Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
917235be
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
917235be
编写于
7月 13, 2022
作者:
Z
zhangyikun02
提交者:
GitHub
7月 13, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ResNetBasicBlock python api for kunlun, test=kunlun (#44171)
上级
cb4eea92
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
763 addition
and
12 deletion
+763
-12
paddle/fluid/operators/fused/resnet_basic_block_op_xpu.cc
paddle/fluid/operators/fused/resnet_basic_block_op_xpu.cc
+4
-8
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+2
-4
python/paddle/fluid/tests/unittests/xpu/test_fused_resnet_basic_block_op_xpu.py
...sts/unittests/xpu/test_fused_resnet_basic_block_op_xpu.py
+272
-0
python/paddle/incubate/__init__.py
python/paddle/incubate/__init__.py
+1
-0
python/paddle/incubate/xpu/__init__.py
python/paddle/incubate/xpu/__init__.py
+15
-0
python/paddle/incubate/xpu/resnet_block.py
python/paddle/incubate/xpu/resnet_block.py
+468
-0
python/setup.py.in
python/setup.py.in
+1
-0
未找到文件。
paddle/fluid/operators/fused/resnet_basic_block_op_xpu.cc
浏览文件 @
917235be
...
...
@@ -959,12 +959,8 @@ class ResNetBasicBlockGradXPUKernel : public framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_XPU_KERNEL
(
resnet_basic_block
,
ops
::
ResNetBasicBlockXPUKernel
<
float
>
,
ops
::
ResNetBasicBlockXPUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
resnet_basic_block_grad
,
ops
::
ResNetBasicBlockGradXPUKernel
<
float
>
,
ops
::
ResNetBasicBlockGradXPUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
resnet_basic_block
,
ops
::
ResNetBasicBlockXPUKernel
<
float
>
);
REGISTER_OP_XPU_KERNEL
(
resnet_basic_block_grad
,
ops
::
ResNetBasicBlockGradXPUKernel
<
float
>
);
#endif
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
917235be
...
...
@@ -519,11 +519,9 @@ XPUOpMap& get_kl2_ops() {
// Fused op
{
"resnet_basic_block_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"resnet_basic_block"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
};
return
s_xpu2_kernels
;
...
...
python/paddle/fluid/tests/unittests/xpu/test_fused_resnet_basic_block_op_xpu.py
0 → 100644
浏览文件 @
917235be
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
sys
sys
.
path
.
append
(
".."
)
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.nn
as
nn
from
paddle.fluid
import
core
from
paddle.incubate.xpu.resnet_block
import
ResNetBasicBlock
from
paddle.fluid.framework
import
default_main_program
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
class
XPUTestResNetBasicBlockOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
"resnet_basic_block"
self
.
use_dynamic_create_class
=
False
class
TestResNetBasicBlockOp
(
OpTest
):
def
setUp
(
self
):
paddle
.
disable_static
()
self
.
dtype
=
self
.
in_type
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
__class__
.
op_type
=
"resnet_basic_block"
self
.
__class__
.
no_need_check_grad
=
True
self
.
getShape
()
self
.
getDiff
()
self
.
getShortcut
()
paddle
.
set_default_dtype
(
self
.
dtype
)
self
.
src
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
self
.
dout
=
np
.
random
.
random
(
self
.
output_size
).
astype
(
self
.
dtype
)
def
getShape
(
self
):
self
.
in_channels
=
8
self
.
out_channels
=
8
self
.
stride
=
1
self
.
input_size
=
[
2
,
8
,
32
,
32
]
# NCHW
self
.
output_size
=
[
2
,
8
,
32
,
32
]
# NCHW
def
getDiff
(
self
):
self
.
rtol
=
1e-3
self
.
atol
=
1e-3
def
getShortcut
(
self
):
self
.
has_shortcut
=
False
def
Base
(
self
):
paddle
.
disable_static
()
conv1_weight
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Xavier
(
uniform
=
False
),
learning_rate
=
0.001
)
conv2_weight
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Xavier
(
uniform
=
False
),
learning_rate
=
0.001
)
conv3_weight
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Xavier
(
uniform
=
False
),
learning_rate
=
0.001
)
bn1_weight
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
))
bn1_bias
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
bn2_weight
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
))
bn2_bias
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
bn3_weight
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
))
bn3_bias
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
self
.
conv1
=
nn
.
