未验证 提交 8fc1cf60 编写于 作者: S shangliang Xu 提交者: GitHub

add matrix_nms in python/paddle/vision/ops.py (#44357)

上级 ea91ca2f
...@@ -19,6 +19,7 @@ import copy ...@@ -19,6 +19,7 @@ import copy
from op_test import OpTest from op_test import OpTest
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid import Program, program_guard from paddle.fluid import Program, program_guard
import paddle
def softmax(x): def softmax(x):
...@@ -237,22 +238,22 @@ class TestMatrixNMSOpGaussian(TestMatrixNMSOp): ...@@ -237,22 +238,22 @@ class TestMatrixNMSOpGaussian(TestMatrixNMSOp):
class TestMatrixNMSError(unittest.TestCase): class TestMatrixNMSError(unittest.TestCase):
def test_errors(self): def test_errors(self):
with program_guard(Program(), Program()): M = 1200
M = 1200 N = 7
N = 7 C = 21
C = 21 BOX_SIZE = 4
BOX_SIZE = 4 nms_top_k = 400
nms_top_k = 400 keep_top_k = 200
keep_top_k = 200 score_threshold = 0.01
score_threshold = 0.01 post_threshold = 0.
post_threshold = 0.
boxes_np = np.random.random((M, C, BOX_SIZE)).astype('float32')
scores = np.random.random((N * M, C)).astype('float32')
scores = np.apply_along_axis(softmax, 1, scores)
scores = np.reshape(scores, (N, M, C))
scores_np = np.transpose(scores, (0, 2, 1))
boxes_np = np.random.random((M, C, BOX_SIZE)).astype('float32')
scores = np.random.random((N * M, C)).astype('float32')
scores = np.apply_along_axis(softmax, 1, scores)
scores = np.reshape(scores, (N, M, C))
scores_np = np.transpose(scores, (0, 2, 1))
with program_guard(Program(), Program()):
boxes_data = fluid.data(name='bboxes', boxes_data = fluid.data(name='bboxes',
shape=[M, C, BOX_SIZE], shape=[M, C, BOX_SIZE],
dtype='float32') dtype='float32')
...@@ -268,6 +269,12 @@ class TestMatrixNMSError(unittest.TestCase): ...@@ -268,6 +269,12 @@ class TestMatrixNMSError(unittest.TestCase):
keep_top_k=keep_top_k, keep_top_k=keep_top_k,
score_threshold=score_threshold, score_threshold=score_threshold,
post_threshold=post_threshold) post_threshold=post_threshold)
paddle.vision.ops.matrix_nms(bboxes=boxes_np,
scores=scores_data,
nms_top_k=nms_top_k,
keep_top_k=keep_top_k,
score_threshold=score_threshold,
post_threshold=post_threshold)
def test_scores_Variable(): def test_scores_Variable():
# the scores type must be Variable # the scores type must be Variable
...@@ -277,6 +284,12 @@ class TestMatrixNMSError(unittest.TestCase): ...@@ -277,6 +284,12 @@ class TestMatrixNMSError(unittest.TestCase):
keep_top_k=keep_top_k, keep_top_k=keep_top_k,
score_threshold=score_threshold, score_threshold=score_threshold,
post_threshold=post_threshold) post_threshold=post_threshold)
paddle.vision.ops.matrix_nms(bboxes=boxes_data,
scores=scores_np,
nms_top_k=nms_top_k,
keep_top_k=keep_top_k,
score_threshold=score_threshold,
post_threshold=post_threshold)
def test_empty(): def test_empty():
# when all score are lower than threshold # when all score are lower than threshold
...@@ -289,6 +302,15 @@ class TestMatrixNMSError(unittest.TestCase): ...@@ -289,6 +302,15 @@ class TestMatrixNMSError(unittest.TestCase):
post_threshold=post_threshold) post_threshold=post_threshold)
except Exception as e: except Exception as e:
self.fail(e) self.fail(e)
try:
paddle.vision.ops.matrix_nms(bboxes=boxes_data,
scores=scores_data,
nms_top_k=nms_top_k,
keep_top_k=keep_top_k,
score_threshold=10.,
post_threshold=post_threshold)
except Exception as e:
self.fail(e)
def test_coverage(): def test_coverage():
# cover correct workflow # cover correct workflow
...@@ -301,6 +323,16 @@ class TestMatrixNMSError(unittest.TestCase): ...@@ -301,6 +323,16 @@ class TestMatrixNMSError(unittest.TestCase):
post_threshold=post_threshold) post_threshold=post_threshold)
except Exception as e: except Exception as e:
self.fail(e) self.fail(e)
try:
paddle.vision.ops.matrix_nms(
bboxes=boxes_data,
scores=scores_data,
nms_top_k=nms_top_k,
keep_top_k=keep_top_k,
score_threshold=score_threshold,
post_threshold=post_threshold)
except Exception as e:
self.fail(e)
self.assertRaises(TypeError, test_bboxes_Variable) self.assertRaises(TypeError, test_bboxes_Variable)
self.assertRaises(TypeError, test_scores_Variable) self.assertRaises(TypeError, test_scores_Variable)
......
