提交 8de5dc31 编写于 作者: H heqiaozhi

add doc

test=develop
上级 5204fb44
...@@ -115,25 +115,10 @@ class CVMOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -115,25 +115,10 @@ class CVMOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment(R"DOC( AddComment(R"DOC(
CVM Operator. CVM Operator.
We assume that input is a embedding vector with cvm_feature(show and click), which shape is [N * D] (D is 2(cvm_feature) + embedding dim, N is batch_size) We assume that input X is a embedding vector with cvm_feature(show and click), which shape is [N * D] (D is 2(cvm_feature) + embedding dim, N is batch_size)
if use_cvm is True, we will log(cvm_feature), and output shape is [N * D]. if use_cvm is True, we will log(cvm_feature), and output shape is [N * D].
if use_cvm is False, we will remove cvm_feature from input, and output shape is [N * (D - 2)]. if use_cvm is False, we will remove cvm_feature from input, and output shape is [N * (D - 2)].
Example:
input = fluid.layers.data(name=\"input\", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype=\"int64\")
label = fluid.layers.data(name=\"label\", shape=[-1, 1], append_batch_size=False, dtype=\"int64\")
embed = fluid.layers.embedding(
input=input,
size=[100, 11],
dtype='float32')
ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype=\"int64\", value=1)
show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
show_clk.stop_gradient = True
input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
)DOC"); )DOC");
} }
}; };
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册