Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
8d512b8f
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8d512b8f
编写于
1月 13, 2023
作者:
W
wangshengxiang
提交者:
GitHub
1月 13, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add prelu & prelu_grad op for xpu (#49672)
上级
ac9debee
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
381 addition
and
0 deletion
+381
-0
paddle/phi/backends/xpu/xpu2_op_list.cc
paddle/phi/backends/xpu/xpu2_op_list.cc
+3
-0
paddle/phi/kernels/xpu/prelu_grad_kernel.cc
paddle/phi/kernels/xpu/prelu_grad_kernel.cc
+97
-0
paddle/phi/kernels/xpu/prelu_kernel.cc
paddle/phi/kernels/xpu/prelu_kernel.cc
+64
-0
python/paddle/fluid/tests/unittests/xpu/test_prelu_op_xpu.py
python/paddle/fluid/tests/unittests/xpu/test_prelu_op_xpu.py
+217
-0
未找到文件。
paddle/phi/backends/xpu/xpu2_op_list.cc
浏览文件 @
8d512b8f
...
...
@@ -418,6 +418,9 @@ XPUOpMap& get_kl2_ops() {
{
"pow_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"pow2_decay_with_linear_warmup"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"prior_box"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"prelu"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"prelu_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"range"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
INT64
})},
{
"reciprocal"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"reciprocal_grad"
,
...
...
paddle/phi/kernels/xpu/prelu_grad_kernel.cc
0 → 100644
浏览文件 @
8d512b8f
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/prelu_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
PReluGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
alpha
,
const
DenseTensor
&
out_grad
,
const
std
::
string
&
data_format
,
const
std
::
string
&
mode
,
DenseTensor
*
x_grad
,
DenseTensor
*
alpha_grad
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
const
T
*
x_ptr
=
x
.
data
<
T
>
();
const
T
*
alpha_ptr
=
alpha
.
data
<
T
>
();
const
T
*
out_grad_ptr
=
out_grad
.
data
<
T
>
();
T
*
x_grad_ptr
=
dev_ctx
.
template
Alloc
<
T
>(
x_grad
);
T
*
alpha_grad_ptr
=
dev_ctx
.
template
Alloc
<
T
>(
alpha_grad
);
auto
x_dim
=
x
.
dims
();
auto
x_rank
=
x_dim
.
size
();
std
::
vector
<
int
>
x_shape
(
x_rank
);
for
(
int
i
=
0
;
i
<
x_rank
;
i
++
)
{
x_shape
[
i
]
=
x_dim
[
i
];
}
auto
alpha_dim
=
alpha
.
dims
();
auto
alpha_rank
=
alpha_dim
.
size
();
std
::
vector
<
int
>
alpha_shape
(
alpha_rank
);
for
(
int
i
=
0
;
i
<
x_rank
;
i
++
)
{
alpha_shape
[
i
]
=
alpha_dim
[
i
];
}
// mode = 0: channel_nchw, slope_shape = {c}, default. meanwhile, xhsape = {n,
// c, h, w}
// mode = 1, channel_nhwc, slope_shape = {c}, meanwhile, xhsape = {n, h, w, c}
// mode = 2, elementwise, slope_shape = {c*h*w}
// mode = 3, single slope, slope_shape = {1}
int
xpu_mode
=
0
;
if
(
mode
==
"channel"
)
{
if
(
data_format
==
"NCHW"
)
{
xpu_mode
=
0
;
}
else
{
// NHWC
xpu_mode
=
1
;
}
}
else
if
(
mode
==
"element"
)
{
xpu_mode
=
2
;
}
else
{
xpu_mode
=
3
;
}
int
r
=
xpu
::
prelu_grad
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x_ptr
),
reinterpret_cast
<
const
XPUType
*>
(
out_grad_ptr
),
/* const T* y, not used in xpu kernel */
reinterpret_cast
<
const
XPUType
*>
(
alpha_ptr
),
reinterpret_cast
<
const
XPUType
*>
(
out_grad_ptr
),
reinterpret_cast
<
XPUType
*>
(
x_grad_ptr
),
reinterpret_cast
<
XPUType
*>
(
alpha_grad_ptr
),
x_shape
,
xpu_mode
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"prelu_grad"
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
prelu_grad
,
XPU
,
ALL_LAYOUT
,
phi
::
PReluGradKernel
,
float
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/xpu/prelu_kernel.cc
0 → 100644
浏览文件 @
8d512b8f
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/prelu_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
PReluKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
alpha
,
const
std
::
string
&
data_format
,
const
std
::
string
&
mode
,
DenseTensor
*
out
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
const
T
*
x_ptr
=
x
.
