Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
8c79071d
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8c79071d
编写于
10月 16, 2018
作者:
J
jerrywgz
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
roi_align for gpu
上级
2f5a8017
变更
4
展开全部
隐藏空白更改
内联
并排
Showing
4 changed file
with
791 addition
and
25 deletion
+791
-25
API.spec
API.spec
+392
-0
paddle/fluid/operators/roi_align_op.cc
paddle/fluid/operators/roi_align_op.cc
+1
-0
paddle/fluid/operators/roi_align_op.cu
paddle/fluid/operators/roi_align_op.cu
+371
-0
paddle/fluid/operators/roi_align_op.h
paddle/fluid/operators/roi_align_op.h
+27
-25
未找到文件。
API.spec
0 → 100644
浏览文件 @
8c79071d
此差异已折叠。
点击以展开。
paddle/fluid/operators/roi_align_op.cc
浏览文件 @
8c79071d
...
@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and
...
@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/operators/roi_align_op.h"
#include "paddle/fluid/operators/roi_align_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
...
paddle/fluid/operators/roi_align_op.cu
0 → 100644
浏览文件 @
8c79071d
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/roi_align_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
static
constexpr
int
kNumCUDAThreads
=
512
;
static
constexpr
int
kNumMaxinumNumBlocks
=
4096
;
static
inline
int
NumBlocks
(
const
int
N
)
{
return
std
::
min
((
N
+
kNumCUDAThreads
-
1
)
/
kNumCUDAThreads
,
kNumMaxinumNumBlocks
);
}
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x)
/*
template <class T>
inline __device__ T gpu_atomic_add(const T val, T* address) {
return atomicAdd(address, val);
}
*/
template
<
class
T
>
__device__
T
bilinear_interpolate
(
const
T
*
input_data
,
const
int
height
,
const
int
width
,
T
y
,
T
x
,
)
{
if
(
y
<
-
1.0
||
y
>
height
||
x
<
-
1.0
||
x
>
width
)
{
return
0
;
}
if
(
y
<=
0
)
{
y
=
0
;
}
if
(
x
<=
0
)
{
x
=
0
;
}
int
y_low
=
static_cast
<
int
>
(
y
);
int
x_low
=
static_cast
<
int
>
(
x
);
int
y_high
;
int
x_high
;
if
(
y_low
>=
height
-
1
)
{
y_high
=
y_low
=
height
-
1
;
y
=
static_cast
<
T
>
(
y_low
);
}
else
{
y_high
=
y_low
+
1
;
}
if
(
x_low
>=
width
-
1
)
{
x_high
=
x_low
=
width
-
1
;
x
=
static_cast
<
T
>
(
x_low
);
}
else
{
x_high
=
x_low
+
1
;
}
T
ly
=
y
-
y_low
,
lx
=
x
-
x_low
;
T
hy
=
1.
-
ly
,
hx
=
1.
-
lx
;
T
v1
=
input_data
[
y_low
*
width
+
x_low
];
T
v2
=
input_data
[
y_low
*
width
+
x_high
];
T
v3
=
input_data
[
y_high
*
width
+
x_low
];
T
v4
=
input_data
[
y_high
*
width
+
x_high
];
T
w1
=
hy
*
hx
,
w2
=
hy
*
lx
,
w3
=
ly
*
hx
,
w4
=
ly
*
lx
;
T
val
=
(
w1
*
v1
+
w2
*
v2
+
w3
*
v3
+
w4
*
v4
);
return
val
;
}
template
<
class
T
>
__device__
T
bilinear_interpolate_gradient
(
const
int
height
,
const
int
width
,
T
y
,
T
x
,
const
T
&
w1
,
const
T
&
w2
,
const
T
&
w3
,
const
T
&
w4
,
const
int
&
x_low
,
const
int
&
x_high
,
const
int
&
y_low
,
const
int
&
y_high
)
{
if
(
y
<
-
1.0
||
y
>
height
||
x
<
-
1.0
||
x
>
width
)
{
w1
=
w2
=
w3
=
w4
=
0.
