提交 917b205c 编写于 作者: J JiayiFeng

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into kernel_of_increment_op

...@@ -587,6 +587,9 @@ function(grpc_library TARGET_NAME) ...@@ -587,6 +587,9 @@ function(grpc_library TARGET_NAME)
get_filename_component(PROTO_WE ${grpc_library_PROTO} NAME_WE) get_filename_component(PROTO_WE ${grpc_library_PROTO} NAME_WE)
get_filename_component(PROTO_PATH ${ABS_PROTO} PATH) get_filename_component(PROTO_PATH ${ABS_PROTO} PATH)
#FIXME(putcn): the follwoing line is supposed to generate *.pb.h and cc, but
# somehow it didn't. line 602 to 604 is to patching this. Leaving this here
# for now to enable dist CI.
protobuf_generate_cpp(grpc_proto_srcs grpc_proto_hdrs "${ABS_PROTO}") protobuf_generate_cpp(grpc_proto_srcs grpc_proto_hdrs "${ABS_PROTO}")
set(grpc_grpc_srcs "${CMAKE_CURRENT_BINARY_DIR}/${PROTO_WE}.grpc.pb.cc") set(grpc_grpc_srcs "${CMAKE_CURRENT_BINARY_DIR}/${PROTO_WE}.grpc.pb.cc")
set(grpc_grpc_hdrs "${CMAKE_CURRENT_BINARY_DIR}/${PROTO_WE}.grpc.pb.h") set(grpc_grpc_hdrs "${CMAKE_CURRENT_BINARY_DIR}/${PROTO_WE}.grpc.pb.h")
...@@ -597,6 +600,9 @@ function(grpc_library TARGET_NAME) ...@@ -597,6 +600,9 @@ function(grpc_library TARGET_NAME)
COMMAND ${PROTOBUF_PROTOC_EXECUTABLE} COMMAND ${PROTOBUF_PROTOC_EXECUTABLE}
ARGS --grpc_out "${CMAKE_CURRENT_BINARY_DIR}" -I "${PROTO_PATH}" ARGS --grpc_out "${CMAKE_CURRENT_BINARY_DIR}" -I "${PROTO_PATH}"
--plugin=protoc-gen-grpc="${GRPC_CPP_PLUGIN}" "${ABS_PROTO}" --plugin=protoc-gen-grpc="${GRPC_CPP_PLUGIN}" "${ABS_PROTO}"
COMMAND ${PROTOBUF_PROTOC_EXECUTABLE}
ARGS --cpp_out "${CMAKE_CURRENT_BINARY_DIR}" -I "${PROTO_PATH}"
"${ABS_PROTO}"
DEPENDS "${ABS_PROTO}" ${PROTOBUF_PROTOC_EXECUTABLE} extern_grpc) DEPENDS "${ABS_PROTO}" ${PROTOBUF_PROTOC_EXECUTABLE} extern_grpc)
# FIXME(typhoonzero): grpc generated code do not generate virtual-dtor, mark it # FIXME(typhoonzero): grpc generated code do not generate virtual-dtor, mark it
......
...@@ -2,4 +2,15 @@ ...@@ -2,4 +2,15 @@
Cluster Training and Prediction Cluster Training and Prediction
############################### ###############################
TBD .. contents::
1. Network connection errors in the log during multi-node cluster training
------------------------------------------------
There are maybe some errors in the log belonging to network connection problem during multi-node cluster training, for example, :code:`Connection reset by peer`.
This kind of error is usually caused by the abnormal exit of a training process in some node, and the other nodes cannot connect with this node any longer. Steps to troubleshoot the problem are as follows:
* Find the first error in the :code:`train.log`, :code:`server.log`, check whether other fault casued the problem, such as FPE, lacking of memory or disk.
* If the first error in server.log says "Address already used", this may be caused by the port conflict of the non-exclusive execution. Connect the sys-admin to check if the current MPI cluster supports jobs submitted with parameter :code:`resource=full`. If the current MPI cluster does not support this parameter, change the server port and try agian.
* If the current MPI cluster does not support exclusive pattern which allows a process to occupy the whole node, ask the administrator to replace or update the this cluster.