...@@ -197,6 +197,22 @@ class TestOpsNMS(unittest.TestCase): ...@@ -197,6 +197,22 @@ class TestOpsNMS(unittest.TestCase):
"origin out: {}\n inference model out: {}\n".format( "origin out: {}\n inference model out: {}\n".format(
origin, res)) origin, res))
def test_matrix_nms_dynamic(self):
for device in self.devices:
for dtype in self.dtypes:
boxes, scores, category_idxs, categories = gen_args(
self.num_boxes, dtype)
scores = np.random.rand(1, 4, self.num_boxes).astype(dtype)
paddle.set_device(device)
out = paddle.vision.ops.matrix_nms(
paddle.to_tensor(boxes).unsqueeze(0),
paddle.to_tensor(scores),
self.threshold,
post_threshold=0.,
nms_top_k=400,
keep_top_k=100,
)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -24,21 +24,10 @@ from paddle.common_ops_import import * ...@@ -24,21 +24,10 @@ from paddle.common_ops_import import *
from paddle import _C_ops from paddle import _C_ops
__all__ = [ #noqa __all__ = [ #noqa
'yolo_loss', 'yolo_loss', 'yolo_box', 'deform_conv2d', 'DeformConv2D',
'yolo_box', 'distribute_fpn_proposals', 'generate_proposals', 'read_file',
'deform_conv2d', 'decode_jpeg', 'roi_pool', 'RoIPool', 'psroi_pool', 'PSRoIPool',
'DeformConv2D', 'roi_align', 'RoIAlign', 'nms', 'matrix_nms'
'distribute_fpn_proposals',
'generate_proposals',
'read_file',
'decode_jpeg',
'roi_pool',
'RoIPool',
'psroi_pool',
'PSRoIPool',
'roi_align',
'RoIAlign',
'nms',
] ]
...@@ -1802,3 +1791,137 @@ def generate_proposals(scores, ...@@ -1802,3 +1791,137 @@ def generate_proposals(scores,
rpn_rois_num = None rpn_rois_num = None
return rpn_rois, rpn_roi_probs, rpn_rois_num return rpn_rois, rpn_roi_probs, rpn_rois_num
def matrix_nms(bboxes,
scores,
score_threshold,
post_threshold,
nms_top_k,
keep_top_k,
use_gaussian=False,
gaussian_sigma=2.,
background_label=0,
normalized=True,
return_index=False,
return_rois_num=True,
name=None):
"""
This operator does matrix non maximum suppression (NMS).
First selects a subset of candidate bounding boxes that have higher scores
than score_threshold (if provided), then the top k candidate is selected if
nms_top_k is larger than -1. Score of the remaining candidate are then
decayed according to the Matrix NMS scheme.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
Args:
bboxes (Tensor): A 3-D Tensor with shape [N, M, 4] represents the
predicted locations of M bounding bboxes,
N is the batch size. Each bounding box has four
coordinate values and the layout is
[xmin, ymin, xmax, ymax], when box size equals to 4.
The data type is float32 or float64.
scores (Tensor): A 3-D Tensor with shape [N, C, M]
represents the predicted confidence predictions.
