。
为了使得`OpKernel`的计算过程书写较为简单,CPU、GPU的代码可以复用,我们通常借助Eigen unsupported Tensor模块来实现。关于在paddle中如何使用Eigen库,请参考对应的使用[文档](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/use_eigen_cn.md) 为了使得`OpKernel`的计算过程书写较为简单,CPU、GPU的代码可以复用,我们通常借助Eigen unsupported Tensor模块来实现。关于在paddle中如何使用Eigen库,请参考对应的使用[文档](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/use_eigen_cn.md)
到此前向Op实现完成,需要在`.cc`文件中注册该op和kernel。反向Op类的定义和Kernel定义与前向Op类似,这里不再重复。但注意,反向Op没有`ProtoMaker`。 到此前向Op实现完成,需要在`.cc`文件中注册该op和kernel。反向Op类的定义和Kernel定义与前向Op类似,这里不再重复。但注意,反向Op没有`ProtoMaker`。
### 4. 注册Operator ### 4. 注册Operator
在`.cc`文件中注册前向、反向Op类,注册CPU Kernel。 在`.cc`文件中注册前向、反向Op类,注册CPU Kernel。
```c++ ```cpp
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad); REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad);
REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel<paddle::platform::CPUPlace, float>); REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(mul_grad, REGISTER_OP_CPU_KERNEL(mul_grad,
ops::MulGradKernel<paddle::platform::CPUPlace, float>); ops::MulGradKernel<paddle::platform::CPUPlace, float>);
``` ```
- `REGISTER_OP` : 注册`ops::MulOp`类,类型名为`mul`,该类的`ProtoMaker`为`ops::MulOpMaker`,注册`ops::MulOpGrad`,类型名为`mul_grad`, - `REGISTER_OP` : 注册`ops::MulOp`类,类型名为`mul`,该类的`ProtoMaker`为`ops::MulOpMaker`,注册`ops::MulOpGrad`,类型名为`mul_grad`,
- `REGISTER_OP_WITHOUT_GRADIENT` : 用于注册没有反向的Op。 - `REGISTER_OP_WITHOUT_GRADIENT` : 用于注册没有反向的Op。
- `REGISTER_OP_CPU_KERNEL` :注册`ops::MulKernel`类,并特化模板参数为`paddle::platform::CPUPlace`和`float`类型,同理,注册`ops::MulKernel`类。 - `REGISTER_OP_CPU_KERNEL` :注册`ops::MulKernel`类,并特化模板参数为`paddle::platform::CPUPlace`和`float`类型,同理,注册`ops::MulKernel`类。
在 `.cu`文件中注册GPU Kernel。请注意,如果GPU Kernel的实现是基于Eigen unsupported模块,那么在 `.cu`的最前面请加上宏定义 `#define EIGEN_USE_GPU` 在 `.cu`文件中注册GPU Kernel。请注意,如果GPU Kernel的实现是基于Eigen unsupported模块,那么在 `.cu`的最前面请加上宏定义 `#define EIGEN_USE_GPU`
```c++ ```cpp
// if use Eigen unsupported module before include head files // if use Eigen unsupported module before include head files
#define EIGEN_USE_GPU #define EIGEN_USE_GPU
...@@ -204,66 +207,57 @@ REGISTER_OP_GPU_KERNEL(mul_grad, ...@@ -204,66 +207,57 @@ REGISTER_OP_GPU_KERNEL(mul_grad,
### 5. 编译 ### 5. 编译
在[paddle/operators/CMakeLists.txt](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt)文件中添加编译。 - 简单**无特殊依赖**的OP无需修改CMakeList.txt文件。[paddle/operators/CMakeLists.txt](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt) 会自动将 `paddle/operators` 目录下新增的 `*_op.cc` 文件加入编译。
- 较为复杂、**有额外依赖** 的operator仍需要修改[paddle/operators/CMakeLists.txt](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt)。如,`mul_op` 依赖 `math_function`,需要在`CMakeLists.txt`中添加如下内容:
```
op_library(mul_op SRCS mul_op.cc mul_op.cu DEPS math_function) ```
``` op_library(mul_op SRCS mul_op.cc mul_op.cu DEPS math_function) +
```
下面命令可以编译:
- 运行下面命令可以进行编译:
```
make mul_op ```
``` make mul_op
```
## 绑定Python ## 绑定Python
- 绑定Python - 绑定Python
在 [`paddle/pybind/pybind.cc 在 [`paddle/pybind/pybind.cc
`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/pybind.cc)文件中添加该类: `](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/pybind.cc)文件中添加该类:
``` ```
USE_OP(mul); USE_OP(mul);
``` ```
如果只实现了CPU版本,则使用`USE_CPU_ONLY_OP`: 如果只实现了CPU版本,则使用`USE_CPU_ONLY_OP`:
``` ```
USE_CPU_ONLY_OP(gather); USE_CPU_ONLY_OP(gather);
``` ```
如果OP不带Kernel,则使用`USE_NO_KENREL_OP`: 如果OP不带Kernel,则使用`USE_NO_KENREL_OP`:
``` ```
USE_NO_KENREL_OP(recurrent); USE_NO_KENREL_OP(recurrent);
``` ```
使用`USE_OP`告知编译器需要链接该Op的目标文件,具体解释参考[代码注释](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/op_registry.h#L81)。 使用`USE_OP`告知编译器需要链接该Op的目标文件,具体解释参考[代码注释](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/op_registry.h#L81)。
- 生成库 - 生成库
在 [`paddle/pybind/CMakeLists.txt`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/CMakeLists.txt)文件添加类到`DEPS`中,使得该Op可以链接到生成的lib库中。 无需修改 [`paddle/pybind/CMakeLists.txt`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/CMakeLists.txt)文件,`paddle/operators` 目录下新增的 `*_op.cc` 文件会自动被添加链接到生成的lib库中。
```
if(WITH_PYTHON)
cc_library(paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python backward
mul_op
minus_op)
endif(WITH_PYTHON)
```
## 实现单元测试 ## 实现单元测试
单测包括对比前向Op不同设备(CPU、GPU)的实现、对比反向OP不同设备(CPU、GPU)的实现、反向Op的梯度测试。下面介绍介绍[`MulOp`的单测](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py)。 单测包括对比前向Op不同设备(CPU、GPU)的实现、对比反向OP不同设备(CPU、GPU)的实现、反向Op的梯度测试。下面介绍介绍[`MulOp`的单测](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py)。
### 前向Operator单 ### 前向Operator单元测试
前向Op单测继承自`unittest.TestCase`,并定义元类`__metaclass__ = OpTestMeta`,具体单测流程在`OpTestMeta`里完成。需在`setUp`函数定义输入输出和属性参数,以及Python对比的输出值。 前向Op单测继承自`unittest.TestCase`,并定义元类`__metaclass__ = OpTestMeta`,具体单测流程在`OpTestMeta`里完成。需在`setUp`函数定义输入输出和属性参数,以及Python对比的输出值。
``` ```python
import unittest import unittest
import numpy as np import numpy as np
from gradient_checker import GradientChecker, create_op from gradient_checker import GradientChecker, create_op
...@@ -281,17 +275,17 @@ class TestMulOp(unittest.TestCase): ...@@ -281,17 +275,17 @@ class TestMulOp(unittest.TestCase):
self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])} self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])}
``` ```
首先需要`import`必要的包,下面详细解释其他值: 首先需要`import`必要的包,下面详细解释其他值:
- `self.type = "mul" ` : 定义类型,和注册的类型一致。 - `self.type = "mul" ` : 定义类型,和注册的类型一致。
- `self.inputs` : 定义输入,类型为Numpy.array,并初始化。 - `self.inputs` : 定义输入,类型为Numpy.array,并初始化。
- `self.outputs` : 定义输出,并得到Python结算结果。 - `self.outputs` : 定义输出,并得到Python结算结果。
### 反向Operator单 ### 反向Operator单元测试
反向Op单测继承自`GradientChecker`,而`GradientChecker`集成自`unittest.TestCase`,所以反向单测函数需要`test_`开头。 反向Op单测继承自`GradientChecker`,而`GradientChecker`集成自`unittest.TestCase`,所以反向单测函数需要`test_`开头。
``` ```cpp
class TestMulGradOp(GradientChecker): class TestMulGradOp(GradientChecker):
def setUp(self): def setUp(self):
self.op = create_op("mul") self.op = create_op("mul")
...@@ -337,21 +331,22 @@ class TestMulGradOp(GradientChecker): ...@@ -337,21 +331,22 @@ class TestMulGradOp(GradientChecker):
- `test_ignore_x`和`test_ignore_y`分支测试只需要计算一个输入梯度的情况。 - `test_ignore_x`和`test_ignore_y`分支测试只需要计算一个输入梯度的情况。
### 编译和执行 ### 编译和执行单元测试
单测完成之后,在[`python/paddle/v2/framework/tests/CMakeLists.txt`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/CMakeLists.txt)里添加编译 单测完成之后,在[`python/paddle/v2/framework/tests/CMakeLists.txt`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/CMakeLists.txt)里添加以下内容将单测加入工程中
``` ```
py_test(test_mul_op SRCS test_mul_op.py) py_test(test_mul_op SRCS test_mul_op.py)
``` ```
编译时需要打开`WITH_TESTING`, 即 `cmake paddle_dir -DWITH_TESTING=ON`,编译成功之后执行单测命令为 请注意,**不同于Op的编译测试,运行单元测试测时需要编译整个工程**,并且编译时需要打开`WITH_TESTING`, 即`cmake paddle_dir -DWITH_TESTING=ON`。编译成功后,执行下面的命令来运行单测
``` ```bash
make test ARGS="-R test_mul_op -V" make test ARGS="-R test_mul_op -V"
``` ```
或者: 或者:
``` ```bash
ctest -R test_mul_op ctest -R test_mul_op
``` ```
...@@ -213,11 +213,14 @@ ...@@ -213,11 +213,14 @@
<li><code class="docutils literal"><span class="pre">framework::OperatorWithKernel</span></code>:继承自OperatorBase,Op有计算函数,称作有Kernel。</li> <li><code class="docutils literal"><span class="pre">framework::OperatorWithKernel</span></code>:继承自OperatorBase,Op有计算函数,称作有Kernel。</li>