;
x_low
=
x_high
=
y_low
=
y_high
=
-
1
;
return
;
}
if
(
y
<=
0
)
{
y
=
0
;
}
if
(
x
<=
0
)
{
x
=
0
;
}
y_low
=
static_cast
<
int
>
(
y
);
x_low
=
static_cast
<
int
>
(
x
);
if
(
y_low
>=
height
-
1
)
{
y_high
=
y_low
=
height
-
1
;
y
=
static_cast
<
T
>
(
y_low
);
}
else
{
y_high
=
y_low
+
1
;
}
if
(
x_low
>=
width
-
1
)
{
x_high
=
x_low
=
width
-
1
;
x
=
static_cast
<
T
>
(
x_low
);
}
else
{
x_high
=
x_low
+
1
;
}
T
ly
=
y
-
y_low
,
lx
=
x
-
x_low
;
T
hy
=
1.
-
ly
,
hx
=
1.
-
lx
;
w1
=
hy
*
hx
,
w2
=
hy
*
lx
,
w3
=
ly
*
hx
,
w4
=
ly
*
lx
;
return
;
}
template
<
class
T
>
__global__
void
GPUROIAlignForward
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
input_rois
,
const
float
spatial_scale
,
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
pooled_height
,
const
int
pooled_width
,
const
int
sampling_ratio
int
*
roi_batch_id_data
,
T
*
output_data
)
{
CUDA_1D_KERNEL_LOOP
(
i
,
nthreads
)
{
int
pw
=
i
%
pooled_width
;
int
ph
=
(
i
/
pooled_width
)
%
pooled_height
;
int
c
=
(
i
/
pooled_width
/
pooled_height
)
%
channels
;
int
n
=
i
/
pooled_width
/
pooled_height
/
channels
;
const
T
*
offset_input_rois
=
input_rois
+
n
*
kROISize
;
int
roi_batch_ind
=
roi_batch_id_data
[
n
];
T
roi_xmin
=
offset_input_rois
[
0
]
*
spatial_scale
;
T
roi_ymin
=
offset_input_rois
[
1
]
*
spatial_scale
;
T
roi_xmax
=
offset_input_rois
[
2
]
*
spatial_scale
;
T
roi_ymax
=
offset_input_rois
[
3
]
*
spatial_scale
;
T
roi_width
=
std
::
max
(
roi_xmax
-
roi_xmin
,
static_cast
<
T
>
(
1.
));
T
roi_height
=
std
::
max
(
roi_ymax
-
roi_ymin
,
static_cast
<
T
>
(
1.
));
T
bin_size_h
=
static_cast
<
T
>
(
roi_height
)
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
static_cast
<
T
>
(
roi_width
)
/
static_cast
<
T
>
(
pooled_width
);
const
T
*
offset_input_data
=
input_data
+
(
roi_batch_ind
*
channels
+
c
)
*
height
*
width
;
int
roi_bin_grid_h
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_height
/
pooled_height
);
int
roi_bin_grid_w
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_width
/
pooled_width
);
const
T
count
=
roi_bin_grid_h
*
roi_bin_grid_w
;
T
output_val
=
0
;
for
(
int
iy
=
0
;
iy
<
roi_bin_grid_h
;
iy
++
)
{
const
T
y
=
roi_ymin
+
ph
*
bin_size_h
+
static_cast
<
T
>
(
iy
+
.5
f
)
*
bin_size_h
/
static_cast
<
T
>
(
roi_bin_grid_h
);
for
(
int
ix
=
0
;
ix
<
roi_bin_grid_w
;
ix
++
)
{
const
T
x
=
roi_xmin
+
pw
*
bin_size_w
+
static_cast
<
T
>
(
ix
+
.5
f
)
*
bin_size_w
/
static_cast
<
T
>
(
roi_bin_grid_w
);
T
val
=
bilinear_interpolate
(
offset_input_data
,
height
,
width
,
y
,
x
);
output_val
+=
val
;
}
}
output_val
/=
count
;
output_data
[
i
]
=
output_val
;
}
}
template
<
typename
T
>
__global__
void
GPUROIAlignBackward
(
const
int
nthreads
,
const
T
*
input_rois
,
const
T
*
output_grad
,
const
int
num_rois
,
const
float
spatial_scale
,
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
pooled_height
