Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
931cba2e
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
931cba2e
编写于
4月 20, 2020
作者:
W
wangguanzhong
提交者:
GitHub
4月 20, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add clamp api, test=develop (#23273)
* add clamp api, test=develop
上级
a28a63a9
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
264 addition
and
31 deletion
+264
-31
paddle/fluid/operators/clip_op.cc
paddle/fluid/operators/clip_op.cc
+14
-6
paddle/fluid/operators/clip_op.cu
paddle/fluid/operators/clip_op.cu
+1
-0
paddle/fluid/operators/clip_op.h
paddle/fluid/operators/clip_op.h
+59
-6
python/paddle/__init__.py
python/paddle/__init__.py
+1
-0
python/paddle/fluid/tests/unittests/test_clamp.py
python/paddle/fluid/tests/unittests/test_clamp.py
+67
-0
python/paddle/fluid/tests/unittests/test_clip_op.py
python/paddle/fluid/tests/unittests/test_clip_op.py
+32
-11
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+1
-0
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+89
-8
未找到文件。
paddle/fluid/operators/clip_op.cc
浏览文件 @
931cba2e
...
@@ -26,12 +26,6 @@ class ClipOp : public framework::OperatorWithKernel {
...
@@ -26,12 +26,6 @@ class ClipOp : public framework::OperatorWithKernel {
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"clip"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"clip"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"clip"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"clip"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
max
=
ctx
->
Attrs
().
Get
<
float
>
(
"max"
);
auto
min
=
ctx
->
Attrs
().
Get
<
float
>
(
"min"
);
PADDLE_ENFORCE_LT
(
min
,
max
,
platform
::
errors
::
InvalidArgument
(
"Max of ClipOp should be greater than min. "
"Received max is %f, received min is %f."
,
max
,
min
));
ctx
->
SetOutputDim
(
"Out"
,
x_dims
);
ctx
->
SetOutputDim
(
"Out"
,
x_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
}
...
@@ -44,6 +38,14 @@ class ClipOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -44,6 +38,14 @@ class ClipOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
AddInput
(
"X"
,
"Tensor, the input of clip op, data type should be float32 or "
"Tensor, the input of clip op, data type should be float32 or "
"float64."
);
"float64."
);
AddInput
(
"Min"
,
"Tensor, the lower bound, data type should be float32 "
"or float64."
)
.
AsDispensable
();
AddInput
(
"Max"
,
"Tensor, the upper bound, data type should be float32 "
"or float64."
)
.
AsDispensable
();
AddOutput
(
AddOutput
(
"Out"
,
"Out"
,
"Tensor, the clipped tensor, with the same shape and data type as "
"Tensor, the clipped tensor, with the same shape and data type as "
...
@@ -88,6 +90,12 @@ class ClipGradOpMaker : public framework::SingleGradOpMaker<T> {
...
@@ -88,6 +90,12 @@ class ClipGradOpMaker : public framework::SingleGradOpMaker<T> {
void
Apply
(
GradOpPtr
<
T
>
op
)
const
override
{
void
Apply
(
GradOpPtr
<
T
>
op
)
const
override
{
op
->
SetType
(
"clip_grad"
);
op
->
SetType
(
"clip_grad"
);
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
if
(
this
->
HasInput
(
"Min"
))
{
op
->
SetInput
(
"Min"
,
this
->
Input
(
"Min"
));
}
if
(
this
->
HasInput
(
"Max"
))
{
op
->
SetInput
(
"Max"
,
this
->
Input
(
"Max"
));
}
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
op
->
SetAttrMap
(
this
->
Attrs
());
op
->
SetAttrMap
(
this
->
Attrs
());
...
...
paddle/fluid/operators/clip_op.cu
浏览文件 @
931cba2e
...
@@ -18,6 +18,7 @@ namespace ops = paddle::operators;
...
@@ -18,6 +18,7 @@ namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL
(
REGISTER_OP_CUDA_KERNEL
(
clip
,
ops
::
ClipKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
clip
,
ops
::
ClipKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
ClipKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
ops
::
ClipKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
REGISTER_OP_CUDA_KERNEL
(
clip_grad
,
ops
::
ClipGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
clip_grad
,
ops
::
ClipGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
ClipGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
ops
::
ClipGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/clip_op.h
浏览文件 @
931cba2e
...
