提交 8c79071d 编写于 作者: J jerrywgz

roi_align for gpu

上级 2f5a8017
此差异已折叠。
...@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and ...@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/roi_align_op.h" #include "paddle/fluid/operators/roi_align_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/roi_align_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;
static inline int NumBlocks(const int N) {
return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
kNumMaxinumNumBlocks);
}
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x)
/*
template <class T>
inline __device__ T gpu_atomic_add(const T val, T* address) {
return atomicAdd(address, val);
}
*/
template <class T>
__device__ T bilinear_interpolate(const T* input_data, const int height,
const int width, T y, T x, ) {
if (y < -1.0 || y > height || x < -1.0 || x > width) {
return 0;
}
if (y <= 0) {
y = 0;
}
if (x <= 0) {
x = 0;
}
int y_low = static_cast<int>(y);
int x_low = static_cast<int>(x);
int y_high;
int x_high;
if (y_low >= height - 1) {
y_high = y_low = height - 1;
y = static_cast<T>(y_low);
} else {
y_high = y_low + 1;
}
if (x_low >= width - 1) {
x_high = x_low = width - 1;
x = static_cast<T>(x_low);
} else {
x_high = x_low + 1;
}
T ly = y - y_low, lx = x - x_low;
T hy = 1. - ly, hx = 1. - lx;
T v1 = input_data[y_low * width + x_low];
T v2 = input_data[y_low * width + x_high];
T v3 = input_data[y_high * width + x_low];
T v4 = input_data[y_high * width + x_high];
T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
return val;
}
template <class T>
__device__ T bilinear_interpolate_gradient(const int height, const int width,
T y, T x, const T& w1, const T& w2,
const T& w3, const T& w4,
const int& x_low, const int& x_high,
const int& y_low,
const int& y_high) {
if (y < -1.0 || y > height || x < -1.0 || x > width) {
w1 = w2 = w3 = w4 = 0.;
x_low = x_high = y_low = y_high = -1;
return;
}
if (y <= 0) {
y = 0;
}
if (x <= 0) {
x = 0;
}
y_low = static_cast<int>(y);
x_low = static_cast<int>(x);
if (y_low >= height - 1) {
y_high = y_low = height - 1;
y = static_cast<T>(y_low);
} else {
y_high = y_low + 1;
}
if (x_low >= width - 1) {
x_high = x_low = width - 1;
x = static_cast<T>(x_low);
} else {
x_high = x_low + 1;
}
T ly = y - y_low, lx = x - x_low;
T hy = 1. - ly, hx = 1. - lx;
w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
return;
}
template <class T>
__global__ void GPUROIAlignForward(
const int nthreads, const T* input_data, const T* input_rois,
const float spatial_scale, const int channels, const int height,
const int width, const int pooled_height, const int pooled_width,
const int sampling_ratio int* roi_batch_id_data, T* output_data) {
CUDA_1D_KERNEL_LOOP(i, nthreads) {
int pw = i % pooled_width;
int ph = (i / pooled_width) % pooled_height;
int c = (i / pooled_width / pooled_height) % channels;
int n = i / pooled_width / pooled_height / channels;
const T* offset_input_rois = input_rois + n * kROISize;
int roi_batch_ind = roi_batch_id_data[n];
T roi_xmin = offset_input_rois[0] * spatial_scale;
T roi_ymin = offset_input_rois[1] * spatial_scale;
T roi_xmax = offset_input_rois[2] * spatial_scale;
T roi_ymax = offset_input_rois[3] * spatial_scale;
T roi_width = std::max(roi_xmax - roi_xmin, static_cast<T>(1.));
T roi_height = std::max(roi_ymax - roi_ymin, static_cast<T>(1.));
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
const T* offset_input_data =
input_data + (roi_batch_ind * channels + c) * height * width;
int roi_bin_grid_h = (sampling_ratio > 0)
? sampling_ratio
: ceil(roi_height / pooled_height);
int roi_bin_grid_w =
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
const T count = roi_bin_grid_h * roi_bin_grid_w;