,
const
int
pooled_width
,
const
int
sampling_ratio
,
int
*
roi_batch_id_data
,
T
*
input_grad
)
{
CUDA_1D_KERNEL_LOOP
(
i
,
nthreads
)
{
int
pw
=
i
%
pooled_width
;
int
ph
=
(
i
/
pooled_width
)
%
pooled_height
;
int
c
=
(
ic
/
pooled_width
/
pooled_height
)
%
channels
;
int
n
=
i
/
pooled_width
/
pooled_height
/
channels
;
const
T
*
offset_input_rois
=
input_rois
+
n
*
kROISize
;
int
roi_batch_ind
=
roi_batch_id_data
[
n
];
T
roi_xmin
=
offset_input_rois
[
0
]
*
spatial_scale
;
T
roi_ymin
=
offset_input_rois
[
1
]
*
spatial_scale
;
T
roi_xmax
=
offset_input_rois
[
2
]
*
spatial_scale
;
T
roi_ymax
=
offset_input_rois
[
3
]
*
spatial_scale
;
T
roi_width
=
std
::
max
(
roi_xmax
-
roi_xmin
,
static_cast
<
T
>
(
1.
));
T
roi_height
=
std
::
max
(
roi_ymax
-
roi_ymin
,
static_cast
<
T
>
(
1.
));
T
bin_size_h
=
static_cast
<
T
>
(
roi_height
)
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
static_cast
<
T
>
(
roi_width
)
/
static_cast
<
T
>
(
pooled_width
);
const
T
*
offset_input_grad
=
input_grad
+
(
roi_batch_ind
*
channels
+
c
)
*
height
*
width
;
const
T
*
offset_out_grad
=
out_grad
+
(
n
*
channels
+
c
)
*
pooled_height
*
pooled_width
;
const
T
out_grad_this_bin
=
offset_out_grad
[
ph
*
pooled_width
+
pw
];
int
roi_bin_grid_h
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_height
/
pooled_height
);
int
roi_bin_grid_w
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_width
/
pooled_width
);
const
T
count
=
roi_bin_grid_h
*
roi_bin_grid_w
;
for
(
int
iy
=
0
;
iy
<
roi_bin_grid_h
;
iy
++
)
{
const
T
y
=
roi_start_h
+
ph
*
bin_size_h
+
static_cast
<
T
>
(
iy
+
.5
f
)
*
bin_size_h
/
static_cast
<
T
>
(
roi_bin_grid_h
);
for
(
int
ix
=
0
;
ix
<
roi_bin_grid_w
;
ix
++
)
{
const
T
x
=
roi_start_w
+
pw
*
bin_size_w
+
static_cast
<
T
>
(
ix
+
.5
f
)
*
bin_size_w
/
static_cast
<
T
>
(
roi_bin_grid_w
);
T
w1
,
w2
,
w3
,
w4
;
int
x_low
,
x_high
,
y_low
,
y_high
;
bilinear_interpolate_gradient
(
height
,
width
,
y
,
x
,
w1
,
w2
,
w3
,
w4
,
x_low
,
x_high
,
y_low
,
y_high
);
T
diff1
=
out_grad_this_bin
*
w1
/
count
;
T
diff2
=
out_grad_this_bin
*
w2
/
count
;
T
diff3
=
out_grad_this_bin
*
w3
/
count
;
T
diff4
=
out_grad_this_bin
*
w4
/
count
;
if
(
x_low
>=
0
&&
x_high
>=
0
&&
y_low
>=
0
&&
y_high
>=
0
)
{
platform
::
CudaAtomicAdd
(
offset_input_grad
+
y_low
*
width
+
x_low
,
diff1
);
platform
::
CudaAtomicAdd
(
offset_input_grad
+
y_low
*
width
+
x_high
,
diff2
);
platform
::
CudaAtomicAdd
(
offset_input_grad
+
y_high
*
width
+
x_low
,
diff3
);
platform
::
CudaAtomicAdd
(
offset_input_grad
+
y_high
*
width
+
x_high
,
diff3
);
}
}
}
}
}
template
<
typename
Place
,
typename
T
>
class
GPUROIAlignOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
i
auto
*
in
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
LoDTensor
>
(
"ROIs"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
sampling_ratio
=
ctx
.