@@ -60,8 +60,36 @@ template <typename DeviceContext, typename T>
...
@@ -60,8 +60,36 @@ template <typename DeviceContext, typename T>
class
ClipKernel
:
public
framework
::
OpKernel
<
T
>
{
class
ClipKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
max
=
context
.
Attr
<
T
>
(
"max"
);
auto
max
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"max"
));
auto
min
=
context
.
Attr
<
T
>
(
"min"
);
Tensor
max_cpu
;
if
(
context
.
HasInput
(
"Max"
))
{
auto
*
max_t
=
context
.
Input
<
Tensor
>
(
"Max"
);
auto
*
max_data
=
max_t
->
data
<
T
>
();
if
(
platform
::
is_gpu_place
(
max_t
->
place
()))
{
TensorCopySync
(
*
max_t
,
platform
::
CPUPlace
(),
&
max_cpu
);
max_data
=
max_cpu
.
data
<
T
>
();
}
max
=
max_data
[
0
];
}
max
=
static_cast
<
T
>
(
max
);
auto
min
=
context
.
Attr
<
float
>
(
"min"
);
Tensor
min_cpu
;
if
(
context
.
HasInput
(
"Min"
))
{
auto
*
min_t
=
context
.
Input
<
Tensor
>
(
"Min"
);
auto
*
min_data
=
min_t
->
data
<
T
>
();
if
(
platform
::
is_gpu_place
(
min_t
->
place
()))
{
TensorCopySync
(
*
min_t
,
platform
::
CPUPlace
(),
&
min_cpu
);
min_data
=
min_cpu
.
data
<
T
>
();
}
min
=
min_data
[
0
];
}
min
=
static_cast
<
T
>
(
min
);
PADDLE_ENFORCE_LT
(
min
,
max
,
platform
::
errors
::
InvalidArgument
(
"max should be greater than min. "
"But received min = %f, max = %f"
,
min
,
max
));
auto
*
x_var
=
context
.
InputVar
(
"X"
);
auto
*
x_var
=
context
.
InputVar
(
"X"
);
if
(
x_var
->
IsType
<
framework
::
LoDTensor
>
())
{
if
(
x_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
*
x
=
context
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
x
=
context
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
...
@@ -75,8 +103,9 @@ class ClipKernel : public framework::OpKernel<T> {
...
@@ -75,8 +103,9 @@ class ClipKernel : public framework::OpKernel<T> {
}
else
if
(
x_var
->
IsType
<
framework
::
SelectedRows
>
())
{
}
else
if
(
x_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
*
x
=
context
.
Input
<
framework
::
SelectedRows
>
(
"X"
);
auto
*
x
=
context
.
Input
<
framework
::
SelectedRows
>
(
"X"
);
auto
*
out
=
context
.
Output
<
framework
::
SelectedRows
>
(
"Out"
);
auto
*
out
=
context
.
Output
<
framework
::
SelectedRows
>
(
"Out"
);
PADDLE_ENFORCE_NE
(
x
,
out
,
PADDLE_ENFORCE_NE
(
x
,
out
,
platform
::
errors
::
InvalidArgument
(
"Inplace clip is not allowed when x is SelectedRows"
);
"Inplace clip is not allowed "
"when x is SelectedRows"
));
math
::
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
math
::
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
merge_func
(
context
.
template
device_context
<
DeviceContext
>(),
*
x
,
out
);
merge_func
(
context
.
template
device_context
<
DeviceContext
>(),
*
x
,
out
);
auto
*
out_tensor
=
out
->
mutable_value
();
auto
*
out_tensor
=
out
->
mutable_value
();
...
@@ -95,8 +124,32 @@ template <typename DeviceContext, typename T>
...
@@ -95,8 +124,32 @@ template <typename DeviceContext, typename T>
class
ClipGradKernel
:
public
framework
::
OpKernel
<
T
>
{
class
ClipGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
max
=
context
.
Attr
<
T
>
(
"max"
);
auto
max
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"max"
));
auto
min
=
context
.
Attr
<
T
>
(
"min"
);
Tensor
max_cpu
;
if
(
context
.
HasInput
(
"Max"
))
{
auto
*
max_t
=
context
.