T output_val = 0;
for (int iy = 0; iy < roi_bin_grid_h; iy++) {
const T y = roi_ymin + ph * bin_size_h +
static_cast<T>(iy + .5f) * bin_size_h /
static_cast<T>(roi_bin_grid_h);
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
const T x = roi_xmin + pw * bin_size_w +
static_cast<T>(ix + .5f) * bin_size_w /
static_cast<T>(roi_bin_grid_w);
T val = bilinear_interpolate(offset_input_data, height, width, y, x);
output_val += val;
}
}
output_val /= count;
output_data[i] = output_val;
}
}
template <typename T>
__global__ void GPUROIAlignBackward(const int nthreads, const T* input_rois,
const T* output_grad, const int num_rois,
const float spatial_scale,
const int channels, const int height,
const int width, const int pooled_height,
const int pooled_width,
const int sampling_ratio,
int* roi_batch_id_data, T* input_grad) {
CUDA_1D_KERNEL_LOOP(i, nthreads) {
int pw = i % pooled_width;
int ph = (i / pooled_width) % pooled_height;
int c = (ic / pooled_width / pooled_height) % channels;
int n = i / pooled_width / pooled_height / channels;
const T* offset_input_rois = input_rois + n * kROISize;
int roi_batch_ind = roi_batch_id_data[n];
T roi_xmin = offset_input_rois[0] * spatial_scale;
T roi_ymin = offset_input_rois[1] * spatial_scale;
T roi_xmax = offset_input_rois[2] * spatial_scale;
T roi_ymax = offset_input_rois[3] * spatial_scale;
T roi_width = std::max(roi_xmax - roi_xmin, static_cast<T>(1.));
T roi_height = std::max(roi_ymax - roi_ymin, static_cast<T>(1.));
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
const T* offset_input_grad =
input_grad + (roi_batch_ind * channels + c) * height * width;
const T* offset_out_grad =
out_grad + (n * channels + c) * pooled_height * pooled_width;
const T out_grad_this_bin = offset_out_grad[ph * pooled_width + pw];
int roi_bin_grid_h = (sampling_ratio > 0)
? sampling_ratio
: ceil(roi_height / pooled_height);
int roi_bin_grid_w =
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
const T count = roi_bin_grid_h * roi_bin_grid_w;
for (int iy = 0; iy < roi_bin_grid_h; iy++) {
const T y = roi_start_h + ph * bin_size_h +
static_cast<T>(iy + .5f) * bin_size_h /
static_cast<T>(roi_bin_grid_h);
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
const T x = roi_start_w + pw * bin_size_w +
static_cast<T>(ix + .5f) * bin_size_w /
static_cast<T>(roi_bin_grid_w);
T w1, w2, w3, w4;
int x_low, x_high, y_low, y_high;
bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3, w4,
x_low, x_high, y_low, y_high);
T diff1 = out_grad_this_bin * w1 / count;
T diff2 = out_grad_this_bin * w2 / count;
T diff3 = out_grad_this_bin * w3 / count;
T diff4 = out_grad_this_bin * w4 / count;
if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_low,
diff1);
platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_high,
diff2);
platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_low,
diff3);
platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_high,
diff3);
}
}
}
}
}
template <typename Place, typename T>
class GPUROIAlignOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
i auto* in = ctx.Input<Tensor>("X");
auto* rois = ctx.Input<LoDTensor>("ROIs");
auto* out = ctx.Output<Tensor>("Out");
auto pooled_height = ctx.Attr<int>("pooled_height");
auto pooled_width = ctx.Attr<int>("pooled_width");
auto spatial_scale = ctx.Attr<float>("spatial_scale");
auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
auto in_dims = in->dims();
int batch_size = in_dims[0];
int channels = in_dims[1];
int height = in_dims[2];
int width = in_dims[3];
int rois_num = rois->dims()[0];
if (rois_num == 0) return;
int output_size = out->numel();
int blocks = NumBlocks(output_size);
int threads = kNumCUDAThreads;