Conv2D
(
in_channels
=
self
.
in_channels
,
out_channels
=
self
.
out_channels
,
kernel_size
=
3
,
stride
=
self
.
stride
,
padding
=
1
,
weight_attr
=
conv1_weight
,
bias_attr
=
None
,
data_format
=
'NCHW'
)
self
.
bn1
=
nn
.
BatchNorm
(
self
.
out_channels
,
act
=
'relu'
,
param_attr
=
bn1_weight
,
bias_attr
=
bn1_bias
,
data_layout
=
'NCHW'
)
self
.
conv2
=
nn
.
Conv2D
(
in_channels
=
self
.
out_channels
,
out_channels
=
self
.
out_channels
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
weight_attr
=
conv2_weight
,
bias_attr
=
None
,
data_format
=
'NCHW'
)
self
.
bn2
=
nn
.
BatchNorm
(
self
.
out_channels
,
act
=
None
,
param_attr
=
bn2_weight
,
bias_attr
=
bn2_bias
,
data_layout
=
'NCHW'
)
self
.
conv3
=
nn
.
Conv2D
(
in_channels
=
self
.
in_channels
,
out_channels
=
self
.
out_channels
,
kernel_size
=
1
,
stride
=
self
.
stride
,
padding
=
0
,
weight_attr
=
conv3_weight
,
bias_attr
=
None
,
data_format
=
'NCHW'
)
self
.
bn3
=
nn
.
BatchNorm
(
self
.
out_channels
,
act
=
None
,
param_attr
=
bn3_weight
,
bias_attr
=
bn3_bias
,
data_layout
=
'NCHW'
)
self
.
relu
=
nn
.
ReLU
()
tensor_src
=
paddle
.
to_tensor
(
self
.
src
,
stop_gradient
=
False
)
if
self
.
has_shortcut
:
z_out
=
self
.
bn3
(
self
.
conv3
(
tensor_src
))
else
:
z_out
=
tensor_src
bn1_out
=
self
.
bn1
(
self
.
conv1
(
tensor_src
))
bn2_out
=
self
.
bn2
(
self
.
conv2
(
bn1_out
))
result
=
self
.
relu
(
bn2_out
+
z_out
)
paddle
.
autograd
.
backward
([
result
],
[
paddle
.
to_tensor
(
self
.
dout
)],
True
)
return
result
,
tensor_src
.
grad
def
FusedResNetBasicBlock
(
self
):
paddle
.
disable_static
()
fused_conv1_weight
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Xavier
(
uniform
=
False
),
learning_rate
=
0.001
)
fused_conv2_weight
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Xavier
(
uniform
=
False
),
learning_rate
=
0.001
)
fused_conv3_weight
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Xavier
(
uniform
=
False
),
learning_rate
=
0.001
)
fused_bn1_weight
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
))
fused_bn1_bias
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
fused_bn2_weight
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
))
fused_bn2_bias
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
fused_bn3_weight
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
))
fused_bn3_bias
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
if
self
.
has_shortcut
:
self
.
resnet_basic_block
=
ResNetBasicBlock
(
num_channels1
=
self
.
in_channels
,
num_filter1
=
self
.
out_channels
,
filter1_size
=
3
,
num_channels2
=
self
.
out_channels
,
num_filter2
=
self
.
out_channels
,
filter2_size
=
3
,
num_channels3
=
self
.
in_channels
,
num_filter3
=
self
.
out_channels
,
filter3_size
=
1
,
filter1_attr
=
fused_conv1_weight
,
scale1_attr
=
fused_bn1_weight
,
bias1_attr
=
fused_bn1_bias
,
filter2_attr
=
fused_conv2_weight
,
scale2_attr
=
fused_bn2_weight
,
bias2_attr
=
fused_bn2_bias
,
filter3_attr
=
fused_conv3_weight
,
scale3_attr
=
fused_bn3_weight
,
bias3_attr
=
fused_bn3_bias
,
stride1
=
self
.
stride
,
stride2
=
1
,
stride3
=
self
.
stride
,
act
=
'relu'
,
padding1
=
1
,
padding2
=
1
,
padding3
=
0
,
has_shortcut
=
True
)
else
:
self
.
resnet_basic_block
=
ResNetBasicBlock
(
num_channels1
=
self
.
in_channels
,
num_filter1
=
self
.
out_channels
,
filter1_size
=
3
,
num_channels2
=
self
.