Attr
<
int
>
(
"sampling_ratio"
);
auto
in_dims
=
in
->
dims
();
int
batch_size
=
in_dims
[
0
];
int
channels
=
in_dims
[
1
];
int
height
=
in_dims
[
2
];
int
width
=
in_dims
[
3
];
int
rois_num
=
rois
->
dims
()[
0
];
if
(
rois_num
==
0
)
return
;
int
output_size
=
out
->
numel
();
int
blocks
=
NumBlocks
(
output_size
);
int
threads
=
kNumCUDAThreads
;
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
platform
::
CPUPlace
());
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
rois_batch_size
,
batch_size
,
"The rois_batch_size and imgs batch_size must be the same."
);
int
rois_num_with_lod
=
rois_lod
[
rois_batch_size
];
PADDLE_ENFORCE_EQ
(
rois_num
,
rois_num_with_lod
,
"The rois_num from input and lod must be the same."
);
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
Tensor
roi_batch_id_list_gpu
;
framework
::
TensorCopy
(
roi_batch_id_list
,
ctx
.
GetPlace
(),
ctx
.
device_context
(),
&
roi_batch_id_list_gpu
);
GPUROIAlignForward
<
T
><<<
blocks
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
output_size
,
in
->
data
<
T
>
(),
rois
->
data
<
T
>
(),
spatial_scale
,
channels
,
height
,
width
,
pooled_height
,
pooled_width
,
sampling_ratio
,
roi_batch_id_list_gpu
.
data
<
int
>
(),
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
}
};
template
<
typename
Place
,
typename
T
>
class
GPUROIAlignGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
LoDTensor
>
(
"ROIs"
);
auto
*
out_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
in_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
sampling_ratio
=
ctx
.
Attr
<
int
>
(
"sampling_ratio"
);
int
rois_num
=
rois
->
dims
()[
0
];
int
channels
=
in
->
dims
()[
1
];
int
height
=
in
->
dims
()[
2
];
int
width
=
in
->
dims
()[
3
];
if
(
in_grad
)
{
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
platform
::
CPUPlace
());
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
Tensor
roi_batch_id_list_gpu
;
framework
::
TensorCopy
(
roi_batch_id_list
,
ctx
.
GetPlace
(),
ctx
.
device_context
(),
&
roi_batch_id_list_gpu
);
x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
Place
,
T
>
set_zero
;
set_zero
(
ctx
.
cuda_device_context
(),
x_grad
,
static_cast
<
T
>
(
0
));
int
output_grad_size
=
out_grad
->
numel
();
int
blocks
=
NumBlocks
(
output_grad_size
);
int
threads
=
kNumCUDAThreads
;
if
(
output_grad_size
>
0
)
{
GPUROIAlignBackward
<
T
><<<
blocks
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
output_grad_size
,
rois
->
data
<
T
>
(),
out_grad
->
data
<
T
>
(),
rois_num
,
spatial_scale
,
channels
,
height
,
width
,
pooled_height
,
pooled_width
,
sampling_ratio
,
roi_batch_id_list_gpu
.
data
<
int
>
(),
x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
}
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
roi_align
,
ops
::
GPUROIAlignOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
GPUROIAlignOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
roi_align_grad
,
ops
::
GPUROIAlignGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
GPUROIAlignGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/roi_align_op.h
浏览文件 @
8c79071d
...
@@ -21,6 +21,8 @@ namespace operators {
...
@@ -21,6 +21,8 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
static
constexpr
int
kROISize
=
4
;
template
<
class
T
>
template
<
class
T
>
void
pre_calc_for_bilinear_interpolate
(
void
pre_calc_for_bilinear_interpolate
(
const
platform
::
DeviceContext
&
ctx
,
const
int
height
,
const
int
width
,
const
platform
::
DeviceContext
&
ctx
,
const
int
height
,
const
int
width
,
...
@@ -44,9 +46,9 @@ void pre_calc_for_bilinear_interpolate(
...