<li><code class="docutils literal"><span class="pre">class</span> <span class="pre">OpProtoAndCheckerMaker</span></code>:描述该Op的输入、输出、属性、注释,主要用于Python API接口生成</li> <li><code class="docutils literal"><span class="pre">class</span> <span class="pre">OpProtoAndCheckerMaker</span></code>:描述该Op的输入、输出、属性、注释,主要用于Python API接口生成</li>
</ul> </ul>
<p>依据是否包含kernel,将Op分为两种:包含Kernel的Op和不包含kernel的Op,前者Op的定义继承自<code class="docutils literal"><span class="pre">OperatorBase</span></code>,后者继承自<code class="docutils literal"><span class="pre">OperatorWithKernel</span></code>。本教程主要介绍带Kernel的Op如何写,简单总结Op需要包含的内容如下:</p> <p>依据是否包含kernel,可以将Op分为两种:包含Kernel的Op和不包含kernel的Op,前者Op的定义继承自<code class="docutils literal"><span class="pre">OperatorBase</span></code>,后者继承自<code class="docutils literal"><span class="pre">OperatorWithKernel</span></code>。本教程主要介绍带Kernel的Op如何写,简单总结Op需要包含的内容如下:</p>
<p>内容 | 定义位置&#8212;&#8212;&#8212;&#8212;&#8211; | :&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;-OpProtoMake定义 | <code class="docutils literal"><span class="pre">.cc</span></code>文件,Backward Op不需要定义OpProtoMake <p>内容 | 定义位置
&#8212;&#8212;&#8212;&#8212;&#8211; | :&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;-
OpProtoMake定义 | <code class="docutils literal"><span class="pre">.cc</span></code>文件,Backward Op不需要定义OpProtoMake
Op定义 | <code class="docutils literal"><span class="pre">.cc</span></code>文件 Op定义 | <code class="docutils literal"><span class="pre">.cc</span></code>文件
Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><span class="pre">.h</span></code>文件,否则,CPU可以在<code class="docutils literal"><span class="pre">.cc</span></code>文件,GPU可在<code class="docutils literal"><span class="pre">.cu</span></code>文件。 Kernel实现 | CPU、GPU共享Kernel实现在<code class="docutils literal"><span class="pre">.h</span></code>文件中,否则,CPU 实现在<code class="docutils literal"><span class="pre">.cc</span></code>文件中,GPU 实现在<code class="docutils literal"><span class="pre">.cu</span></code>文件中。
注册Op | Op注册在<code class="docutils literal"><span class="pre">.cc</span></code>文件;Kernel注册CPU在<code class="docutils literal"><span class="pre">.cc</span></code>文件,GPU在<code class="docutils literal"><span class="pre">.cu</span></code>文件</p> 注册Op | Op注册实现在<code class="docutils literal"><span class="pre">.cc</span></code>文件;Kernel注册CPU实现在<code class="docutils literal"><span class="pre">.cc</span></code>文件中,GPU实现在<code class="docutils literal"><span class="pre">.cu</span></code>文件中</p>
<p>实现新的op都添加至目录<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators">paddle/operators</a>下,文件命名以<code class="docutils literal"><span class="pre">*_op.h</span></code>(如有) 、 <code class="docutils literal"><span class="pre">*_op.cc</span></code><code class="docutils literal"><span class="pre">*_op.cu</span></code>(如有)结尾。</p>
<p>下面以矩阵乘操作,即<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc">MulOp</a>为例来介绍如何写带Kernel的Operator。</p> <p>下面以矩阵乘操作,即<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc">MulOp</a>为例来介绍如何写带Kernel的Operator。</p>
</div> </div>
<div class="section" id="c"> <div class="section" id="c">
...@@ -225,45 +228,45 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa ...@@ -225,45 +228,45 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa
<div class="section" id="protomaker"> <div class="section" id="protomaker">
<span id="protomaker"></span><h3>1. 定义ProtoMaker类<a class="headerlink" href="#protomaker" title="永久链接至标题"></a></h3> <span id="protomaker"></span><h3>1. 定义ProtoMaker类<a class="headerlink" href="#protomaker" title="永久链接至标题"></a></h3>
<p>矩阵乘的公式:$Out = X * Y$, 可见该计算由两个输入,一个输出组成。首先定义<code class="docutils literal"><span class="pre">ProtoMaker</span></code>来描述该Op的输入、输出及注释:</p> <p>矩阵乘的公式:$Out = X * Y$, 可见该计算由两个输入,一个输出组成。首先定义<code class="docutils literal"><span class="pre">ProtoMaker</span></code>来描述该Op的输入、输出及注释:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">MulOpMaker</span> <span class="p">:</span> <span class="n">public</span> <span class="n">framework</span><span class="p">::</span><span class="n">OpProtoAndCheckerMaker</span> <span class="p">{</span> <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">MulOpMaker</span> <span class="o">:</span> <span class="k">public</span> <span class="n">framework</span><span class="o">::</span><span class="n">OpProtoAndCheckerMaker</span> <span class="p">{</span>
<span class="n">public</span><span class="p">:</span> <span class="k">public</span><span class="o">:</span>
<span class="n">MulOpMaker</span><span class="p">(</span><span class="n">framework</span><span class="p">::</span><span class="n">OpProto</span> <span class="o">*</span><span class="n">proto</span><span class="p">,</span> <span class="n">framework</span><span class="p">::</span><span class="n">OpAttrChecker</span> <span class="o">*</span><span class="n">op_checker</span><span class="p">)</span> <span class="n">MulOpMaker</span><span class="p">(</span><span class="n">framework</span><span class="o">::</span><span class="n">OpProto</span> <span class="o">*</span><span class="n">proto</span><span class="p">,</span> <span class="n">framework</span><span class="o">::</span><span class="n">OpAttrChecker</span> <span class="o">*</span><span class="n">op_checker</span><span class="p">)</span>
<span class="p">:</span> <span class="n">OpProtoAndCheckerMaker</span><span class="p">(</span><span class="n">proto</span><span class="p">,</span> <span class="n">op_checker</span><span class="p">)</span> <span class="p">{</span> <span class="o">:</span> <span class="n">OpProtoAndCheckerMaker</span><span class="p">(</span><span class="n">proto</span><span class="p">,</span> <span class="n">op_checker</span><span class="p">)</span> <span class="p">{</span>
<span class="n">AddInput</span><span class="p">(</span><span class="s2">&quot;X&quot;</span><span class="p">,</span> <span class="s2">&quot;The first input of mul op&quot;</span><span class="p">);</span> <span class="n">AddInput</span><span class="p">(</span><span class="s">&quot;X&quot;</span><span class="p">,</span> <span class="s">&quot;The first input of mul op&quot;</span><span class="p">);</span>
<span class="n">AddInput</span><span class="p">(</span><span class="s2">&quot;Y&quot;</span><span class="p">,</span> <span class="s2">&quot;The second input of mul op&quot;</span><span class="p">);</span> <span class="n">AddInput</span><span class="p">(</span><span class="s">&quot;Y&quot;</span><span class="p">,</span> <span class="s">&quot;The second input of mul op&quot;</span><span class="p">);</span>
<span class="n">AddOutput</span><span class="p">(</span><span class="s2">&quot;Out&quot;</span><span class="p">,</span> <span class="s2">&quot;The output of mul op&quot;</span><span class="p">);</span> <span class="n">AddOutput</span><span class="p">(</span><span class="s">&quot;Out&quot;</span><span class="p">,</span> <span class="s">&quot;The output of mul op&quot;</span><span class="p">);</span>
<span class="n">AddComment</span><span class="p">(</span><span class="sa">R</span><span class="s2">&quot;DOC(</span> <span class="n">AddComment</span><span class="p">(</span><span class="sa">R</span><span class="s">&quot;</span><span class="dl">DOC(</span><span class="s"></span>