out_channels
,
num_filter2
=
self
.
out_channels
,
filter2_size
=
3
,
num_channels3
=
self
.
in_channels
,
num_filter3
=
self
.
out_channels
,
filter3_size
=
1
,
filter1_attr
=
fused_conv1_weight
,
scale1_attr
=
fused_bn1_weight
,
bias1_attr
=
fused_bn1_bias
,
filter2_attr
=
fused_conv2_weight
,
scale2_attr
=
fused_bn2_weight
,
bias2_attr
=
fused_bn2_bias
,
filter3_attr
=
fused_conv3_weight
,
scale3_attr
=
fused_bn3_weight
,
bias3_attr
=
fused_bn3_bias
,
stride1
=
self
.
stride
,
stride2
=
1
,
stride3
=
self
.
stride
,
act
=
'relu'
,
padding1
=
1
,
padding2
=
1
,
padding3
=
1
,
has_shortcut
=
False
)
x
=
paddle
.
to_tensor
(
self
.
src
,
stop_gradient
=
False
)
out
=
self
.
resnet_basic_block
.
forward
(
x
)
paddle
.
autograd
.
backward
([
out
],
[
paddle
.
to_tensor
(
self
.
dout
)])
return
out
,
x
.
grad
def
test_out_and_grad_has_shortcut
(
self
):
self
.
has_shortcut
=
True
default_main_program
().
random_seed
=
1
base_out
,
base_grad
=
self
.
Base
()
fused_out
,
fused_grad
=
self
.
FusedResNetBasicBlock
()
np
.
testing
.
assert_allclose
(
base_out
.
numpy
(),
fused_out
.
numpy
(),
rtol
=
self
.
rtol
,
atol
=
self
.
atol
)
np
.
testing
.
assert_allclose
(
base_grad
.
numpy
(),
fused_grad
.
numpy
(),
rtol
=
self
.
rtol
,
atol
=
self
.
atol
)
def
test_out_and_grad
(
self
):
self
.
has_shortcut
=
False
default_main_program
().
random_seed
=
1
base_out
,
base_grad
=
self
.
Base
()
fused_out
,
fused_grad
=
self
.
FusedResNetBasicBlock
()
np
.
testing
.
assert_allclose
(
base_out
.
numpy
(),
fused_out
.
numpy
(),
rtol
=
self
.
rtol
,
atol
=
self
.
atol
)
np
.
testing
.
assert_allclose
(
base_grad
.
numpy
(),
fused_grad
.
numpy
(),
rtol
=
self
.
rtol
,
atol
=
self
.
atol
)
support_types
=
get_xpu_op_support_types
(
'resnet_basic_block'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestResNetBasicBlockOp
,
stype
,
ignore_deivce_version
=
[
core
.
XPUVersion
.
XPU1
])
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/incubate/__init__.py
浏览文件 @
917235be
...
...
@@ -38,6 +38,7 @@ from . import asp #noqa: F401
from
..fluid.layers.loss
import
identity_loss
from
..fluid.incubate
import
fleet
from
.
import
xpu
__all__
=
[
'LookAhead'
,
...
...
python/paddle/incubate/xpu/__init__.py
0 → 100644
浏览文件 @
917235be
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.resnet_block
import
ResNetBasicBlock
python/paddle/incubate/xpu/resnet_block.py
0 → 100644
浏览文件 @
917235be
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
copy
import
collections
import
itertools
import
six
import
math
import
sys
import
warnings
from
functools
import
partial
,
reduce
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle
import
framework
from
paddle.nn
import
initializer
as
I
from
paddle.nn
import
Layer
,
LayerList
from
paddle.fluid.layers
import
utils
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.data_feeder
import
convert_dtype
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle
import
_C_ops
__all__
=
[
'resnet_basic_block'
,
'ResNetBasicBlock'
]
def
resnet_basic_block
(
x
,
filter1
,
scale1
,
bias1
,
mean1
,
var1
,
filter2
,
scale2
,
bias2
,
mean2
,
var2
,
filter3
,
scale3
,
bias3
,
mean3
,
var3
,
stride1
,
stride2
,
stride3
,
padding1
,
padding2
,
padding3
,
dilation1
,
dilation2
,
dilation3
,
groups
,
momentum
,
eps
,
data_format
,
has_shortcut
,
use_global_stats
=
None
,
training
=
False
,
trainable_statistics
=
False
,
find_conv_max
=
True
):
if
fluid
.