...@@ -147,15 +147,52 @@ void BlockDesc::RemoveOp(size_t s, size_t e) { ...@@ -147,15 +147,52 @@ void BlockDesc::RemoveOp(size_t s, size_t e) {
if (ops_.begin() + s == ops_.end() || ops_.begin() + e == ops_.end()) { if (ops_.begin() + s == ops_.end() || ops_.begin() + e == ops_.end()) {
return; return;
} }
auto get_vars = [](std::deque<std::unique_ptr<OpDesc>>::iterator &op,
std::vector<std::string> &v) {
auto in_names = (*op)->InputArgumentNames();
v.insert(v.end(), in_names.begin(), in_names.end());
auto out_names = (*op)->OutputArgumentNames();
v.insert(v.end(), out_names.begin(), out_names.end());
std::sort(v.begin(), v.end());
auto last = std::unique(v.begin(), v.end());
v.erase(last, v.end());
};
need_update_ = true; need_update_ = true;
for (auto it = ops_.begin() + s; it != ops_.begin() + e; it++) {
auto names = (*it)->InputArgumentNames(); for (size_t i = s; i < e; i++) {
for (auto n : names) { // since remove op one by one, every time remove the first op.
// TODO(typhoonzero): delete vars if no other op use it. auto op = ops_.begin() + s;
VLOG(3) << "deleting var " << n;
// collect input and output variables from current delete op
std::vector<std::string> cur_vars;
get_vars(op, cur_vars);
// remove current op
ops_.erase(ops_.begin() + s);
// collect input and output variables from other ops
std::vector<std::string> other_vars;
for (auto it = ops_.begin(); it != ops_.end(); it++) {
get_vars(it, other_vars);
}
// variables should be deleted
std::vector<std::string> delete_vars;
// delete_vars = cur_vars - cur_vars ^ other_input_vars
std::set_difference(cur_vars.begin(), cur_vars.end(), other_vars.begin(),
other_vars.end(),
std::inserter(delete_vars, delete_vars.end()));
// remove variables
for (size_t i = 0; i < delete_vars.size(); i++) {
auto name = delete_vars[i];
auto it = vars_.find(name);
PADDLE_ENFORCE(it != vars_.end(),
"%s is not in variable list, it should not be deleted",
name);
vars_.erase(it);
VLOG(3) << "deleting variable " << name;
} }
} }
ops_.erase(ops_.begin() + s, ops_.begin() + e);
} }
std::vector<OpDesc *> BlockDesc::AllOps() const { std::vector<OpDesc *> BlockDesc::AllOps() const {
......
...@@ -89,6 +89,11 @@ class BlockDesc { ...@@ -89,6 +89,11 @@ class BlockDesc {
OpDesc *InsertOp(size_t index); OpDesc *InsertOp(size_t index);
/*
* Remove Op and its input/output variables.
* Note that for either input or ouput variable, if it is also an input or
* output variable of other ops, we should remain it.
*/
void RemoveOp(size_t s, size_t e); void RemoveOp(size_t s, size_t e);
std::vector<OpDesc *> AllOps() const; std::vector<OpDesc *> AllOps() const;
......
...@@ -264,3 +264,4 @@ cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor paddle_memor ...@@ -264,3 +264,4 @@ cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor paddle_memor
cc_test(save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op) cc_test(save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op)
cc_test(save_load_combine_op_test SRCS save_load_combine_op_test.cc DEPS save_combine_op load_combine_op) cc_test(save_load_combine_op_test SRCS save_load_combine_op_test.cc DEPS save_combine_op load_combine_op)
nv_test(nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context) nv_test(nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context)
nv_test(dropout_op_test SRCS dropout_op_test.cc DEPS dropout_op tensor)
...@@ -48,6 +48,8 @@ bool ReadRaw(::google::protobuf::io::CodedInputStream* input, ...@@ -48,6 +48,8 @@ bool ReadRaw(::google::protobuf::io::CodedInputStream* input,
void* dest, int size) { void* dest, int size) {
const void* data = NULL; const void* data = NULL;
int size_to_write = 0; int size_to_write = 0;
int length = size;
int total_written = 0;
if (platform::is_gpu_place(place)) { if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
...@@ -56,16 +58,21 @@ bool ReadRaw(::google::protobuf::io::CodedInputStream* input, ...@@ -56,16 +58,21 @@ bool ReadRaw(::google::protobuf::io::CodedInputStream* input,
platform::CPUPlace cpu; platform::CPUPlace cpu;
char* p = reinterpret_cast<char*>(dest); char* p = reinterpret_cast<char*>(dest);
while (size > 0) { while (total_written < length) {
if (!input->GetDirectBufferPointer(&data, &size_to_write)) { if (!input->GetDirectBufferPointer(&data, &size_to_write)) {
return false; return false;
} }
// NOTE: if raw buffer is large and have two neighbor fields of raw
// buffers GetDirectBufferPointer can get all of them, use length to
// truncate it.