Input
<
Tensor
>
(
"Max"
);
auto
*
max_data
=
max_t
->
data
<
T
>
();
if
(
platform
::
is_gpu_place
(
max_t
->
place
()))
{
TensorCopySync
(
*
max_t
,
platform
::
CPUPlace
(),
&
max_cpu
);
max_data
=
max_cpu
.
data
<
T
>
();
}
max
=
max_data
[
0
];
}
max
=
static_cast
<
T
>
(
max
);
auto
min
=
context
.
Attr
<
float
>
(
"min"
);
Tensor
min_cpu
;
if
(
context
.
HasInput
(
"Min"
))
{
auto
*
min_t
=
context
.
Input
<
Tensor
>
(
"Min"
);
auto
*
min_data
=
min_t
->
data
<
T
>
();
if
(
platform
::
is_gpu_place
(
min_t
->
place
()))
{
TensorCopySync
(
*
min_t
,
platform
::
CPUPlace
(),
&
min_cpu
);
min_data
=
min_cpu
.
data
<
T
>
();
}
min
=
min_data
[
0
];
}
min
=
static_cast
<
T
>
(
min
);
auto
*
d_out
=
auto
*
d_out
=
context
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
context
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_x
=
auto
*
d_x
=
...
...
python/paddle/__init__.py
浏览文件 @
931cba2e
...
@@ -145,6 +145,7 @@ from .tensor.math import log1p #DEFINE_ALIAS
...
@@ -145,6 +145,7 @@ from .tensor.math import log1p #DEFINE_ALIAS
# from .tensor.math import erf #DEFINE_ALIAS
# from .tensor.math import erf #DEFINE_ALIAS
from
.tensor.math
import
addcmul
#DEFINE_ALIAS
from
.tensor.math
import
addcmul
#DEFINE_ALIAS
from
.tensor.math
import
addmm
#DEFINE_ALIAS
from
.tensor.math
import
addmm
#DEFINE_ALIAS
from
.tensor.math
import
clamp
#DEFINE_ALIAS
# from .tensor.attribute import rank #DEFINE_ALIAS
# from .tensor.attribute import rank #DEFINE_ALIAS
# from .tensor.attribute import shape #DEFINE_ALIAS
# from .tensor.attribute import shape #DEFINE_ALIAS
# from .tensor.io import save #DEFINE_ALIAS
# from .tensor.io import save #DEFINE_ALIAS
...
...
python/paddle/fluid/tests/unittests/test_clamp.py
0 → 100644
浏览文件 @
931cba2e
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle.tensor
as
tensor
import
paddle.fluid
as
fluid
import
numpy
as
np
import
unittest
class
TestClampAPI
(
unittest
.
TestCase
):
def
test_clamp
(
self
):
data_shape
=
[
1
,
9
,
9
,
4
]
data
=
np
.
random
.
random
(
data_shape
).
astype
(
'float32'
)
images
=
fluid
.
data
(
name
=
'image'
,
shape
=
data_shape
,
dtype
=
'float32'
)
min
=
fluid
.
data
(
name
=
'min'
,
shape
=
[
1
],
dtype
=
'float32'
)
max
=
fluid
.
data
(
name
=
'max'
,
shape
=
[
1
],
dtype
=
'float32'
)
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
out_1
=
tensor
.
clamp
(
images
,
min
=
min
,
max
=
max
)
out_2
=
tensor
.
clamp
(
images
,
min
=
0.2
,
max
=
0.9
)
out_3
=
tensor
.
clamp
(
images
,
min
=
0.3
)
out_4
=
tensor
.
clamp
(
images
,
max
=
0.7
)
out_5
=
tensor
.
clamp
(
images
,
min
=
min
)
out_6
=
tensor
.
clamp
(
images
,
max
=
max
)
res1
,
res2
,
res3
,
res4
,
res5
,
res6
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"image"
:
data
,
"min"
:
np
.
array
([
0.2
]).
astype
(
'float32'
),
"max"
:
np
.
array
([
0.8
]).
astype
(
'float32'
)
},
fetch_list
=
[
out_1
,
out_2
,
out_3
,
out_4
,
out_5
,
out_6
])
self
.
assertTrue
(
np
.
allclose
(
res1
,
data
.
clip
(
0.2
,
0.8
)))
self
.
assertTrue
(
np
.
allclose
(
res2
,
data
.
clip
(
0.2
,
0.9
)))
self
.
assertTrue
(
np
.
allclose
(
res3
,
data
.