<span class="n">Two</span> <span class="n">Element</span> <span class="n">Mul</span> <span class="n">Operator</span><span class="o">.</span> <span class="s">Two Element Mul Operator.</span>
<span class="n">The</span> <span class="n">equation</span> <span class="ow">is</span><span class="p">:</span> <span class="n">Out</span> <span class="o">=</span> <span class="n">X</span> <span class="o">*</span> <span class="n">Y</span> <span class="s">The equation is: Out = X * Y</span>
<span class="p">)</span><span class="n">DOC</span><span class="s2">&quot;);</span> <span class="dl">)DOC</span><span class="s">&quot;</span><span class="p">);</span>
<span class="p">}</span> <span class="p">}</span>
<span class="p">};</span> <span class="p">};</span>
</pre></div> </pre></div>
</div> </div>
<p><a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L43"><code class="docutils literal"><span class="pre">MulOpMaker</span></code></a>继承自<code class="docutils literal"><span class="pre">framework::OpProtoAndCheckerMaker</span></code>,构造函数包括2个:</p> <p><a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L43"><code class="docutils literal"><span class="pre">MulOpMaker</span></code></a>继承自<code class="docutils literal"><span class="pre">framework::OpProtoAndCheckerMaker</span></code>,构造函数包括2个参数</p>
<ul class="simple"> <ul class="simple">
<li><code class="docutils literal"><span class="pre">framework::OpProto</span></code> : 前者存储Op的输入输出和参数属性,将用于Python API接口的生成。</li> <li><code class="docutils literal"><span class="pre">framework::OpProto</span></code> : 前者存储Op的输入输出和参数属性,将用于Python API接口的生成。</li>
<li><code class="docutils literal"><span class="pre">framework::OpAttrChecker</span></code> :后者用于检查参数属性的合法性。</li> <li><code class="docutils literal"><span class="pre">framework::OpAttrChecker</span></code> :后者用于检查参数属性的合法性。</li>
</ul> </ul>
<p>构造函数里通过<code class="docutils literal"><span class="pre">AddInput</span></code>添加输入参数,通过<code class="docutils literal"><span class="pre">AddOutput</span></code>添加输出参数,通过<code class="docutils literal"><span class="pre">AddComment</span></code>添加该Op的注释,这些函数会将对应内容添加到<code class="docutils literal"><span class="pre">OpProto</span></code>中。</p> <p>构造函数里通过<code class="docutils literal"><span class="pre">AddInput</span></code>添加输入参数,通过<code class="docutils literal"><span class="pre">AddOutput</span></code>添加输出参数,通过<code class="docutils literal"><span class="pre">AddComment</span></code>添加该Op的注释,这些函数会将对应内容添加到<code class="docutils literal"><span class="pre">OpProto</span></code>中。</p>
<p><code class="docutils literal"><span class="pre">MulOp</span></code>中添加两个输入<code class="docutils literal"><span class="pre">X</span></code><code class="docutils literal"><span class="pre">Y</span></code>,添加了一个输出<code class="docutils literal"><span class="pre">Out</span></code>,并解释了各自含义,该命名尽可能的规范。</p> <p><code class="docutils literal"><span class="pre">MulOp</span></code>中添加两个输入<code class="docutils literal"><span class="pre">X</span></code><code class="docutils literal"><span class="pre">Y</span></code>,添加了一个输出<code class="docutils literal"><span class="pre">Out</span></code>,并解释了各自含义,命名请遵守命名规范。</p>
<p>再举个<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37"><code class="docutils literal"><span class="pre">ScaleOp</span></code></a>的例子:</p> <p>再举个<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37"><code class="docutils literal"><span class="pre">ScaleOp</span></code></a>的例子:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">template</span> <span class="o">&lt;</span><span class="n">typename</span> <span class="n">AttrType</span><span class="o">&gt;</span> <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">AttrType</span><span class="o">&gt;</span>
<span class="k">class</span> <span class="nc">ScaleOpMaker</span> <span class="p">:</span> <span class="n">public</span> <span class="n">framework</span><span class="p">::</span><span class="n">OpProtoAndCheckerMaker</span> <span class="p">{</span> <span class="k">class</span> <span class="nc">ScaleOpMaker</span> <span class="o">:</span> <span class="k">public</span> <span class="n">framework</span><span class="o">::</span><span class="n">OpProtoAndCheckerMaker</span> <span class="p">{</span>
<span class="n">public</span><span class="p">:</span> <span class="k">public</span><span class="o">:</span>
<span class="n">ScaleOpMaker</span><span class="p">(</span><span class="n">framework</span><span class="p">::</span><span class="n">OpProto</span> <span class="o">*</span><span class="n">proto</span><span class="p">,</span> <span class="n">framework</span><span class="p">::</span><span class="n">OpAttrChecker</span> <span class="o">*</span><span class="n">op_checker</span><span class="p">)</span> <span class="n">ScaleOpMaker</span><span class="p">(</span><span class="n">framework</span><span class="o">::</span><span class="n">OpProto</span> <span class="o">*</span><span class="n">proto</span><span class="p">,</span> <span class="n">framework</span><span class="o">::</span><span class="n">OpAttrChecker</span> <span class="o">*</span><span class="n">op_checker</span><span class="p">)</span>
<span class="p">:</span> <span class="n">OpProtoAndCheckerMaker</span><span class="p">(</span><span class="n">proto</span><span class="p">,</span> <span class="n">op_checker</span><span class="p">)</span> <span class="p">{</span> <span class="o">:</span> <span class="n">OpProtoAndCheckerMaker</span><span class="p">(</span><span class="n">proto</span><span class="p">,</span> <span class="n">op_checker</span><span class="p">)</span> <span class="p">{</span>
<span class="n">AddInput</span><span class="p">(</span><span class="s2">&quot;X&quot;</span><span class="p">,</span> <span class="s2">&quot;The input tensor of scale operator.&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">NotInGradient</span><span class="p">();</span> <span class="n">AddInput</span><span class="p">(</span><span class="s">&quot;X&quot;</span><span class="p">,</span> <span class="s">&quot;The input tensor of scale operator.&quot;</span><span class="p">).</span><span class="n">NotInGradient</span><span class="p">();</span>
<span class="n">AddOutput</span><span class="p">(</span><span class="s2">&quot;Out&quot;</span><span class="p">,</span> <span class="s2">&quot;The output tensor of scale operator.&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">NotInGradient</span><span class="p">();</span> <span class="n">AddOutput</span><span class="p">(</span><span class="s">&quot;Out&quot;</span><span class="p">,</span> <span class="s">&quot;The output tensor of scale operator.&quot;</span><span class="p">).</span><span class="n">NotInGradient</span><span class="p">();</span>
<span class="n">AddComment</span><span class="p">(</span><span class="sa">R</span><span class="s2">&quot;DOC(Scale operator</span> <span class="n">AddComment</span><span class="p">(</span><span class="sa">R</span><span class="s">&quot;</span><span class="dl">DOC(</span><span class="s">Scale operator</span>