Tensor roi_batch_id_list;
roi_batch_id_list.Resize({rois_num});
int* roi_batch_id_data =
roi_batch_id_list.mutable_data<int>(platform::CPUPlace());
auto rois_lod = rois->lod().back();
int rois_batch_size = rois_lod.size() - 1;
PADDLE_ENFORCE_EQ(
rois_batch_size, batch_size,
"The rois_batch_size and imgs batch_size must be the same.");
int rois_num_with_lod = rois_lod[rois_batch_size];
PADDLE_ENFORCE_EQ(rois_num, rois_num_with_lod,
"The rois_num from input and lod must be the same.");
for (int n = 0; n < rois_batch_size; ++n) {
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
roi_batch_id_data[i] = n;
}
}
Tensor roi_batch_id_list_gpu;
framework::TensorCopy(roi_batch_id_list, ctx.GetPlace(),
ctx.device_context(), &roi_batch_id_list_gpu);
GPUROIAlignForward<
T><<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
output_size, in->data<T>(), rois->data<T>(), spatial_scale, channels,
height, width, pooled_height, pooled_width, sampling_ratio,
roi_batch_id_list_gpu.data<int>(),
out->mutable_data<T>(ctx.GetPlace()));
}
};
template <typename Place, typename T>
class GPUROIAlignGradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<Tensor>("X");
auto* rois = ctx.Input<LoDTensor>("ROIs");
auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* in_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto pooled_height = ctx.Attr<int>("pooled_height");
auto pooled_width = ctx.Attr<int>("pooled_width");
auto spatial_scale = ctx.Attr<float>("spatial_scale");
auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
int rois_num = rois->dims()[0];
int channels = in->dims()[1];
int height = in->dims()[2];
int width = in->dims()[3];
if (in_grad) {
Tensor roi_batch_id_list;
roi_batch_id_list.Resize({rois_num});
int* roi_batch_id_data =
roi_batch_id_list.mutable_data<int>(platform::CPUPlace());
auto rois_lod = rois->lod().back();
int rois_batch_size = rois_lod.size() - 1;
for (int n = 0; n < rois_batch_size; ++n) {
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
roi_batch_id_data[i] = n;
}
}
Tensor roi_batch_id_list_gpu;
framework::TensorCopy(roi_batch_id_list, ctx.GetPlace(),
ctx.device_context(), &roi_batch_id_list_gpu);
x_grad->mutable_data<T>(ctx.GetPlace());
math::SetConstant<Place, T> set_zero;
set_zero(ctx.cuda_device_context(), x_grad, static_cast<T>(0));
int output_grad_size = out_grad->numel();
int blocks = NumBlocks(output_grad_size);
int threads = kNumCUDAThreads;
if (output_grad_size > 0) {
GPUROIAlignBackward<
T><<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
output_grad_size, rois->data<T>(), out_grad->data<T>(), rois_num,
spatial_scale, channels, height, width, pooled_height, pooled_width,
sampling_ratio, roi_batch_id_list_gpu.data<int>(),
x_grad->mutable_data<T>(ctx.GetPlace()));
}
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
roi_align,
ops::GPUROIAlignOpKernel<paddle::platform::CUDADeviceContext, float>,
ops::GPUROIAlignOpKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
roi_align_grad,
ops::GPUROIAlignGradOpKernel<paddle::platform::CUDADeviceContext, float>,
ops::GPUROIAlignGradOpKernel<paddle::platform::CUDADeviceContext, double>);
...@@ -21,6 +21,8 @@ namespace operators { ...@@ -21,6 +21,8 @@ namespace operators {
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor; using LoDTensor = framework::LoDTensor;
static constexpr int kROISize = 4;
template <class T> template <class T>
void pre_calc_for_bilinear_interpolate( void pre_calc_for_bilinear_interpolate(
const platform::DeviceContext& ctx, const int height, const int width, const platform::DeviceContext& ctx, const int height, const int width,
...@@ -44,9 +46,9 @@ void pre_calc_for_bilinear_interpolate( ...@@ -44,9 +46,9 @@ void pre_calc_for_bilinear_interpolate(