clip
(
min
=
0.3
)))
self
.
assertTrue
(
np
.
allclose
(
res4
,
data
.
clip
(
max
=
0.7
)))
self
.
assertTrue
(
np
.
allclose
(
res5
,
data
.
clip
(
min
=
0.2
)))
self
.
assertTrue
(
np
.
allclose
(
res6
,
data
.
clip
(
max
=
0.8
)))
class
TestClampError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
x1
=
fluid
.
layers
.
data
(
name
=
'x1'
,
shape
=
[
1
],
dtype
=
"int16"
)
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
1
],
dtype
=
"int8"
)
self
.
assertRaises
(
TypeError
,
tensor
.
clamp
,
x
=
x1
,
min
=
0.2
,
max
=
0.8
)
self
.
assertRaises
(
TypeError
,
tensor
.
clamp
,
x
=
x2
,
min
=
0.2
,
max
=
0.8
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_clip_op.py
浏览文件 @
931cba2e
...
@@ -24,19 +24,29 @@ from op_test import OpTest
...
@@ -24,19 +24,29 @@ from op_test import OpTest
class
TestClipOp
(
OpTest
):
class
TestClipOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
max_relative_error
=
0.006
self
.
max_relative_error
=
0.006
self
.
inputs
=
{}
self
.
initTestCase
()
self
.
initTestCase
()
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
input
[
np
.
abs
(
input
-
self
.
min
)
<
self
.
max_relative_error
]
=
0.5
input
[
np
.
abs
(
input
-
self
.
max
)
<
self
.
max_relative_error
]
=
0.5
self
.
op_type
=
"clip"
self
.
op_type
=
"clip"
self
.
inputs
=
{
'X'
:
input
,
}
self
.
attrs
=
{}
self
.
attrs
=
{}
self
.
attrs
[
'min'
]
=
self
.
min
self
.
attrs
[
'min'
]
=
self
.
min
self
.
attrs
[
'max'
]
=
self
.
max
self
.
attrs
[
'max'
]
=
self
.
max
self
.
outputs
=
{
if
'Min'
in
self
.
inputs
:
'Out'
:
np
.
clip
(
self
.
inputs
[
'X'
],
self
.
attrs
[
'min'
],
min_v
=
self
.
inputs
[
'Min'
]
self
.
attrs
[
'max'
])
else
:
}
min_v
=
self
.
attrs
[
'min'
]
if
'Max'
in
self
.
inputs
:
max_v
=
self
.
inputs
[
'Max'
]
else
:
max_v
=
self
.
attrs
[
'max'
]
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
input
[
np
.
abs
(
input
-
min_v
)
<
self
.
max_relative_error
]
=
0.5
input
[
np
.
abs
(
input
-
max_v
)
<
self
.
max_relative_error
]
=
0.5
self
.
inputs
[
'X'
]
=
input
self
.
outputs
=
{
'Out'
:
np
.
clip
(
self
.
inputs
[
'X'
],
min_v
,
max_v
)}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
()
...
@@ -45,9 +55,11 @@ class TestClipOp(OpTest):
...
@@ -45,9 +55,11 @@ class TestClipOp(OpTest):
self
.
check_grad
([
'X'
],
'Out'
)
self
.
check_grad
([
'X'
],
'Out'
)
def
initTestCase
(
self
):
def
initTestCase
(
self
):
self
.
shape
=
(
10
,
10
)
self
.
shape
=
(
4
,
10
,
10
)
self
.
max
=
0.7
self
.
max
=
0.8
self
.
min
=
0.1
self
.
min
=
0.3
self
.
inputs
[
'Max'
]
=
np
.
array
([
0.8
]).
astype
(
'float32'
)
self
.
inputs
[
'Min'
]
=
np
.
array
([
0.1
]).
astype
(
'float32'
)
class
TestCase1
(
TestClipOp
):
class
TestCase1
(
TestClipOp
):
...
@@ -71,6 +83,15 @@ class TestCase3(TestClipOp):
...
@@ -71,6 +83,15 @@ class TestCase3(TestClipOp):
self
.
min
=
0.2
self
.
min
=
0.2
class
TestCase4
(
TestClipOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
4
,
8
,
8
)
self
.
max
=
0.7
self
.
min
=
0.2
self
.
inputs
[
'Max'
]
=
np
.
array
([
0.8
]).
astype
(
'float32'
)
self
.
inputs
[
'Min'
]
=
np
.
array
([
0.3
]).
astype
(
'float32'
)
class
TestClipOpError
(
unittest
.