<span class="n">The</span> <span class="n">equation</span> <span class="ow">is</span><span class="p">:</span> <span class="n">Out</span> <span class="o">=</span> <span class="n">scale</span><span class="o">*</span><span class="n">X</span> <span class="s">The equation is: Out = scale*X</span>
<span class="p">)</span><span class="n">DOC</span><span class="s2">&quot;);</span> <span class="dl">)DOC</span><span class="s">&quot;</span><span class="p">);</span>
<span class="n">AddAttr</span><span class="o">&lt;</span><span class="n">AttrType</span><span class="o">&gt;</span><span class="p">(</span><span class="s2">&quot;scale&quot;</span><span class="p">,</span> <span class="s2">&quot;scale of scale operator.&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">SetDefault</span><span class="p">(</span><span class="mf">1.0</span><span class="p">);</span> <span class="n">AddAttr</span><span class="o">&lt;</span><span class="n">AttrType</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;scale&quot;</span><span class="p">,</span> <span class="s">&quot;scale of scale operator.&quot;</span><span class="p">).</span><span class="n">SetDefault</span><span class="p">(</span><span class="mf">1.0</span><span class="p">);</span>
<span class="p">}</span> <span class="p">}</span>
<span class="p">};</span> <span class="p">};</span>
</pre></div> </pre></div>
</div> </div>
<p>在这个例子里,两处不同:</p> <p>这个例子有两处不同:</p>
<ul class="simple"> <ul class="simple">
<li><code class="docutils literal"><span class="pre">AddInput(&quot;X&quot;,&quot;...&quot;).NotInGradient()</span></code> : 表示<code class="docutils literal"><span class="pre">X</span></code>这个输入不参与<code class="docutils literal"><span class="pre">ScaleOp</span></code>对应的梯度Op计算之中。</li> <li><code class="docutils literal"><span class="pre">AddInput(&quot;X&quot;,&quot;...&quot;).NotInGradient()</span></code> : 表示<code class="docutils literal"><span class="pre">X</span></code>这个输入不参与<code class="docutils literal"><span class="pre">ScaleOp</span></code>对应的梯度Op计算之中。</li>
<li><code class="docutils literal"><span class="pre">AddAttr&lt;AttrType&gt;(&quot;scale&quot;,</span> <span class="pre">&quot;...&quot;).SetDefault(1.0);</span></code> : 增加<code class="docutils literal"><span class="pre">scale</span></code>系数,作为参数属性,并且设置默认值为1.0。</li> <li><code class="docutils literal"><span class="pre">AddAttr&lt;AttrType&gt;(&quot;scale&quot;,</span> <span class="pre">&quot;...&quot;).SetDefault(1.0);</span></code> : 增加<code class="docutils literal"><span class="pre">scale</span></code>系数,作为参数属性,并且设置默认值为1.0。</li>
...@@ -271,7 +274,7 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa ...@@ -271,7 +274,7 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa
</div> </div>
<div class="section" id="operator"> <div class="section" id="operator">
<span id="id2"></span><h3>2. 定义Operator类<a class="headerlink" href="#operator" title="永久链接至标题"></a></h3> <span id="id2"></span><h3>2. 定义Operator类<a class="headerlink" href="#operator" title="永久链接至标题"></a></h3>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">MulOp</span> <span class="o">:</span> <span class="k">public</span> <span class="n">framework</span><span class="o">::</span><span class="n">OperatorWithKernel</span> <span class="p">{</span> <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">MulOp</span> <span class="o">:</span> <span class="k">public</span> <span class="n">framework</span><span class="o">::</span><span class="n">OperatorWithKernel</span> <span class="p">{</span>
<span class="k">public</span><span class="o">:</span> <span class="k">public</span><span class="o">:</span>
<span class="k">using</span> <span class="n">framework</span><span class="o">::</span><span class="n">OperatorWithKernel</span><span class="o">::</span><span class="n">OperatorWithKernel</span><span class="p">;</span> <span class="k">using</span> <span class="n">framework</span><span class="o">::</span><span class="n">OperatorWithKernel</span><span class="o">::</span><span class="n">OperatorWithKernel</span><span class="p">;</span>
...@@ -294,11 +297,11 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa ...@@ -294,11 +297,11 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa
</pre></div> </pre></div>
</div> </div>
<p><a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L22"><code class="docutils literal"><span class="pre">MulOp</span></code></a>继承自<code class="docutils literal"><span class="pre">OperatorWithKernel</span></code><code class="docutils literal"><span class="pre">public</span></code>成员:</p> <p><a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L22"><code class="docutils literal"><span class="pre">MulOp</span></code></a>继承自<code class="docutils literal"><span class="pre">OperatorWithKernel</span></code><code class="docutils literal"><span class="pre">public</span></code>成员:</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">using</span> <span class="n">framework</span><span class="o">::</span><span class="n">OperatorWithKernel</span><span class="o">::</span><span class="n">OperatorWithKernel</span><span class="p">;</span> <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">using</span> <span class="n">framework</span><span class="o">::</span><span class="n">OperatorWithKernel</span><span class="o">::</span><span class="n">OperatorWithKernel</span><span class="p">;</span>
</pre></div> </pre></div>
</div> </div>
<p>这句表示使用基类<code class="docutils literal"><span class="pre">OperatorWithKernel</span></code>的构造函数,也可写成:</p> <p>这句表示使用基类<code class="docutils literal"><span class="pre">OperatorWithKernel</span></code>的构造函数,也可写成:</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="n">MulOp</span><span class="p">(</span><span class="k">const</span> <span class="n">std</span><span class="o">::</span><span class="n">string</span> <span class="o">&amp;</span><span class="n">type</span><span class="p">,</span> <span class="k">const</span> <span class="n">framework</span><span class="o">::</span><span class="n">VariableNameMap</span> <span class="o">&amp;</span><span class="n">inputs</span><span class="p">,</span> <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="n">MulOp</span><span class="p">(</span><span class="k">const</span> <span class="n">std</span><span class="o">::</span><span class="n">string</span> <span class="o">&amp;</span><span class="n">type</span><span class="p">,</span> <span class="k">const</span> <span class="n">framework</span><span class="o">::</span><span class="n">VariableNameMap</span> <span class="o">&amp;</span><span class="n">inputs</span><span class="p">,</span>
<span class="k">const</span> <span class="n">framework</span><span class="o">::</span><span class="n">VariableNameMap</span> <span class="o">&amp;</span><span class="n">outputs</span><span class="p">,</span> <span class="k">const</span> <span class="n">framework</span><span class="o">::</span><span class="n">VariableNameMap</span> <span class="o">&amp;</span><span class="n">outputs</span><span class="p">,</span>
<span class="k">const</span> <span class="n">framework</span><span class="o">::</span><span class="n">AttributeMap</span> <span class="o">&amp;</span><span class="n">attrs</span><span class="p">)</span> <span class="k">const</span> <span class="n">framework</span><span class="o">::</span><span class="n">AttributeMap</span> <span class="o">&amp;</span><span class="n">attrs</span><span class="p">)</span>