framework
.
in_dygraph_mode
():
attrs
=
(
'stride1'
,
stride1
,
'stride2'
,
stride2
,
'stride3'
,
stride3
,
'padding1'
,
padding1
,
'padding2'
,
padding2
,
'padding3'
,
padding3
,
'dilation1'
,
dilation1
,
'dilation2'
,
dilation2
,
'dilation3'
,
dilation3
,
'group'
,
groups
,
'momentum'
,
momentum
,
'epsilon'
,
eps
,
'data_format'
,
data_format
,
'has_shortcut'
,
has_shortcut
,
'use_global_stats'
,
use_global_stats
,
"trainable_statistics"
,
trainable_statistics
,
'is_test'
,
not
training
,
'act_type'
,
"relu"
,
'find_conv_input_max'
,
find_conv_max
)
out
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
=
\
getattr
(
_C_ops
,
"resnet_basic_block"
)(
x
,
filter1
,
scale1
,
bias1
,
mean1
,
var1
,
filter2
,
scale2
,
bias2
,
mean2
,
var2
,
\
filter3
,
scale3
,
bias3
,
mean3
,
var3
,
mean1
,
var1
,
mean2
,
var2
,
mean3
,
var3
,
*
attrs
)
return
out
helper
=
LayerHelper
(
'resnet_basic_block'
,
**
locals
())
bn_param_dtype
=
fluid
.
core
.
VarDesc
.
VarType
.
FP32
max_dtype
=
fluid
.
core
.
VarDesc
.
VarType
.
FP32
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
,
stop_gradient
=
True
)
conv1
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
,
stop_gradient
=
True
)
saved_mean1
=
helper
.
create_variable_for_type_inference
(
dtype
=
bn_param_dtype
,
stop_gradient
=
True
)
saved_invstd1
=
helper
.
create_variable_for_type_inference
(
dtype
=
bn_param_dtype
,
stop_gradient
=
True
)
running_mean1
=
helper
.
create_variable_for_type_inference
(
dtype
=
bn_param_dtype
,
stop_gradient
=
True
)
if
mean1
is
None
else
mean1
running_var1
=
helper
.
create_variable_for_type_inference
(
dtype
=
bn_param_dtype
,
stop_gradient
=
True
)
if
var1
is
None
else
var1
conv2
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
,
stop_gradient
=
True
)
conv2_input
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
,
stop_gradient
=
True
)
saved_mean2
=
helper
.
create_variable_for_type_inference
(
dtype
=
bn_param_dtype
,
stop_gradient
=
True
)
saved_invstd2
=
helper
.
create_variable_for_type_inference
(
dtype
=
bn_param_dtype
,
stop_gradient
=
True
)
running_mean2
=
helper
.
create_variable_for_type_inference
(
dtype
=
bn_param_dtype
,
stop_gradient
=
True
)
if
mean2
is
None
else
mean2
running_var2
=
helper
.
create_variable_for_type_inference
(
dtype
=
bn_param_dtype
,
stop_gradient
=
True
)
if
var2
is
None
else
var2
conv3
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
,
stop_gradient
=
True
)
saved_mean3
=
helper
.
create_variable_for_type_inference
(
dtype
=
bn_param_dtype
,
stop_gradient
=
True
)
saved_invstd3
=
helper
.
create_variable_for_type_inference
(
dtype
=
bn_param_dtype
,
stop_gradient
=
True
)
running_mean3
=
helper
.
create_variable_for_type_inference
(
dtype
=
bn_param_dtype
,
stop_gradient
=
True
)
if
mean3
is
None
else
mean3
running_var3
=
helper
.
create_variable_for_type_inference
(
dtype
=
bn_param_dtype
,
stop_gradient
=
True
)
if
var3
is
None
else
var3
conv1_input_max
=
helper
.
create_variable_for_type_inference
(
dtype
=
max_dtype
,
stop_gradient
=
True
)
conv1_filter_max
=
helper
.
create_variable_for_type_inference
(
dtype
=
max_dtype
,
stop_gradient
=
True
)
conv2_input_max
=
helper
.
create_variable_for_type_inference
(
dtype
=
max_dtype
,
stop_gradient
=
True
)
conv2_filter_max
=
helper
.