TestCase
):
class
TestClipOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
with
program_guard
(
Program
(),
Program
()):
...
...
python/paddle/tensor/__init__.py
浏览文件 @
931cba2e
...
@@ -124,6 +124,7 @@ from .math import log1p #DEFINE_ALIAS
...
@@ -124,6 +124,7 @@ from .math import log1p #DEFINE_ALIAS
# from .math import erf #DEFINE_ALIAS
# from .math import erf #DEFINE_ALIAS
from
.math
import
addcmul
#DEFINE_ALIAS
from
.math
import
addcmul
#DEFINE_ALIAS
from
.math
import
addmm
#DEFINE_ALIAS
from
.math
import
addmm
#DEFINE_ALIAS
from
.math
import
clamp
#DEFINE_ALIAS
# from .attribute import rank #DEFINE_ALIAS
# from .attribute import rank #DEFINE_ALIAS
# from .attribute import shape #DEFINE_ALIAS
# from .attribute import shape #DEFINE_ALIAS
# from .io import save #DEFINE_ALIAS
# from .io import save #DEFINE_ALIAS
...
...
python/paddle/tensor/math.py
浏览文件 @
931cba2e
...
@@ -21,6 +21,7 @@ from paddle.common_ops_import import *
...
@@ -21,6 +21,7 @@ from paddle.common_ops_import import *
from
..fluid
import
layers
from
..fluid
import
layers
from
..fluid.framework
import
core
from
..fluid.framework
import
core
from
..fluid.layers.layer_function_generator
import
_generate_doc_string_
from
..fluid.layers.layer_function_generator
import
_generate_doc_string_
import
sys
# TODO: define math functions
# TODO: define math functions
# yapf: disable
# yapf: disable
...
@@ -76,7 +77,8 @@ __all__ = [
...
@@ -76,7 +77,8 @@ __all__ = [
'log1p'
,
'log1p'
,
# 'erf',
# 'erf',
'addcmul'
,
'addcmul'
,
'addmm'
'addmm'
,
'clamp'
,
]
]
# yapf: enable.
# yapf: enable.
...
@@ -947,7 +949,6 @@ def mm(input, mat2, out=None, name=None):
...
@@ -947,7 +949,6 @@ def mm(input, mat2, out=None, name=None):
'Y'
:
mat2
},
outputs
=
{
'Out'
:
out
})
'Y'
:
mat2
},
outputs
=
{
'Out'
:
out
})
return
out
return
out
def
addmm
(
input
,
x
,
y
,
alpha
=
1.0
,
beta
=
1.0
,
name
=
None
):
def
addmm
(
input
,
x
,
y
,
alpha
=
1.0
,
beta
=
1.0
,
name
=
None
):
"""
"""
**addmm**
**addmm**
...
@@ -1274,17 +1275,14 @@ def log1p(x, out=None, name=None):
...
@@ -1274,17 +1275,14 @@ def log1p(x, out=None, name=None):
helper
.
append_op
(
type
=
"log1p"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
helper
.
append_op
(
type
=
"log1p"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
return
out
return
out
def
addcmul
(
input
,
tensor1
,
tensor2
,
value
=
1.0
,
out
=
None
,
name
=
None
):
def
addcmul
(
input
,
tensor1
,
tensor2
,
value
=
1.0
,
out
=
None
,
name
=
None
):
"""
"""
Calculate the element-wise multiplication of tensor1 and tensor2,
Calculate the element-wise multiplication of tensor1 and tensor2,
then multiply the result by value, and add it to input. The shape of input,
then multiply the result by value, and add it to input. The shape of input,
tensor1, tensor2 should be broadcastable.
tensor1, tensor2 should be broadcastable.
The equation is:
The equation is:
.. math::
.. math::
out = input + value * tensor1 * tensor2
out = input + value * tensor1 * tensor2
Args:
Args:
input(Variable): The input to be added. A Tensor with type float32, float64, int32, int64.
input(Variable): The input to be added. A Tensor with type float32, float64, int32, int64.
tensor1(Variable): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
tensor1(Variable): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
...