<span class="o">:</span> <span class="n">OperatorWithKernel</span><span class="p">(</span><span class="n">type</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">outputs</span><span class="p">,</span> <span class="n">attrs</span><span class="p">)</span> <span class="p">{}</span> <span class="o">:</span> <span class="n">OperatorWithKernel</span><span class="p">(</span><span class="n">type</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">outputs</span><span class="p">,</span> <span class="n">attrs</span><span class="p">)</span> <span class="p">{}</span>
...@@ -313,7 +316,7 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa ...@@ -313,7 +316,7 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa
</div> </div>
<div class="section" id="opkernel"> <div class="section" id="opkernel">
<span id="opkernel"></span><h3>3. 定义OpKernel类<a class="headerlink" href="#opkernel" title="永久链接至标题"></a></h3> <span id="opkernel"></span><h3>3. 定义OpKernel类<a class="headerlink" href="#opkernel" title="永久链接至标题"></a></h3>
<div class="highlight-C++"><div class="highlight"><pre><span></span><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">Place</span><span class="p">,</span> <span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span> <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">Place</span><span class="p">,</span> <span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span>
<span class="k">class</span> <span class="nc">MulKernel</span> <span class="o">:</span> <span class="k">public</span> <span class="n">framework</span><span class="o">::</span><span class="n">OpKernel</span> <span class="p">{</span> <span class="k">class</span> <span class="nc">MulKernel</span> <span class="o">:</span> <span class="k">public</span> <span class="n">framework</span><span class="o">::</span><span class="n">OpKernel</span> <span class="p">{</span>
<span class="k">public</span><span class="o">:</span> <span class="k">public</span><span class="o">:</span>
<span class="kt">void</span> <span class="n">Compute</span><span class="p">(</span><span class="k">const</span> <span class="n">framework</span><span class="o">::</span><span class="n">ExecutionContext</span><span class="o">&amp;</span> <span class="n">context</span><span class="p">)</span> <span class="k">const</span> <span class="k">override</span> <span class="p">{</span> <span class="kt">void</span> <span class="n">Compute</span><span class="p">(</span><span class="k">const</span> <span class="n">framework</span><span class="o">::</span><span class="n">ExecutionContext</span><span class="o">&amp;</span> <span class="n">context</span><span class="p">)</span> <span class="k">const</span> <span class="k">override</span> <span class="p">{</span>
...@@ -341,7 +344,7 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa ...@@ -341,7 +344,7 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa
<div class="section" id="operator"> <div class="section" id="operator">
<span id="id3"></span><h3>4. 注册Operator<a class="headerlink" href="#operator" title="永久链接至标题"></a></h3> <span id="id3"></span><h3>4. 注册Operator<a class="headerlink" href="#operator" title="永久链接至标题"></a></h3>
<p><code class="docutils literal"><span class="pre">.cc</span></code>文件中注册前向、反向Op类,注册CPU Kernel。</p> <p><code class="docutils literal"><span class="pre">.cc</span></code>文件中注册前向、反向Op类,注册CPU Kernel。</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">namespace</span> <span class="n">ops</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">::</span><span class="n">operators</span><span class="p">;</span> <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">namespace</span> <span class="n">ops</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">::</span><span class="n">operators</span><span class="p">;</span>
<span class="n">REGISTER_OP</span><span class="p">(</span><span class="n">mul</span><span class="p">,</span> <span class="n">ops</span><span class="o">::</span><span class="n">MulOp</span><span class="p">,</span> <span class="n">ops</span><span class="o">::</span><span class="n">MulOpMaker</span><span class="p">,</span> <span class="n">mul_grad</span><span class="p">,</span> <span class="n">ops</span><span class="o">::</span><span class="n">MulOpGrad</span><span class="p">);</span> <span class="n">REGISTER_OP</span><span class="p">(</span><span class="n">mul</span><span class="p">,</span> <span class="n">ops</span><span class="o">::</span><span class="n">MulOp</span><span class="p">,</span> <span class="n">ops</span><span class="o">::</span><span class="n">MulOpMaker</span><span class="p">,</span> <span class="n">mul_grad</span><span class="p">,</span> <span class="n">ops</span><span class="o">::</span><span class="n">MulOpGrad</span><span class="p">);</span>
<span class="n">REGISTER_OP_CPU_KERNEL</span><span class="p">(</span><span class="n">mul</span><span class="p">,</span> <span class="n">ops</span><span class="o">::</span><span class="n">MulKernel</span><span class="o">&lt;</span><span class="n">paddle</span><span class="o">::</span><span class="n">platform</span><span class="o">::</span><span class="n">CPUPlace</span><span class="p">,</span> <span class="kt">float</span><span class="o">&gt;</span><span class="p">);</span> <span class="n">REGISTER_OP_CPU_KERNEL</span><span class="p">(</span><span class="n">mul</span><span class="p">,</span> <span class="n">ops</span><span class="o">::</span><span class="n">MulKernel</span><span class="o">&lt;</span><span class="n">paddle</span><span class="o">::</span><span class="n">platform</span><span class="o">::</span><span class="n">CPUPlace</span><span class="p">,</span> <span class="kt">float</span><span class="o">&gt;</span><span class="p">);</span>
<span class="n">REGISTER_OP_CPU_KERNEL</span><span class="p">(</span><span class="n">mul_grad</span><span class="p">,</span> <span class="n">REGISTER_OP_CPU_KERNEL</span><span class="p">(</span><span class="n">mul_grad</span><span class="p">,</span>
...@@ -354,7 +357,7 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa ...@@ -354,7 +357,7 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa
<li><code class="docutils literal"><span class="pre">REGISTER_OP_CPU_KERNEL</span></code> :注册<code class="docutils literal"><span class="pre">ops::MulKernel</span></code>类,并特化模板参数为<code class="docutils literal"><span class="pre">paddle::platform::CPUPlace</span></code><code class="docutils literal"><span class="pre">float</span></code>类型,同理,注册<code class="docutils literal"><span class="pre">ops::MulKernel</span></code>类。</li> <li><code class="docutils literal"><span class="pre">REGISTER_OP_CPU_KERNEL</span></code> :注册<code class="docutils literal"><span class="pre">ops::MulKernel</span></code>类,并特化模板参数为<code class="docutils literal"><span class="pre">paddle::platform::CPUPlace</span></code><code class="docutils literal"><span class="pre">float</span></code>类型,同理,注册<code class="docutils literal"><span class="pre">ops::MulKernel</span></code>类。</li>
</ul> </ul>