if (total_written + size_to_write > length) {
size_to_write = length - total_written;
}
memory::Copy(boost::get<platform::CUDAPlace>(place), memory::Copy(boost::get<platform::CUDAPlace>(place),
reinterpret_cast<void*>(p), cpu, data, size_to_write, reinterpret_cast<void*>(p), cpu, data, size_to_write,
gpu_dev_ctx.stream()); gpu_dev_ctx.stream());
p += size_to_write; p += size_to_write;
size -= size_to_write; total_written += size_to_write;
input->Skip(size_to_write); input->Skip(size_to_write);
} }
...@@ -77,16 +84,21 @@ bool ReadRaw(::google::protobuf::io::CodedInputStream* input, ...@@ -77,16 +84,21 @@ bool ReadRaw(::google::protobuf::io::CodedInputStream* input,
} }
char* p = reinterpret_cast<char*>(dest); char* p = reinterpret_cast<char*>(dest);
while (size > 0) { while (total_written < length) {
if (!input->GetDirectBufferPointer(&data, &size_to_write)) { if (!input->GetDirectBufferPointer(&data, &size_to_write)) {
return false; return false;
} }
// NOTE: if raw buffer is large and have two neighbor fields of raw buffers
// GetDirectBufferPointer can get all of them, use length to truncate it.
if (total_written + size_to_write > length) {
size_to_write = length - total_written;
}
// TODO(gongwb): can we avoid copy? // TODO(gongwb): can we avoid copy?
platform::CPUPlace cpu; platform::CPUPlace cpu;
memory::Copy(cpu, reinterpret_cast<void*>(p), cpu, data, size_to_write); memory::Copy(cpu, reinterpret_cast<void*>(p), cpu, data, size_to_write);
p += size_to_write; p += size_to_write;
size -= size_to_write; total_written += size_to_write;
input->Skip(size_to_write); input->Skip(size_to_write);
} }
...@@ -153,6 +165,7 @@ bool VariableResponse::CopySelectRowsData( ...@@ -153,6 +165,7 @@ bool VariableResponse::CopySelectRowsData(
const platform::DeviceContext& ctx, int length) { const platform::DeviceContext& ctx, int length) {
auto var = scope_->FindVar(meta_.varname()); auto var = scope_->FindVar(meta_.varname());
auto* slr = var->GetMutable<framework::SelectedRows>(); auto* slr = var->GetMutable<framework::SelectedRows>();
slr->mutable_rows()->resize(length / 8); // int64
int64_t* rows_data = slr->mutable_rows()->data(); int64_t* rows_data = slr->mutable_rows()->data();
// copy rows CPU data, GPU data will be copied lazily. // copy rows CPU data, GPU data will be copied lazily.
...@@ -233,7 +246,6 @@ int VariableResponse::Parse(Source* source) { ...@@ -233,7 +246,6 @@ int VariableResponse::Parse(Source* source) {
if (tag != 0) { if (tag != 0) {
return -1; return -1;
} }
return 0; return 0;
} }
......
...@@ -55,9 +55,6 @@ class GPUDropoutKernel : public framework::OpKernel<T> { ...@@ -55,9 +55,6 @@ class GPUDropoutKernel : public framework::OpKernel<T> {
y->mutable_data<T>(context.GetPlace()); y->mutable_data<T>(context.GetPlace());
float dropout_prob = context.Attr<float>("dropout_prob"); float dropout_prob = context.Attr<float>("dropout_prob");
auto X = EigenMatrix<T>::Reshape(*x, 1);
auto Y = EigenMatrix<T>::Reshape(*y, 1);
auto& place = *context.template device_context<Place>().eigen_device(); auto& place = *context.template device_context<Place>().eigen_device();
if (!context.Attr<bool>("is_test")) { if (!context.Attr<bool>("is_test")) {
auto* mask = context.Output<Tensor>("Mask"); auto* mask = context.Output<Tensor>("Mask");
...@@ -76,6 +73,8 @@ class GPUDropoutKernel : public framework::OpKernel<T> { ...@@ -76,6 +73,8 @@ class GPUDropoutKernel : public framework::OpKernel<T> {
T><<<grid, threads, 0, context.cuda_device_context().stream()>>>( T><<<grid, threads, 0, context.cuda_device_context().stream()>>>(
size, seed, dropout_prob, x_data, mask_data, y_data); size, seed, dropout_prob, x_data, mask_data, y_data);
} else { } else {
auto X = EigenMatrix<T>::Reshape(*x, 1);