@@ -44,9 +46,9 @@ void pre_calc_for_bilinear_interpolate(
static_cast
<
T
>
(
roi_bin_grid_w
);
static_cast
<
T
>
(
roi_bin_grid_w
);
// deal with elements out of map
// deal with elements out of map
if
(
y
<
-
1.0
||
y
>
height
||
x
<
-
1.0
||
x
>
width
)
{
if
(
y
<
-
1.0
||
y
>
height
||
x
<
-
1.0
||
x
>
width
)
{
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
for
(
int
i
=
0
;
i
<
kROISize
;
++
i
)
{
pre_pos_data
[
i
+
pre_calc_index
*
4
]
=
0
;
pre_pos_data
[
i
+
pre_calc_index
*
kROISize
]
=
0
;
pre_w_data
[
i
+
pre_calc_index
*
4
]
=
0
;
pre_w_data
[
i
+
pre_calc_index
*
kROISize
]
=
0
;
}
}
pre_calc_index
+=
1
;
pre_calc_index
+=
1
;
continue
;
continue
;
...
@@ -76,14 +78,14 @@ void pre_calc_for_bilinear_interpolate(
...
@@ -76,14 +78,14 @@ void pre_calc_for_bilinear_interpolate(
}
}
T
ly
=
y
-
y_low
,
lx
=
x
-
x_low
;
T
ly
=
y
-
y_low
,
lx
=
x
-
x_low
;
T
hy
=
1.
-
ly
,
hx
=
1.
-
lx
;
T
hy
=
1.
-
ly
,
hx
=
1.
-
lx
;
pre_pos_data
[
pre_calc_index
*
4
]
=
y_low
*
width
+
x_low
;
pre_pos_data
[
pre_calc_index
*
kROISize
]
=
y_low
*
width
+
x_low
;
pre_pos_data
[
pre_calc_index
*
4
+
1
]
=
y_low
*
width
+
x_high
;
pre_pos_data
[
pre_calc_index
*
kROISize
+
1
]
=
y_low
*
width
+
x_high
;
pre_pos_data
[
pre_calc_index
*
4
+
2
]
=
y_high
*
width
+
x_low
;
pre_pos_data
[
pre_calc_index
*
kROISize
+
2
]
=
y_high
*
width
+
x_low
;
pre_pos_data
[
pre_calc_index
*
4
+
3
]
=
y_high
*
width
+
x_high
;
pre_pos_data
[
pre_calc_index
*
kROISize
+
3
]
=
y_high
*
width
+
x_high
;
pre_w_data
[
pre_calc_index
*
4
]
=
hy
*
hx
;
pre_w_data
[
pre_calc_index
*
kROISize
]
=
hy
*
hx
;
pre_w_data
[
pre_calc_index
*
4
+
1
]
=
hy
*
lx
;
pre_w_data
[
pre_calc_index
*
kROISize
+
1
]
=
hy
*
lx
;
pre_w_data
[
pre_calc_index
*
4
+
2
]
=
ly
*
hx
;
pre_w_data
[
pre_calc_index
*
kROISize
+
2
]
=
ly
*
hx
;
pre_w_data
[
pre_calc_index
*
4
+
3
]
=
ly
*
lx
;
pre_w_data
[
pre_calc_index
*
kROISize
+
3
]
=
ly
*
lx
;
pre_calc_index
+=
1
;
pre_calc_index
+=
1
;
}
}
}
}
...
@@ -155,11 +157,11 @@ class CPUROIAlignOpKernel : public framework::OpKernel<T> {
...
@@ -155,11 +157,11 @@ class CPUROIAlignOpKernel : public framework::OpKernel<T> {
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
in_dims
=
in
->
dims
();
auto
in_dims
=
in
->
dims
();
int
64_t
batch_size
=
in_dims
[
0
];
int
batch_size
=
in_dims
[
0
];
int
64_t
channels
=
in_dims
[
1
];
int
channels
=
in_dims
[
1
];
int
64_t
height
=
in_dims
[
2
];
int
height
=
in_dims
[
2
];
int
64_t
width
=
in_dims
[
3
];
int
width
=
in_dims
[
3
];
int
64_t
rois_num
=
rois
->
dims
()[
0
];
int
rois_num
=
rois
->
dims
()[
0
];
auto
in_stride
=
framework
::
stride
(
in_dims
);
auto
in_stride
=
framework
::
stride
(
in_dims
);
auto
roi_stride
=
framework
::
stride
(
rois
->
dims
());
auto
roi_stride
=
framework
::
stride
(
rois
->
dims
());
...