<p><code class="docutils literal"><span class="pre">.cu</span></code>文件中注册GPU Kernel。请注意,如果GPU Kernel的实现是基于Eigen unsupported模块,那么在 <code class="docutils literal"><span class="pre">.cu</span></code>的最前面请加上宏定义 <code class="docutils literal"><span class="pre">#define</span> <span class="pre">EIGEN_USE_GPU</span></code></p> <p><code class="docutils literal"><span class="pre">.cu</span></code>文件中注册GPU Kernel。请注意,如果GPU Kernel的实现是基于Eigen unsupported模块,那么在 <code class="docutils literal"><span class="pre">.cu</span></code>的最前面请加上宏定义 <code class="docutils literal"><span class="pre">#define</span> <span class="pre">EIGEN_USE_GPU</span></code></p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="c1">// if use Eigen unsupported module before include head files</span> <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="c1">// if use Eigen unsupported module before include head files</span>
<span class="cp">#define EIGEN_USE_GPU</span> <span class="cp">#define EIGEN_USE_GPU</span>
<span class="k">namespace</span> <span class="n">ops</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">::</span><span class="n">operators</span><span class="p">;</span> <span class="k">namespace</span> <span class="n">ops</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">::</span><span class="n">operators</span><span class="p">;</span>
...@@ -366,14 +369,20 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa ...@@ -366,14 +369,20 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa
</div> </div>
<div class="section" id=""> <div class="section" id="">
<span id="id4"></span><h3>5. 编译<a class="headerlink" href="#" title="永久链接至标题"></a></h3> <span id="id4"></span><h3>5. 编译<a class="headerlink" href="#" title="永久链接至标题"></a></h3>
<p><a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt">paddle/operators/CMakeLists.txt</a>文件中添加编译。</p> <ul>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">op_library</span><span class="p">(</span><span class="n">mul_op</span> <span class="n">SRCS</span> <span class="n">mul_op</span><span class="o">.</span><span class="n">cc</span> <span class="n">mul_op</span><span class="o">.</span><span class="n">cu</span> <span class="n">DEPS</span> <span class="n">math_function</span><span class="p">)</span> <li><p class="first">简单<strong>无特殊依赖</strong>的OP无需修改CMakeList.txt文件。<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt">paddle/operators/CMakeLists.txt</a> 会自动将 <code class="docutils literal"><span class="pre">paddle/operators</span></code> 目录下新增的 <code class="docutils literal"><span class="pre">*_op.cc</span></code> 文件加入编译。</p>
</li>
<li><p class="first">较为复杂、<strong>有额外依赖</strong> 的operator仍需要修改<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt">paddle/operators/CMakeLists.txt</a>。如,<code class="docutils literal"><span class="pre">mul_op</span></code> 依赖 <code class="docutils literal"><span class="pre">math_function</span></code>,需要在<code class="docutils literal"><span class="pre">CMakeLists.txt</span></code>中添加如下内容:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">op_library</span><span class="p">(</span><span class="n">mul_op</span> <span class="n">SRCS</span> <span class="n">mul_op</span><span class="o">.</span><span class="n">cc</span> <span class="n">mul_op</span><span class="o">.</span><span class="n">cu</span> <span class="n">DEPS</span> <span class="n">math_function</span><span class="p">)</span> <span class="o">+</span>
</pre></div> </pre></div>
</div> </div>
<p>下面命令可以编译:</p> </li>
<li><p class="first">运行下面命令可以进行编译:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">make</span> <span class="n">mul_op</span> <div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">make</span> <span class="n">mul_op</span>
</pre></div> </pre></div>
</div> </div>
</li>
</ul>
</div> </div>
</div> </div>
<div class="section" id="python"> <div class="section" id="python">
...@@ -397,16 +406,7 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa ...@@ -397,16 +406,7 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa
</ul> </ul>
<ul> <ul>
<li><p class="first">生成库</p> <li><p class="first">生成库</p>
<p><a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/CMakeLists.txt"><code class="docutils literal"><span class="pre">paddle/pybind/CMakeLists.txt</span></code></a>文件添加类到<code class="docutils literal"><span class="pre">DEPS</span></code>中,使得该Op可以链接到生成的lib库中。</p> <p>无需修改 <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/CMakeLists.txt"><code class="docutils literal"><span class="pre">paddle/pybind/CMakeLists.txt</span></code></a>文件,<code class="docutils literal"><span class="pre">paddle/operators</span></code> 目录下新增的 <code class="docutils literal"><span class="pre">*_op.cc</span></code> 文件会自动被添加链接到生成的lib库中。</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="k">if</span><span class="p">(</span><span class="n">WITH_PYTHON</span><span class="p">)</span>
<span class="n">cc_library</span><span class="p">(</span><span class="n">paddle_pybind</span> <span class="n">SHARED</span>
<span class="n">SRCS</span> <span class="n">pybind</span><span class="o">.</span><span class="n">cc</span>
<span class="n">DEPS</span> <span class="n">pybind</span> <span class="n">python</span> <span class="n">backward</span>
<span class="n">mul_op</span>
<span class="n">minus_op</span><span class="p">)</span>
<span class="n">endif</span><span class="p">(</span><span class="n">WITH_PYTHON</span><span class="p">)</span>
</pre></div>
</div>
</li> </li>
</ul> </ul>
</div> </div>
...@@ -414,15 +414,15 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa ...@@ -414,15 +414,15 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa
<span id="id5"></span><h2>实现单元测试<a class="headerlink" href="#" title="永久链接至标题"></a></h2> <span id="id5"></span><h2>实现单元测试<a class="headerlink" href="#" title="永久链接至标题"></a></h2>
<p>单测包括对比前向Op不同设备(CPU、GPU)的实现、对比反向OP不同设备(CPU、GPU)的实现、反向Op的梯度测试。下面介绍介绍<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py"><code class="docutils literal"><span class="pre">MulOp</span></code>的单测</a></p> <p>单测包括对比前向Op不同设备(CPU、GPU)的实现、对比反向OP不同设备(CPU、GPU)的实现、反向Op的梯度测试。下面介绍介绍<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py"><code class="docutils literal"><span class="pre">MulOp</span></code>的单测</a></p>
<div class="section" id="operator"> <div class="section" id="operator">
<span id="id6"></span><h3>前向Operator单<a class="headerlink" href="#operator" title="永久链接至标题"></a></h3> <span id="id6"></span><h3>前向Operator单元测试<a class="headerlink" href="#operator" title="永久链接至标题"></a></h3>