auto Y = EigenMatrix<T>::Reshape(*y, 1);
Y.device(place) = X * static_cast<T>(1.0f - dropout_prob); Y.device(place) = X * static_cast<T>(1.0f - dropout_prob);
} }
} }
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <unistd.h>
#include <string>
#include <thread>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/string/printf.h"
namespace f = paddle::framework;
namespace p = paddle::platform;
namespace m = paddle::operators::math;
USE_OP(dropout);
void Compare(f::Scope& scope, p::DeviceContext& ctx) {
// init
auto var = scope.Var("X");
auto tensor = var->GetMutable<f::LoDTensor>();
tensor->Resize({10, 10});
std::vector<float> init;
for (int64_t i = 0; i < 10 * 10; ++i) {
init.push_back(1.0);
}
TensorFromVector(init, ctx, tensor);
auto place = ctx.GetPlace();
auto out_var = scope.Var("Out");
auto out_tensor = out_var->GetMutable<f::LoDTensor>();
out_tensor->Resize({10, 10});
out_tensor->mutable_data<float>(place); // allocate
auto mask_var = scope.Var("Mask");
auto mask_tensor = mask_var->GetMutable<f::LoDTensor>();
mask_tensor->Resize({10, 10});
mask_tensor->mutable_data<float>(place); // allocate
// run
f::AttributeMap attrs;
float dropout_prob = 0.5;
attrs.insert({"fix_seed", 1});
attrs.insert({"seed", 3});
attrs.insert({"dropout_prob", dropout_prob});
auto dropout_op = f::OpRegistry::CreateOp(
"dropout", {{"X", {"X"}}}, {{"Out", {"Out"}}, {"Mask", {"Mask"}}}, attrs);
dropout_op->Run(scope, place);
std::vector<float> out_vec;
TensorToVector(*out_tensor, ctx, &out_vec);
std::vector<float> std_out = {
0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1,
1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0,
1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1,
1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0,
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1};
EXPECT_EQ(out_vec.size(), std_out.size());
for (uint32_t i = 0; i < out_vec.size(); i++) {
EXPECT_EQ(out_vec[i], std_out[i]);
}
}
TEST(Dropout, CPUDense) {
f::Scope scope;
p::CPUPlace place;
p::CPUDeviceContext ctx(place);
Compare(scope, ctx);
}
TEST(Dropout, GPUDense) {
f::Scope scope;
p::CUDAPlace place;
p::CUDADeviceContext ctx(place);
Compare(scope, ctx);
}
...@@ -144,7 +144,12 @@ class ParallelDoOp : public framework::OperatorBase { ...@@ -144,7 +144,12 @@ class ParallelDoOp : public framework::OperatorBase {
PADDLE_ENFORCE(scope.FindVar(param)->IsType<LoDTensor>(), PADDLE_ENFORCE(scope.FindVar(param)->IsType<LoDTensor>(),
"Only support parameter type as LoDTensor"); "Only support parameter type as LoDTensor");
auto &src = scope.FindVar(param)->Get<LoDTensor>(); auto &src = scope.FindVar(param)->Get<LoDTensor>();
for (size_t i = 0; i < sub_scopes.size(); ++i) {
auto *sub_scope0 = sub_scopes[0];
auto *dst0 = sub_scope0->Var(param)->GetMutable<LoDTensor>();
dst0->ShareDataWith(src);
for (size_t i = 1; i < sub_scopes.size(); ++i) {
auto &place = places[i]; auto &place = places[i];
auto *sub_scope = sub_scopes[i]; auto *sub_scope = sub_scopes[i];
auto *dst = sub_scope->Var(param)->GetMutable<LoDTensor>(); auto *dst = sub_scope->Var(param)->GetMutable<LoDTensor>();
......
...@@ -153,9 +153,15 @@ if [ $? -ne 0 ]; then ...@@ -153,9 +153,15 @@ if [ $? -ne 0 ]; then
exit 1 exit 1
fi fi
INSTALLED_VERSION=`pip freeze 2>/dev/null | grep '^paddle' | sed 's/.*==//g'` if [ "@WITH_GPU@" == "ON" ]; then
PADDLE_NAME="paddlepaddle-gpu"
else
PADDLE_NAME="paddlepaddle"
fi
INSTALLED_VERSION=`pip freeze 2>/dev/null | grep "^${PADDLE_NAME}==" | sed 's/.*==//g'`
if [ -z ${INSTALLED_VERSION} ]; then if [ -z "${INSTALLED_VERSION}" ]; then
INSTALLED_VERSION="0.0.0" # not installed INSTALLED_VERSION="0.0.0" # not installed
fi fi
cat <<EOF | python - cat <<EOF | python -
......