@@ -1296,13 +1294,10 @@ def addcmul(input, tensor1, tensor2, value=1.0, out=None, name=None):
...
@@ -1296,13 +1294,10 @@ def addcmul(input, tensor1, tensor2, value=1.0, out=None, name=None):
created to save the output. Default: None.
created to save the output. Default: None.
name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
Generally, no setting is required. Default: None.
Generally, no setting is required. Default: None.
Returns:
Returns:
out(Variable): The output result. A Tensor with the same data type as input's.
out(Variable): The output result. A Tensor with the same data type as input's.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle
import paddle
import paddle.fluid as fluid
import paddle.fluid as fluid
input = fluid.data(name='input', dtype='float32', shape=[3, 4])
input = fluid.data(name='input', dtype='float32', shape=[3, 4])
...
@@ -1324,3 +1319,89 @@ def addcmul(input, tensor1, tensor2, value=1.0, out=None, name=None):
...
@@ -1324,3 +1319,89 @@ def addcmul(input, tensor1, tensor2, value=1.0, out=None, name=None):
else
:
else
:
out
=
layers
.
elementwise_add
(
input
,
layers
.
elementwise_mul
(
tensor1
,
tensor2
)
*
value
)
out
=
layers
.
elementwise_add
(
input
,
layers
.
elementwise_mul
(
tensor1
,
tensor2
)
*
value
)
return
out
return
out
def
clamp
(
input
,
min
=
None
,
max
=
None
,
output
=
None
,
name
=
None
):
"""
**clampe layer**
This operator clamps all elements in input into the range [ min, max ] and return
a resulting tensor as the following equation:
.. math::
Out = MIN(MAX(x, min), max)
Args:
input (Variable): An input N-D Tensor or LoDTensor
with data type float32, float64.
min (float32|Variable): The lower bound with type ``float32`` or a ``Tensor``
with shape [1] and type ``int32``, ``float32``, ``float64``.
max (float32|Variable): The upper bound with type ``float32`` or a ``Tensor``
with shape [1] and type ``int32``, ``float32``, ``float64``.
output (Variable, optional): A tensor or LoDTensor. If :attr:`output` is None,
a new tensor will be created as :attr:`output`. Default: None.
name (str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Variable: A Tensor or LodTensor with the same data type and data shape as input's.
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy as np
in1 = np.array([[1.2,3.5],
[4.5,6.4]]).astype('float32')
with fluid.dygraph.guard():
x1 = fluid.dygraph.to_variable(in1)
out1 = paddle.tensor.clamp(x1, min=3.5, max=5.0)
out2 = paddle.tensor.clamp(x1, min=2.5)
print(out1.numpy())
# [[3.5, 3.5]
# [4.5, 5.0]]
print(out2.numpy())
# [[2.5, 3.5]
# [[4.5, 6.4]
"""
assert
min
is
not
None
or
max
is
not
None
,
"either min or max should be defined."
if
min
is
not
None
:
check_type
(
min
,
'min'
,
(
float
,
Variable
),
'clamp'
)
if
isinstance
(
min
,
Variable
):
check_dtype
(
min
.
dtype
,
'min'
,
[
'float32'
,
'float64'
,
'int32'
],
'clamp'
,
'(When the type of min in clamp is Variable.)'
)
if
max
is
not
None
:
check_type
(
max
,
'max'
,
(
float
,
Variable
),
'clamp'
)
if
isinstance
(
max
,
Variable
):
check_dtype
(
max
.
dtype
,
'max'
,
[
'float32'
,
'float64'
,
'int32'
],
'clamp'
,
'(When the type of max in clamp is Variable.)'
)
inputs
=
{
'X'
:
input
}
attrs
=
{
'min'
:
sys
.
float_info
.
min
,
'max'
:
sys
.
float_info
.
max
}
if
isinstance
(
min
,
Variable
):
min
.
stop_gradient
=
True
inputs
[
'Min'
]
=
min
elif
min
is
not
None
:
attrs
[
'min'
]
=
min
if
isinstance
(
max
,
Variable
):
max
.
stop_gradient
=
True
inputs
[
'Max'
]
=
max
elif
max
is
not
None
:
attrs
[
'max'
]
=
max
helper
=
LayerHelper
(
'clamp'
,
**
locals
())
if
output
is
None
:
output
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'clip'
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
[
output
]},
attrs
=
attrs
)
return
output
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录