N is the batch size, C is the class number, M is
number of bounding boxes. For each category there
are total M scores which corresponding M bounding
boxes. Please note, M is equal to the 2nd dimension
of BBoxes. The data type is float32 or float64.
score_threshold (float): Threshold to filter out bounding boxes with
low confidence score.
post_threshold (float): Threshold to filter out bounding boxes with
low confidence score AFTER decaying.
nms_top_k (int): Maximum number of detections to be kept according to
the confidences after the filtering detections based
on score_threshold.
keep_top_k (int): Number of total bboxes to be kept per image after NMS
step. -1 means keeping all bboxes after NMS step.
use_gaussian (bool): Use Gaussian as the decay function. Default: False
gaussian_sigma (float): Sigma for Gaussian decay function. Default: 2.0
background_label (int): The index of background label, the background
label will be ignored. If set to -1, then all
categories will be considered. Default: 0
normalized (bool): Whether detections are normalized. Default: True
return_index(bool): Whether return selected index. Default: False
return_rois_num(bool): whether return rois_num. Default: True
name(str): Name of the matrix nms op. Default: None.
Returns:
A tuple with three Tensor: (Out, Index, RoisNum) if return_index is True,
otherwise, a tuple with two Tensor (Out, RoisNum) is returned.
Out (Tensor): A 2-D Tensor with shape [No, 6] containing the
detection results.
Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
Index (Tensor): A 2-D Tensor with shape [No, 1] containing the
selected indices, which are absolute values cross batches.
rois_num (Tensor): A 1-D Tensor with shape [N] containing
the number of detected boxes in each image.
Examples:
.. code-block:: python
import paddle
from paddle.vision.ops import matrix_nms
boxes = paddle.rand([4, 1, 4])
boxes[..., 2] = boxes[..., 0] + boxes[..., 2]
boxes[..., 3] = boxes[..., 1] + boxes[..., 3]
scores = paddle.rand([4, 80, 1])
out = matrix_nms(bboxes=boxes, scores=scores, background_label=0,
score_threshold=0.5, post_threshold=0.1,
nms_top_k=400, keep_top_k=200, normalized=False)
"""
check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
'matrix_nms')
check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
'matrix_nms')
check_type(score_threshold, 'score_threshold', float, 'matrix_nms')
check_type(post_threshold, 'post_threshold', float, 'matrix_nms')
check_type(nms_top_k, 'nums_top_k', int, 'matrix_nms')
check_type(keep_top_k, 'keep_top_k', int, 'matrix_nms')
check_type(normalized, 'normalized', bool, 'matrix_nms')
check_type(use_gaussian, 'use_gaussian', bool, 'matrix_nms')
check_type(gaussian_sigma, 'gaussian_sigma', float, 'matrix_nms')
check_type(background_label, 'background_label', int, 'matrix_nms')
if in_dygraph_mode():
attrs = ('background_label', background_label, 'score_threshold',
score_threshold, 'post_threshold', post_threshold, 'nms_top_k',
nms_top_k, 'gaussian_sigma', gaussian_sigma, 'use_gaussian',
use_gaussian, 'keep_top_k', keep_top_k, 'normalized',
normalized)
out, index, rois_num = _C_ops.matrix_nms(bboxes, scores, *attrs)
if not return_index:
index = None
if not return_rois_num:
rois_num = None
return out, rois_num, index
else:
helper = LayerHelper('matrix_nms', **locals())
output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
index = helper.create_variable_for_type_inference(dtype='int32')
outputs = {'Out': output, 'Index': index}
if return_rois_num:
rois_num = helper.create_variable_for_type_inference(dtype='int32')
outputs['RoisNum'] = rois_num
helper.append_op(type="matrix_nms",
inputs={
'BBoxes': bboxes,
'Scores': scores
},
attrs={
'background_label': background_label,
'score_threshold': score_threshold,
'post_threshold': post_threshold,
'nms_top_k': nms_top_k,
'gaussian_sigma': gaussian_sigma,
'use_gaussian': use_gaussian,
'keep_top_k': keep_top_k,
'normalized': normalized
},
outputs=outputs)
output.stop_gradient = True
if not return_index:
index = None
if not return_rois_num:
rois_num = None
return output, rois_num, index
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册