data
<
T
>
();
const
T
*
alpha_ptr
=
alpha
.
data
<
T
>
();
T
*
y_ptr
=
dev_ctx
.
template
Alloc
<
T
>(
out
);
auto
x_dim
=
x
.
dims
();
auto
x_rank
=
x_dim
.
size
();
std
::
vector
<
int
>
x_shape
(
x_rank
);
for
(
int
i
=
0
;
i
<
x_rank
;
i
++
)
{
x_shape
[
i
]
=
x_dim
[
i
];
}
auto
alpha_dim
=
alpha
.
dims
();
auto
alpha_rank
=
alpha_dim
.
size
();
std
::
vector
<
int
>
alpha_shape
(
x_rank
,
1
);
// same size with x_shape
for
(
int
i
=
0
;
i
<
alpha_rank
;
i
++
)
{
alpha_shape
[
i
]
=
alpha_dim
[
i
];
}
int
r
=
xpu
::
prelu
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x_ptr
),
reinterpret_cast
<
const
XPUType
*>
(
alpha_ptr
),
reinterpret_cast
<
XPUType
*>
(
y_ptr
),
x_shape
,
alpha_shape
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"prelu"
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
prelu
,
XPU
,
ALL_LAYOUT
,
phi
::
PReluKernel
,
float
)
{}
python/paddle/fluid/tests/unittests/xpu/test_prelu_op_xpu.py
0 → 100644
浏览文件 @
8d512b8f
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
unittest
import
numpy
as
np
sys
.
path
.
append
(
".."
)
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
(
XPUOpTestWrapper
,
create_test_class
,
get_xpu_op_support_types
,
)
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
paddle
.
enable_static
()
class
XPUTestPReluOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
"prelu"
self
.
use_dynamic_create_class
=
False
class
TestPReluOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
set_xpu
()
self
.
op_type
=
"prelu"
self
.
init_dtype
()
self
.
eager_mode
=
True
# override
self
.
init_input_shape
()
self
.
init_attr
()
self
.
x
=
np
.
random
.
uniform
(
-
10.0
,
10.0
,
self
.
x_shape
).
astype
(
self
.
dtype
)
# Since zero point in prelu is not differentiable, avoid randomize zero.
self
.
x
[
np
.
abs
(
self
.
x
)
<
0.005
]
=
0.02
if
self
.
attrs
==
{
'mode'
:
"all"
,
"data_format"
:
"NCHW"
,
}
or
self
.
attrs
==
{
'mode'
:
"all"
,
"data_format"
:
"NHWC"
}:
self
.
alpha
=
np
.
random
.
uniform
(
-
1
,
-
0.5
,
(
1
))
elif
self
.
attrs
==
{
'mode'
:
"channel"
,
"data_format"
:
"NCHW"
}:
self
.
alpha
=
np
.
random
.
uniform
(
-
1
,
-
0.5
,
[
1
,
self
.
x_shape
[
1
],
1
,
1
]
)
elif
self
.
attrs
==
{
'mode'
:
"channel"
,
"data_format"
:
"NHWC"
}:
self
.
alpha
=
np
.
random
.
uniform
(
-
1
,
-
0.5
,
[
1
,
1
,
1
,
self
.
x_shape
[
-
1
]]
)
else
:
self
.
alpha
=
np
.
random
.
uniform
(
-
1
,
-
0.5
,
[
1
]
+
self
.
x_shape
[
1
:])
# eager check don't support mode = 'all'
self
.
eager_mode
=
False
self
.
alpha
=
self
.
alpha
.
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
self
.
x
,
'Alpha'
:
self
.
alpha
}
reshaped_alpha
=
self
.
inputs
[
'Alpha'
]
if
self
.
attrs
==
{
'mode'
:
"channel"
,
"data_format"
:
"NCHW"
}:
reshaped_alpha
=
np
.
reshape
(
self
.
inputs
[
'Alpha'
],
[
1
,
self
.
x_shape
[
1
]]
+
[
1
]
*
len
(
self
.
x_shape
[
2
:]),
)
elif
self
.
attrs
==
{
'mode'
:
"channel"
,
"data_format"
:
"NHWC"
}:
reshaped_alpha
=
np
.
reshape
(
self
.
inputs
[
'Alpha'
],
[
1
]
+
[
1
]
*
len
(
self
.
x_shape
[
1
:
-
1
])
+
[
self
.
x_shape
[
-
1
]],
)
self
.
alpha
=
np
.
