Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
8c9041f4
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8c9041f4
编写于
6月 08, 2018
作者:
Y
yuyang18
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine LinearCRF
上级
0d29e659
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
28 addition
and
20 deletion
+28
-20
paddle/fluid/operators/linear_chain_crf_op.cc
paddle/fluid/operators/linear_chain_crf_op.cc
+0
-2
python/paddle/fluid/layers/layer_function_generator.py
python/paddle/fluid/layers/layer_function_generator.py
+9
-1
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+19
-17
未找到文件。
paddle/fluid/operators/linear_chain_crf_op.cc
浏览文件 @
8c9041f4
...
@@ -67,8 +67,6 @@ class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -67,8 +67,6 @@ class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
"mini-batch. Note: S is equal to the sequence number in a mini-batch. "
"mini-batch. Note: S is equal to the sequence number in a mini-batch. "
"The output is no longer a LoDTensor."
);
"The output is no longer a LoDTensor."
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
LinearChainCRF Operator.
Conditional Random Field defines an undirected probabilistic graph with nodes
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
denoting random variables and edges denoting dependencies between these
variables. CRF learns the conditional probability $P(Y|X)$, where
variables. CRF learns the conditional probability $P(Y|X)$, where
...
...
python/paddle/fluid/layers/layer_function_generator.py
浏览文件 @
8c9041f4
...
@@ -224,6 +224,9 @@ def autodoc(comment=""):
...
@@ -224,6 +224,9 @@ def autodoc(comment=""):
return
__impl__
return
__impl__
_inline_math_single_dollar
=
re
.
compile
(
r
"\$([^\$]+)\$"
)
def
templatedoc
(
op_type
=
None
):
def
templatedoc
(
op_type
=
None
):
"""
"""
Decorator of layer function. It will use the docstring from the layer
Decorator of layer function. It will use the docstring from the layer
...
@@ -241,6 +244,9 @@ def templatedoc(op_type=None):
...
@@ -241,6 +244,9 @@ def templatedoc(op_type=None):
def
trim_ending_dot
(
msg
):
def
trim_ending_dot
(
msg
):
return
msg
.
rstrip
(
'.'
)
return
msg
.
rstrip
(
'.'
)
def
escape_inline_math
(
msg
):
return
_inline_math_single_dollar
.
sub
(
repl
=
r
':math:`\1`'
,
string
=
msg
)
def
__impl__
(
func
):
def
__impl__
(
func
):
if
op_type
is
None
:
if
op_type
is
None
:
op_type_name
=
func
.
__name__
op_type_name
=
func
.
__name__
...
@@ -254,8 +260,10 @@ def templatedoc(op_type=None):
...
@@ -254,8 +260,10 @@ def templatedoc(op_type=None):
for
line
in
comment_lines
:
for
line
in
comment_lines
:
line
=
line
.
strip
()
line
=
line
.
strip
()
if
len
(
line
)
!=
0
:
if
len
(
line
)
!=
0
:
comment
+=
line
comment
+=
escape_inline_math
(
line
)
comment
+=
" "
comment
+=
" "
elif
len
(
comment
)
!=
0
:
comment
+=
"
\n
\n
"
args
=
{
"comment"
:
trim_ending_dot
(
comment
)}
args
=
{
"comment"
:
trim_ending_dot
(
comment
)}
for
each_input
in
op_proto
.
inputs
:
for
each_input
in
op_proto
.
inputs
:
...
...
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
8c9041f4
...
@@ -11,6 +11,14 @@
...
@@ -11,6 +11,14 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
import
control_flow
import
control_flow
import
nn
import
nn
...
@@ -22,14 +30,6 @@ __all__ = [
...
@@ -22,14 +30,6 @@ __all__ = [
'exponential_decay'
,
'natural_exp_decay'
,
'inverse_time_decay'
,
'exponential_decay'
,
'natural_exp_decay'
,
'inverse_time_decay'
,
'polynomial_decay'
,
'piecewise_decay'
,
'noam_decay'
'polynomial_decay'
,
'piecewise_decay'
,
'noam_decay'
]
]
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
def
_decay_step_counter
(
begin
=
0
):
def
_decay_step_counter
(
begin
=
0
):
...
@@ -41,18 +41,20 @@ def _decay_step_counter(begin=0):
...
@@ -41,18 +41,20 @@ def _decay_step_counter(begin=0):
def
noam_decay
(
d_model
,
warmup_steps
):
def
noam_decay
(
d_model
,
warmup_steps
):
"""Apply decay to learning rate.
"""
```python
Noam decay method. The numpy implementation of noam decay as follows.
lr_value = np.power(d_model, -0.5) * np.min([
np.power(current_steps, -0.5),
>>> import numpy as np
np.power(warmup_steps, -1.5) * current_steps
>>> lr_value = np.power(d_model, -0.5) * np.min([
])
>>> np.power(current_steps, -0.5),
```
>>> np.power(warmup_steps, -1.5) * current_steps])
Please reference `attention is all you need
<https://arxiv.org/pdf/1706.03762.pdf>`_.
Args:
Args:
d_model(Variable): The dimensionality of input and output of model.
d_model(Variable): The dimensionality of input and output of model.
Reference: attention is all you need
https://arxiv.org/pdf/1706.03762.pdf
warmup_steps(Variable): A super parameter.
warmup_steps(Variable): A super parameter.
Returns:
Returns:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录