...@@ -134,6 +134,7 @@ def detection_output(loc, ...@@ -134,6 +134,7 @@ def detection_output(loc,
scores = nn.softmax(input=scores) scores = nn.softmax(input=scores)
scores = ops.reshape(x=scores, shape=old_shape) scores = ops.reshape(x=scores, shape=old_shape)
scores = nn.transpose(scores, perm=[0, 2, 1]) scores = nn.transpose(scores, perm=[0, 2, 1])
scores.stop_gradient = True
nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype) nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype)
helper.append_op( helper.append_op(
type="multiclass_nms", type="multiclass_nms",
...@@ -148,6 +149,7 @@ def detection_output(loc, ...@@ -148,6 +149,7 @@ def detection_output(loc,
'score_threshold': score_threshold, 'score_threshold': score_threshold,
'nms_eta': 1.0 'nms_eta': 1.0
}) })
nmsed_outs.stop_gradient = True
return nmsed_outs return nmsed_outs
...@@ -837,4 +839,6 @@ def multi_box_head(inputs, ...@@ -837,4 +839,6 @@ def multi_box_head(inputs,
mbox_locs_concat = tensor.concat(mbox_locs, axis=1) mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
mbox_confs_concat = tensor.concat(mbox_confs, axis=1) mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
box.stop_gradient = True
var.stop_gradient = True
return mbox_locs_concat, mbox_confs_concat, box, var return mbox_locs_concat, mbox_confs_concat, box, var
...@@ -1483,6 +1483,7 @@ def batch_norm(input, ...@@ -1483,6 +1483,7 @@ def batch_norm(input,
param_attr=None, param_attr=None,
bias_attr=None, bias_attr=None,
data_layout='NCHW', data_layout='NCHW',
in_place=False,
name=None, name=None,
moving_mean_name=None, moving_mean_name=None,
moving_variance_name=None): moving_variance_name=None):
...@@ -1538,7 +1539,7 @@ def batch_norm(input, ...@@ -1538,7 +1539,7 @@ def batch_norm(input,
saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True) saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True) saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
batch_norm_out = helper.create_tmp_variable(dtype) batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
helper.append_op( helper.append_op(
type="batch_norm", type="batch_norm",
......
...@@ -98,7 +98,7 @@ def img_conv_group(input, ...@@ -98,7 +98,7 @@ def img_conv_group(input,
use_mkldnn=use_mkldnn) use_mkldnn=use_mkldnn)
if conv_with_batchnorm[i]: if conv_with_batchnorm[i]:
tmp = layers.batch_norm(input=tmp, act=conv_act) tmp = layers.batch_norm(input=tmp, act=conv_act, in_place=True)
drop_rate = conv_batchnorm_drop_rate[i] drop_rate = conv_batchnorm_drop_rate[i]
if abs(drop_rate) > 1e-5: if abs(drop_rate) > 1e-5:
tmp = layers.dropout(x=tmp, dropout_prob=drop_rate) tmp = layers.dropout(x=tmp, dropout_prob=drop_rate)
......
...@@ -186,6 +186,34 @@ class TestBlockDesc(unittest.TestCase): ...@@ -186,6 +186,34 @@ class TestBlockDesc(unittest.TestCase):
all_ops.append(block.op(idx)) all_ops.append(block.op(idx))
self.assertEqual(all_ops, [op0, op1, op2]) self.assertEqual(all_ops, [op0, op1, op2])
def test_remove_op(self):
prog = core.ProgramDesc()
self.assertIsNotNone(prog)
block = prog.block(0)
self.assertIsNotNone(block)
op1 = block.append_op()
op2 = block.append_op()
var1 = block.var("var1")
var2 = block.var("var2")
var3 = block.var("var3")
var4 = block.var("var4")
var5 = block.var("var5")
op1.set_input("X", ["var1", "var2"])
op1.set_output("Y", ["var3", "var4"])
op2.set_input("X", ["var1"])
op2.set_output("Y", ["var4", "var5"])
# remove op1, its input var2 and output var3 will be removed at the same time,
# but its input var1 and output var4 will not be removed since they are used for op2.
block.remove_op(0, 1)
all_ops = []
for idx in xrange(0, block.op_size()):
all_ops.append(block.op(idx))
self.assertEqual(all_ops, [op2])
all_vars = block.all_vars()
self.assertEqual(set(all_vars), {var1, var4, var5})
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -77,7 +77,7 @@ class SoftmaxActivation(BaseActivation): ...@@ -77,7 +77,7 @@ class SoftmaxActivation(BaseActivation):
.. math:: .. math::
P(y=j|x) = \\frac{e^{x_j}} {\\sum^K_{k=1} e^{x_j} } P(y=j|x) = \\frac{e^{x_j}} {\\sum^K_{k=1} e^{x_k} }
""" """
def __init__(self): def __init__(self):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册