<p>前向Op单测继承自<code class="docutils literal"><span class="pre">unittest.TestCase</span></code>,并定义元类<code class="docutils literal"><span class="pre">__metaclass__</span> <span class="pre">=</span> <span class="pre">OpTestMeta</span></code>,具体单测流程在<code class="docutils literal"><span class="pre">OpTestMeta</span></code>里完成。需在<code class="docutils literal"><span class="pre">setUp</span></code>函数定义输入输出和属性参数,以及Python对比的输出值。</p> <p>前向Op单测继承自<code class="docutils literal"><span class="pre">unittest.TestCase</span></code>,并定义元类<code class="docutils literal"><span class="pre">__metaclass__</span> <span class="pre">=</span> <span class="pre">OpTestMeta</span></code>,具体单测流程在<code class="docutils literal"><span class="pre">OpTestMeta</span></code>里完成。需在<code class="docutils literal"><span class="pre">setUp</span></code>函数定义输入输出和属性参数,以及Python对比的输出值。</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">unittest</span> <div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">unittest</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="kn">from</span> <span class="nn">gradient_checker</span> <span class="k">import</span> <span class="n">GradientChecker</span><span class="p">,</span> <span class="n">create_op</span> <span class="kn">from</span> <span class="nn">gradient_checker</span> <span class="kn">import</span> <span class="n">GradientChecker</span><span class="p">,</span> <span class="n">create_op</span>
<span class="kn">from</span> <span class="nn">op_test_util</span> <span class="k">import</span> <span class="n">OpTestMeta</span> <span class="kn">from</span> <span class="nn">op_test_util</span> <span class="kn">import</span> <span class="n">OpTestMeta</span>
<span class="k">class</span> <span class="nc">TestMulOp</span><span class="p">(</span><span class="n">unittest</span><span class="o">.</span><span class="n">TestCase</span><span class="p">):</span> <span class="k">class</span> <span class="nc">TestMulOp</span><span class="p">(</span><span class="n">unittest</span><span class="o">.</span><span class="n">TestCase</span><span class="p">):</span>
<span class="n">__metaclass__</span> <span class="o">=</span> <span class="n">OpTestMeta</span> <span class="vm">__metaclass__</span> <span class="o">=</span> <span class="n">OpTestMeta</span>
<span class="k">def</span> <span class="nf">setUp</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span> <span class="k">def</span> <span class="nf">setUp</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">type</span> <span class="o">=</span> <span class="s2">&quot;mul&quot;</span> <span class="bp">self</span><span class="o">.</span><span class="n">type</span> <span class="o">=</span> <span class="s2">&quot;mul&quot;</span>
...@@ -441,39 +441,39 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa ...@@ -441,39 +441,39 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa
</ul> </ul>
</div> </div>
<div class="section" id="operator"> <div class="section" id="operator">
<span id="id7"></span><h3>反向Operator单<a class="headerlink" href="#operator" title="永久链接至标题"></a></h3> <span id="id7"></span><h3>反向Operator单元测试<a class="headerlink" href="#operator" title="永久链接至标题"></a></h3>
<p>反向Op单测继承自<code class="docutils literal"><span class="pre">GradientChecker</span></code>,而<code class="docutils literal"><span class="pre">GradientChecker</span></code>集成自<code class="docutils literal"><span class="pre">unittest.TestCase</span></code>,所以反向单测函数需要<code class="docutils literal"><span class="pre">test_</span></code>开头。</p> <p>反向Op单测继承自<code class="docutils literal"><span class="pre">GradientChecker</span></code>,而<code class="docutils literal"><span class="pre">GradientChecker</span></code>集成自<code class="docutils literal"><span class="pre">unittest.TestCase</span></code>,所以反向单测函数需要<code class="docutils literal"><span class="pre">test_</span></code>开头。</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">TestMulGradOp</span><span class="p">(</span><span class="n">GradientChecker</span><span class="p">):</span> <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nf">TestMulGradOp</span><span class="p">(</span><span class="n">GradientChecker</span><span class="p">)</span><span class="o">:</span>
<span class="k">def</span> <span class="nf">setUp</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span> <span class="n">def</span> <span class="n">setUp</span><span class="p">(</span><span class="n">self</span><span class="p">)</span><span class="o">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">op</span> <span class="o">=</span> <span class="n">create_op</span><span class="p">(</span><span class="s2">&quot;mul&quot;</span><span class="p">)</span> <span class="n">self</span><span class="p">.</span><span class="n">op</span> <span class="o">=</span> <span class="n">create_op</span><span class="p">(</span><span class="s">&quot;mul&quot;</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inputs</span> <span class="o">=</span> <span class="p">{</span> <span class="n">self</span><span class="p">.</span><span class="n">inputs</span> <span class="o">=</span> <span class="p">{</span>
<span class="s1">&#39;X&#39;</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">((</span><span class="mi">32</span><span class="p">,</span> <span class="mi">84</span><span class="p">))</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s2">&quot;float32&quot;</span><span class="p">),</span> <span class="sc">&#39;X&#39;</span><span class="o">:</span> <span class="n">np</span><span class="p">.</span><span class="n">random</span><span class="p">.</span><span class="n">random</span><span class="p">((</span><span class="mi">32</span><span class="p">,</span> <span class="mi">84</span><span class="p">)).</span><span class="n">astype</span><span class="p">(</span><span class="s">&quot;float32&quot;</span><span class="p">),</span>
<span class="s1">&#39;Y&#39;</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">((</span><span class="mi">84</span><span class="p">,</span> <span class="mi">100</span><span class="p">))</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s2">&quot;float32&quot;</span><span class="p">)</span> <span class="sc">&#39;Y&#39;</span><span class="o">:</span> <span class="n">np</span><span class="p">.</span><span class="n">random</span><span class="p">.</span><span class="n">random</span><span class="p">((</span><span class="mi">84</span><span class="p">,</span> <span class="mi">100</span><span class="p">)).</span><span class="n">astype</span><span class="p">(</span><span class="s">&quot;float32&quot;</span><span class="p">)</span>
<span class="p">}</span> <span class="p">}</span>
<span class="k">def</span> <span class="nf">test_cpu_gpu_compare</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span> <span class="n">def</span> <span class="nf">test_cpu_gpu_compare</span><span class="p">(</span><span class="n">self</span><span class="p">)</span><span class="o">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">compare_grad</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">op</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">inputs</span><span class="p">)</span> <span class="n">self</span><span class="p">.</span><span class="n">compare_grad</span><span class="p">(</span><span class="n">self</span><span class="p">.</span><span class="n">op</span><span class="p">,</span> <span class="n">self</span><span class="p">.</span><span class="n">inputs</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">test_normal</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span> <span class="n">def</span> <span class="n">test_normal</span><span class="p">(</span><span class="n">self</span><span class="p">)</span><span class="o">:</span>
<span class="c1"># mul op will enlarge the relative error</span> <span class="cp"># mul op will enlarge the relative error</span>