@@ -209,8 +211,8 @@ class CPUROIAlignOpKernel : public framework::OpKernel<T> {
...
@@ -209,8 +211,8 @@ class CPUROIAlignOpKernel : public framework::OpKernel<T> {
Tensor
pre_pos
;
Tensor
pre_pos
;
Tensor
pre_w
;
Tensor
pre_w
;
int
pre_size
=
count
*
out_stride
[
1
];
int
pre_size
=
count
*
out_stride
[
1
];
pre_pos
.
Resize
({
pre_size
,
4
});
pre_pos
.
Resize
({
pre_size
,
kROISize
});
pre_w
.
Resize
({
pre_size
,
4
});
pre_w
.
Resize
({
pre_size
,
kROISize
});
pre_calc_for_bilinear_interpolate
(
pre_calc_for_bilinear_interpolate
(
dev_ctx
,
height
,
width
,
pooled_height
,
pooled_width
,
roi_bin_grid_h
,
dev_ctx
,
height
,
width
,
pooled_height
,
pooled_width
,
roi_bin_grid_h
,
...
@@ -226,9 +228,9 @@ class CPUROIAlignOpKernel : public framework::OpKernel<T> {
...
@@ -226,9 +228,9 @@ class CPUROIAlignOpKernel : public framework::OpKernel<T> {
T
output_val
=
0
;
T
output_val
=
0
;
for
(
int
iy
=
0
;
iy
<
roi_bin_grid_h
;
iy
++
)
{
for
(
int
iy
=
0
;
iy
<
roi_bin_grid_h
;
iy
++
)
{
for
(
int
ix
=
0
;
ix
<
roi_bin_grid_w
;
ix
++
)
{
for
(
int
ix
=
0
;
ix
<
roi_bin_grid_w
;
ix
++
)
{
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
for
(
int
i
=
0
;
i
<
kROISize
;
i
++
)
{
int
pos
=
pre_pos_data
[
pre_calc_index
*
4
+
i
];
int
pos
=
pre_pos_data
[
pre_calc_index
*
kROISize
+
i
];
T
w
=
pre_w_data
[
pre_calc_index
*
4
+
i
];
T
w
=
pre_w_data
[
pre_calc_index
*
kROISize
+
i
];
output_val
+=
w
*
batch_data
[
pos
];
output_val
+=
w
*
batch_data
[
pos
];
}
}
pre_calc_index
+=
1
;
pre_calc_index
+=
1
;
...
@@ -263,11 +265,11 @@ class CPUROIAlignGradOpKernel : public framework::OpKernel<T> {
...
@@ -263,11 +265,11 @@ class CPUROIAlignGradOpKernel : public framework::OpKernel<T> {
auto
sampling_ratio
=
ctx
.
Attr
<
int
>
(
"sampling_ratio"
);
auto
sampling_ratio
=
ctx
.
Attr
<
int
>
(
"sampling_ratio"
);
auto
in_dims
=
in
->
dims
();
auto
in_dims
=
in
->
dims
();
if
(
in_grad
)
{
if
(
in_grad
)
{
int
64_t
channels
=
in_dims
[
1
];
int
channels
=
in_dims
[
1
];
int
64_t
height
=
in_dims
[
2
];
int
height
=
in_dims
[
2
];
int
64_t
width
=
in_dims
[
3
];
int
width
=
in_dims
[
3
];
int
rois_num
=
rois
->
dims
()[
0
];
int
rois_num
=
rois
->
dims
()[
0
];
framework
::
Tensor
roi_batch_id_list
;
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
roi_batch_id_list
.
Resize
({
rois_num
});
int
*
roi_batch_id_data
=
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
roi_batch_id_list
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录