create_variable_for_type_inference
(
dtype
=
max_dtype
,
stop_gradient
=
True
)
conv3_input_max
=
helper
.
create_variable_for_type_inference
(
dtype
=
max_dtype
,
stop_gradient
=
True
)
conv3_filter_max
=
helper
.
create_variable_for_type_inference
(
dtype
=
max_dtype
,
stop_gradient
=
True
)
inputs
=
{
'X'
:
x
,
'Filter1'
:
filter1
,
'Scale1'
:
scale1
,
'Bias1'
:
bias1
,
'Mean1'
:
mean1
,
'Var1'
:
var1
,
'Filter2'
:
filter2
,
'Scale2'
:
scale2
,
'Bias2'
:
bias2
,
'Mean2'
:
mean2
,
'Var2'
:
var2
,
'Filter3'
:
filter3
,
'Scale3'
:
scale3
,
'Bias3'
:
bias3
,
'Mean3'
:
mean3
,
'Var3'
:
var3
,
}
attrs
=
{
'stride1'
:
stride1
,
'stride2'
:
stride2
,
'stride3'
:
stride3
,
'padding1'
:
padding1
,
'padding2'
:
padding2
,
'padding3'
:
padding3
,
'dilation1'
:
dilation1
,
'dilation2'
:
dilation2
,
'dilation3'
:
dilation3
,
'group'
:
groups
,
'momentum'
:
momentum
,
'epsilon'
:
eps
,
'data_format'
:
data_format
,
'has_shortcut'
:
has_shortcut
,
'use_global_stats'
:
use_global_stats
,
"trainable_statistics"
:
trainable_statistics
,
'is_test'
:
not
training
,
'act_type'
:
"relu"
,
'find_conv_input_max'
:
find_conv_max
}
outputs
=
{
'Y'
:
out
,
'Conv1'
:
conv1
,
'SavedMean1'
:
saved_mean1
,
'SavedInvstd1'
:
saved_invstd1
,
'Mean1Out'
:
running_mean1
,
'Var1Out'
:
running_var1
,
'Conv2'
:
conv2
,
'SavedMean2'
:
saved_mean2
,
'SavedInvstd2'
:
saved_invstd2
,
'Mean2Out'
:
running_mean2
,
'Var2Out'
:
running_var2
,
'Conv2Input'
:
conv2_input
,
'Conv3'
:
conv3
,
'SavedMean3'
:
saved_mean3
,
'SavedInvstd3'
:
saved_invstd3
,
'Mean3Out'
:
running_mean3
,
'Var3Out'
:
running_var3
,
'MaxInput1'
:
conv1_input_max
,
'MaxFilter1'
:
conv1_filter_max
,
'MaxInput2'
:
conv2_input_max
,
'MaxFilter2'
:
conv2_filter_max
,
'MaxInput3'
:
conv3_input_max
,
'MaxFilter3'
:
conv3_filter_max
,
}
helper
.
append_op
(
type
=
'resnet_basic_block'
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
return
out
class
ResNetBasicBlock
(
Layer
):
"""
ResNetBasicBlock is designed for optimize the performence of the basic unit of ssd resnet block.
The fusion op architecture like this:
has_shortcut = True: else:
X X
/ /
| | | |
CONV1 | CONV1 |
| | | |
BN1 | BN1 |
| | | |
RELU1 | RELU1 |
| | | |
CONV2 CONV3 CONV2 |
| | | |
BN2 BN3 BN2 |
\ / \ /
ADD ADD
| |
RELU RELU
| |
Y Y
"""
def
__init__
(
self
,
num_channels1
,
num_filter1
,
filter1_size
,
num_channels2
,
num_filter2
,
filter2_size
,
num_channels3
,
num_filter3
,
filter3_size
,
stride1
=
1
,
stride2
=
1
,
stride3
=
1
,
act
=
'relu'
,
momentum
=
0.9
,
eps
=
1e-5
,
data_format
=
'NCHW'
,
has_shortcut
=
False
,
use_global_stats
=
False
,
is_test
=
False
,
filter1_attr
=
None
,
scale1_attr
=
None
,
bias1_attr
=
None
,
moving_mean1_name
=
None
,
moving_var1_name
=
None
,
filter2_attr
=
None
,
scale2_attr
=
None
,
bias2_attr
=
None
,
moving_mean2_name
=
None
,
moving_var2_name
=
None
,
filter3_attr
=
None
,
scale3_attr
=
None
,
bias3_attr
=
None
,
moving_mean3_name
=
None
,
moving_var3_name
=
None
,
padding1
=
0
,
padding2
=
0
,
padding3
=
0
,
dilation1
=
1
,
dilation2
=
1
,
dilation3
=
1
,
trainable_statistics
=
False
,
find_conv_max
=
True
):
super
(
ResNetBasicBlock
,
self
).