random
.
uniform
(
-
10.0
,
10.0
,
[
1
,
self
.
x_shape
[
1
],
1
,
1
]
).
astype
(
self
.
dtype
)
out_np
=
np
.
maximum
(
self
.
inputs
[
'X'
],
0.0
)
out_np
=
out_np
+
np
.
minimum
(
self
.
inputs
[
'X'
],
0.0
)
*
reshaped_alpha
assert
out_np
is
not
self
.
inputs
[
'X'
]
self
.
outputs
=
{
'Out'
:
out_np
}
def
init_input_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
5
,
6
]
def
init_attr
(
self
):
self
.
attrs
=
{
'mode'
:
"channel"
,
'data_format'
:
"NCHW"
}
def
set_xpu
(
self
):
self
.
__class__
.
no_need_check_grad
=
False
self
.
place
=
paddle
.
XPUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
self
.
in_type
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
,
'Alpha'
],
'Out'
,
check_eager
=
self
.
eager_mode
)
class
TestModeChannelNHWC
(
TestPReluOp
):
def
init_input_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
4
,
5
]
def
init_attr
(
self
):
self
.
attrs
=
{
'mode'
:
"channel"
,
"data_format"
:
"NHWC"
}
class
TestModeAll
(
TestPReluOp
):
def
init_input_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
4
,
5
]
def
init_attr
(
self
):
self
.
attrs
=
{
'mode'
:
"all"
,
"data_format"
:
"NCHW"
}
class
TestModeAllNHWC
(
TestPReluOp
):
def
init_input_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
4
,
50
]
def
init_attr
(
self
):
self
.
attrs
=
{
'mode'
:
"all"
,
"data_format"
:
"NHWC"
}
class
TestModeElt
(
TestPReluOp
):
def
init_input_shape
(
self
):
self
.
x_shape
=
[
3
,
2
,
5
,
10
]
def
init_attr
(
self
):
self
.
attrs
=
{
'mode'
:
"element"
,
"data_format"
:
"NCHW"
}
class
TestModeEltNHWC
(
TestPReluOp
):
def
init_input_shape
(
self
):
self
.
x_shape
=
[
3
,
2
,
5
,
10
]
def
init_attr
(
self
):
self
.
attrs
=
{
'mode'
:
"element"
,
"data_format"
:
"NHWC"
}
def
prelu_t
(
x
,
mode
,
param_attr
=
None
,
name
=
None
,
data_format
=
'NCHW'
):
helper
=
fluid
.
layer_helper
.
LayerHelper
(
'prelu'
,
**
locals
())
alpha_shape
=
[
1
,
x
.
shape
[
1
],
1
,
1
]
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
alpha
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
alpha_shape
,
dtype
=
'float32'
,
is_bias
=
False
,
default_initializer
=
fluid
.
initializer
.
ConstantInitializer
(
0.25
),
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
"prelu"
,
inputs
=
{
"X"
:
x
,
'Alpha'
:
alpha
},
attrs
=
{
"mode"
:
mode
,
'data_format'
:
data_format
},
outputs
=
{
"Out"
:
out
},
)
return
out
# error message test if mode is not one of 'all', 'channel', 'element'
class
TestModeError
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
x_np
=
np
.
ones
([
1
,
2
,
3
,
4
]).
astype
(
'float32'
)
def
test_mode_error
(
self
):
main_program
=
Program
()
with
fluid
.
program_guard
(
main_program
,
Program
()):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
[
2
,
3
,
4
,
5
])
try
:
y
=
prelu_t
(
x
,
'any'
)
except
Exception
as
e
:
assert
e
.
args
[
0
].
find
(
'InvalidArgument'
)
!=
-
1
def
test_data_format_error1
(
self
):
main_program
=
Program
()
with
fluid
.
program_guard
(
main_program
,
Program
()):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
[
2
,
3
,
4
,
5
])
try
:
y
=
prelu_t
(
x
,
'channel'
,
data_format
=
'N'
)
except
Exception
as
e
:
assert
e
.
args
[
0
].
find
(
'InvalidArgument'
)
!=
-
1
def
test_data_format_error2
(
self
):
main_program
=
Program
()
with
fluid
.
program_guard
(
main_program
,
Program
()):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
[
2
,
3
,
4
,
5
])
try
:
y
=
paddle
.
static
.
nn
.
prelu
(
x
,
'channel'
,
data_format
=
'N'
)
except
ValueError
as
e
:
pass
support_types
=
get_xpu_op_support_types
(
"prelu"
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestPReluOp
,
stype
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录