<span class="bp">self</span><span class="o">.</span><span class="n">check_grad</span><span class="p">(</span> <span class="n">self</span><span class="p">.</span><span class="n">check_grad</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">op</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">inputs</span><span class="p">,</span> <span class="p">[</span><span class="s2">&quot;X&quot;</span><span class="p">,</span> <span class="s2">&quot;Y&quot;</span><span class="p">],</span> <span class="s2">&quot;Out&quot;</span><span class="p">,</span> <span class="n">max_relative_error</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)</span> <span class="n">self</span><span class="p">.</span><span class="n">op</span><span class="p">,</span> <span class="n">self</span><span class="p">.</span><span class="n">inputs</span><span class="p">,</span> <span class="p">[</span><span class="s">&quot;X&quot;</span><span class="p">,</span> <span class="s">&quot;Y&quot;</span><span class="p">],</span> <span class="s">&quot;Out&quot;</span><span class="p">,</span> <span class="n">max_relative_error</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">test_ignore_x</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span> <span class="n">def</span> <span class="n">test_ignore_x</span><span class="p">(</span><span class="n">self</span><span class="p">)</span><span class="o">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">check_grad</span><span class="p">(</span> <span class="n">self</span><span class="p">.</span><span class="n">check_grad</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">op</span><span class="p">,</span> <span class="n">self</span><span class="p">.</span><span class="n">op</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inputs</span><span class="p">,</span> <span class="p">[</span><span class="s2">&quot;Y&quot;</span><span class="p">],</span> <span class="n">self</span><span class="p">.</span><span class="n">inputs</span><span class="p">,</span> <span class="p">[</span><span class="s">&quot;Y&quot;</span><span class="p">],</span>
<span class="s2">&quot;Out&quot;</span><span class="p">,</span> <span class="s">&quot;Out&quot;</span><span class="p">,</span>
<span class="n">max_relative_error</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">max_relative_error</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span>
<span class="n">no_grad_set</span><span class="o">=</span><span class="p">{</span><span class="s2">&quot;X&quot;</span><span class="p">})</span> <span class="n">no_grad_set</span><span class="o">=</span><span class="p">{</span><span class="s">&quot;X&quot;</span><span class="p">})</span>
<span class="k">def</span> <span class="nf">test_ignore_y</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span> <span class="n">def</span> <span class="n">test_ignore_y</span><span class="p">(</span><span class="n">self</span><span class="p">)</span><span class="o">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">check_grad</span><span class="p">(</span> <span class="n">self</span><span class="p">.</span><span class="n">check_grad</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">op</span><span class="p">,</span> <span class="n">self</span><span class="p">.</span><span class="n">op</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inputs</span><span class="p">,</span> <span class="p">[</span><span class="s2">&quot;X&quot;</span><span class="p">],</span> <span class="n">self</span><span class="p">.</span><span class="n">inputs</span><span class="p">,</span> <span class="p">[</span><span class="s">&quot;X&quot;</span><span class="p">],</span>
<span class="s2">&quot;Out&quot;</span><span class="p">,</span> <span class="s">&quot;Out&quot;</span><span class="p">,</span>
<span class="n">max_relative_error</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">max_relative_error</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span>
<span class="n">no_grad_set</span><span class="o">=</span><span class="p">{</span><span class="s2">&quot;Y&quot;</span><span class="p">})</span> <span class="n">no_grad_set</span><span class="o">=</span><span class="p">{</span><span class="s">&quot;Y&quot;</span><span class="p">})</span>
</pre></div> </pre></div>
</div> </div>
<p>下面解释一些关键的地方:</p> <p>下面解释一些关键的地方:</p>
...@@ -491,17 +491,17 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa ...@@ -491,17 +491,17 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa
</ul> </ul>
</div> </div>
<div class="section" id=""> <div class="section" id="">
<span id="id8"></span><h3>编译和执行<a class="headerlink" href="#" title="永久链接至标题"></a></h3> <span id="id8"></span><h3>编译和执行单元测试<a class="headerlink" href="#" title="永久链接至标题"></a></h3>
<p>单测完成之后,在<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/CMakeLists.txt"><code class="docutils literal"><span class="pre">python/paddle/v2/framework/tests/CMakeLists.txt</span></code></a>里添加编译</p> <p>单测完成之后,在<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/CMakeLists.txt"><code class="docutils literal"><span class="pre">python/paddle/v2/framework/tests/CMakeLists.txt</span></code></a>里添加以下内容将单测加入工程中</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">py_test</span><span class="p">(</span><span class="n">test_mul_op</span> <span class="n">SRCS</span> <span class="n">test_mul_op</span><span class="o">.</span><span class="n">py</span><span class="p">)</span> <div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">py_test</span><span class="p">(</span><span class="n">test_mul_op</span> <span class="n">SRCS</span> <span class="n">test_mul_op</span><span class="o">.</span><span class="n">py</span><span class="p">)</span>
</pre></div> </pre></div>
</div> </div>
<p>编译时需要打开<code class="docutils literal"><span class="pre">WITH_TESTING</span></code>, 即 <code class="docutils literal"><span class="pre">cmake</span> <span class="pre">paddle_dir</span> <span class="pre">-DWITH_TESTING=ON</span></code>,编译成功之后执行单测命令为</p> <p>请注意,<strong>不同于Op的编译测试,运行单元测试测时需要编译整个工程</strong>,并且编译时需要打开<code class="docutils literal"><span class="pre">WITH_TESTING</span></code>, 即<code class="docutils literal"><span class="pre">cmake</span> <span class="pre">paddle_dir</span> <span class="pre">-DWITH_TESTING=ON</span></code>。编译成功后,执行下面的命令来运行单测</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">make</span> <span class="n">test</span> <span class="n">ARGS</span><span class="o">=</span><span class="s2">&quot;-R test_mul_op -V&quot;</span> <div class="highlight-bash"><div class="highlight"><pre><span></span>make <span class="nb">test</span> <span class="nv">ARGS</span><span class="o">=</span><span class="s2">&quot;-R test_mul_op -V&quot;</span>
</pre></div> </pre></div>
</div> </div>
<p>或者:</p> <p>或者:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">ctest</span> <span class="o">-</span><span class="n">R</span> <span class="n">test_mul_op</span> <div class="highlight-bash"><div class="highlight"><pre><span></span>ctest -R test_mul_op
</pre></div> </pre></div>
</div> </div>
</div> </div>
......
因为 它太大了无法显示 source diff 。你可以改为 查看blob
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册