__init__
()
self
.
_stride1
=
stride1
self
.
_stride2
=
stride2
self
.
_kernel1_size
=
utils
.
convert_to_list
(
filter1_size
,
2
,
'filter1_size'
)
self
.
_kernel2_size
=
utils
.
convert_to_list
(
filter2_size
,
2
,
'filter2_size'
)
self
.
_dilation1
=
dilation1
self
.
_dilation2
=
dilation2
self
.
_padding1
=
padding1
self
.
_padding2
=
padding2
self
.
_groups
=
1
self
.
_momentum
=
momentum
self
.
_eps
=
eps
self
.
_data_format
=
data_format
self
.
_act
=
act
self
.
_has_shortcut
=
has_shortcut
self
.
_use_global_stats
=
use_global_stats
self
.
_is_test
=
is_test
self
.
_trainable_statistics
=
trainable_statistics
self
.
_find_conv_max
=
find_conv_max
if
has_shortcut
:
self
.
_kernel3_size
=
utils
.
convert_to_list
(
filter3_size
,
2
,
'filter3_size'
)
self
.
_padding3
=
padding3
self
.
_stride3
=
stride3
self
.
_dilation3
=
dilation3
else
:
self
.
_kernel3_size
=
None
self
.
_padding3
=
1
self
.
_stride3
=
1
self
.
_dilation3
=
1
# check format
valid_format
=
{
'NCHW'
}
if
data_format
not
in
valid_format
:
raise
ValueError
(
"conv_format must be one of {}, but got conv_format={}"
.
format
(
valid_format
,
data_format
))
def
_get_default_param_initializer
(
channels
,
kernel_size
):
filter_elem_num
=
np
.
prod
(
kernel_size
)
*
channels
std
=
(
2.0
/
filter_elem_num
)
**
0.5
return
I
.
Normal
(
0.0
,
std
)
# init filter
bn_param_dtype
=
fluid
.
core
.
VarDesc
.
VarType
.
FP32
bn1_param_shape
=
[
1
,
1
,
num_filter1
]
bn2_param_shape
=
[
1
,
1
,
num_filter2
]
filter1_shape
=
[
num_filter1
,
num_channels1
,
filter1_size
,
filter1_size
]
filter2_shape
=
[
num_filter2
,
num_channels2
,
filter2_size
,
filter2_size
]
self
.
filter_1
=
self
.
create_parameter
(
shape
=
filter1_shape
,
attr
=
filter1_attr
,
default_initializer
=
_get_default_param_initializer
(
num_channels1
,
self
.
_kernel1_size
))
self
.
scale_1
=
self
.
create_parameter
(
shape
=
bn1_param_shape
,
attr
=
scale1_attr
,
dtype
=
bn_param_dtype
,
default_initializer
=
I
.
Constant
(
1.0
))
self
.
bias_1
=
self
.
create_parameter
(
shape
=
bn1_param_shape
,
attr
=
bias1_attr
,
dtype
=
bn_param_dtype
,
is_bias
=
True
)
self
.
mean_1
=
self
.
create_parameter
(
attr
=
ParamAttr
(
name
=
moving_mean1_name
,
initializer
=
I
.
Constant
(
0.0
),
trainable
=
False
),
shape
=
bn1_param_shape
,
dtype
=
bn_param_dtype
)
self
.
mean_1
.
stop_gradient
=
True
self
.
var_1
=
self
.
create_parameter
(
attr
=
ParamAttr
(
name
=
moving_var1_name
,
initializer
=
I
.
Constant
(
1.0
),
trainable
=
False
),
shape
=
bn1_param_shape
,
dtype
=
bn_param_dtype
)
self
.
var_1
.
stop_gradient
=
True
self
.
filter_2
=
self
.
create_parameter
(
shape
=
filter2_shape
,
attr
=
filter2_attr
,
default_initializer
=
_get_default_param_initializer
(
num_channels2
,
self
.
_kernel2_size
))
self
.
scale_2
=
self
.
create_parameter
(
shape
=
bn2_param_shape
,
attr
=
scale2_attr
,
dtype
=
bn_param_dtype
,
default_initializer
=
I
.
Constant
(
1.0
))
self
.
bias_2
=
self
.
create_parameter
(
shape
=
bn2_param_shape
,
attr
=
bias2_attr
,
dtype
=
bn_param_dtype
,
is_bias
=
True
)
self
.
mean_2
=
self
.
create_parameter
(
attr
=
ParamAttr
(
name
=
moving_mean2_name
,
initializer
=
I
.
Constant
(
0.0
),
trainable
=
False
),
shape
=
bn2_param_shape
,
dtype
=
bn_param_dtype
)
self
.
mean_2
.
stop_gradient
=
True
self
.
var_2
=
self
.
create_parameter
(
attr
=
ParamAttr
(
name
=
moving_var2_name
,
initializer
=
I
.
Constant
(
1.0
),
trainable
=
False
),
shape
=
bn2_param_shape
,
dtype
=
bn_param_dtype
)
self
.
var_2
.
stop_gradient
=
True
if
has_shortcut
:
bn3_param_shape
=
[
1
,
1
,
num_filter3
]
filter3_shape
=
[
num_filter3
,
num_channels3
,
filter3_size
,
filter3_size
]
self
.
filter_3
=
self
.
create_parameter
(
shape
=
filter3_shape
,
attr
=
filter3_attr
,
default_initializer
=
_get_default_param_initializer
(
num_channels3
,
self
.
_kernel3_size
))
self
.
scale_3
=
self
.
create_parameter
(
shape
=
bn3_param_shape
,
attr
=
scale3_attr
,
dtype
=
bn_param_dtype
,
default_initializer
=
I
.
Constant
(
1.0
))
self
.
bias_3
=
self
.
create_parameter
(
shape
=
bn3_param_shape
,
attr
=
bias3_attr
,
dtype
=
bn_param_dtype
,
is_bias
=
True
)
self
.
mean_3
=
self
.
create_parameter
(
attr
=
ParamAttr
(
name
=
moving_mean3_name
,
initializer
=
I
.
Constant
(
0.0
),
trainable
=
False
),
shape
=
bn3_param_shape
,
dtype
=
bn_param_dtype
)
self
.
mean_3
.
stop_gradient
=
True
self
.
var_3
=
self
.
create_parameter
(
attr
=
ParamAttr
(
name
=
moving_var3_name
,
initializer
=
I
.
Constant
(
1.0
),
trainable
=
False
),
shape
=
bn3_param_shape
,
dtype
=
bn_param_dtype
)
self
.
var_3
.
stop_gradient
=
True
else
:
self
.
filter_3
=
None
self
.
scale_3
=
None
self
.
bias_3
=
None
self
.
mean_3
=
None
self
.
var_3
=
None
def
forward
(
self
,
x
):
out
=
resnet_basic_block
(
x
,
self
.
filter_1
,
self
.
scale_1
,
self
.
bias_1
,
self
.
mean_1
,
self
.
var_1
,
self
.
filter_2
,
self
.
scale_2
,
self
.
bias_2
,
self
.
mean_2
,
self
.
var_2
,
self
.
filter_3
,
self
.
scale_3
,
self
.
bias_3
,
self
.
mean_3
,
self
.
var_3
,
self
.
_stride1
,
self
.
_stride2
,
self
.
_stride3
,
self
.
_padding1
,
self
.
_padding2
,
self
.
_padding3
,
self
.
_dilation1
,
self
.
_dilation2
,
self
.
_dilation3
,
self
.
_groups
,
self
.
_momentum
,
self
.
_eps
,
self
.
_data_format
,
self
.
_has_shortcut
,
use_global_stats
=
self
.
_use_global_stats
,
training
=
self
.
training
,
trainable_statistics
=
self
.
_trainable_statistics
,
find_conv_max
=
self
.
_find_conv_max
)
return
out
python/setup.py.in
浏览文件 @
917235be
...
...
@@ -379,6 +379,7 @@ packages=['paddle',
'paddle.incubate.sparse.nn',
'paddle.incubate.sparse.nn.layer',
'paddle.incubate.sparse.nn.functional',
'paddle.incubate.xpu',
'paddle.io',
'paddle.optimizer',
'paddle.nn',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录