static_cast<T>(roi_bin_grid_w); static_cast<T>(roi_bin_grid_w);
// deal with elements out of map // deal with elements out of map
if (y < -1.0 || y > height || x < -1.0 || x > width) { if (y < -1.0 || y > height || x < -1.0 || x > width) {
for (int i = 0; i < 4; ++i) { for (int i = 0; i < kROISize; ++i) {
pre_pos_data[i + pre_calc_index * 4] = 0; pre_pos_data[i + pre_calc_index * kROISize] = 0;
pre_w_data[i + pre_calc_index * 4] = 0; pre_w_data[i + pre_calc_index * kROISize] = 0;
} }
pre_calc_index += 1; pre_calc_index += 1;
continue; continue;
...@@ -76,14 +78,14 @@ void pre_calc_for_bilinear_interpolate( ...@@ -76,14 +78,14 @@ void pre_calc_for_bilinear_interpolate(
} }
T ly = y - y_low, lx = x - x_low; T ly = y - y_low, lx = x - x_low;
T hy = 1. - ly, hx = 1. - lx; T hy = 1. - ly, hx = 1. - lx;
pre_pos_data[pre_calc_index * 4] = y_low * width + x_low; pre_pos_data[pre_calc_index * kROISize] = y_low * width + x_low;
pre_pos_data[pre_calc_index * 4 + 1] = y_low * width + x_high; pre_pos_data[pre_calc_index * kROISize + 1] = y_low * width + x_high;
pre_pos_data[pre_calc_index * 4 + 2] = y_high * width + x_low; pre_pos_data[pre_calc_index * kROISize + 2] = y_high * width + x_low;
pre_pos_data[pre_calc_index * 4 + 3] = y_high * width + x_high; pre_pos_data[pre_calc_index * kROISize + 3] = y_high * width + x_high;
pre_w_data[pre_calc_index * 4] = hy * hx; pre_w_data[pre_calc_index * kROISize] = hy * hx;
pre_w_data[pre_calc_index * 4 + 1] = hy * lx; pre_w_data[pre_calc_index * kROISize + 1] = hy * lx;
pre_w_data[pre_calc_index * 4 + 2] = ly * hx; pre_w_data[pre_calc_index * kROISize + 2] = ly * hx;
pre_w_data[pre_calc_index * 4 + 3] = ly * lx; pre_w_data[pre_calc_index * kROISize + 3] = ly * lx;
pre_calc_index += 1; pre_calc_index += 1;
} }
} }
...@@ -155,11 +157,11 @@ class CPUROIAlignOpKernel : public framework::OpKernel<T> { ...@@ -155,11 +157,11 @@ class CPUROIAlignOpKernel : public framework::OpKernel<T> {
auto& dev_ctx = ctx.template device_context<DeviceContext>(); auto& dev_ctx = ctx.template device_context<DeviceContext>();
auto in_dims = in->dims(); auto in_dims = in->dims();
int64_t batch_size = in_dims[0]; int batch_size = in_dims[0];
int64_t channels = in_dims[1]; int channels = in_dims[1];
int64_t height = in_dims[2]; int height = in_dims[2];
int64_t width = in_dims[3]; int width = in_dims[3];
int64_t rois_num = rois->dims()[0]; int rois_num = rois->dims()[0];
auto in_stride = framework::stride(in_dims); auto in_stride = framework::stride(in_dims);
auto roi_stride = framework::stride(rois->dims()); auto roi_stride = framework::stride(rois->dims());
...@@ -209,8 +211,8 @@ class CPUROIAlignOpKernel : public framework::OpKernel<T> { ...@@ -209,8 +211,8 @@ class CPUROIAlignOpKernel : public framework::OpKernel<T> {
Tensor pre_pos; Tensor pre_pos;
Tensor pre_w; Tensor pre_w;
int pre_size = count * out_stride[1]; int pre_size = count * out_stride[1];
pre_pos.Resize({pre_size, 4}); pre_pos.Resize({pre_size, kROISize});
pre_w.Resize({pre_size, 4}); pre_w.Resize({pre_size, kROISize});
pre_calc_for_bilinear_interpolate( pre_calc_for_bilinear_interpolate(
dev_ctx, height, width, pooled_height, pooled_width, roi_bin_grid_h, dev_ctx, height, width, pooled_height, pooled_width, roi_bin_grid_h,
...@@ -226,9 +228,9 @@ class CPUROIAlignOpKernel : public framework::OpKernel<T> { ...@@ -226,9 +228,9 @@ class CPUROIAlignOpKernel : public framework::OpKernel<T> {
T output_val = 0; T output_val = 0;
for (int iy = 0; iy < roi_bin_grid_h; iy++) { for (int iy = 0; iy < roi_bin_grid_h; iy++) {
for (int ix = 0; ix < roi_bin_grid_w; ix++) { for (int ix = 0; ix < roi_bin_grid_w; ix++) {
for (int i = 0; i < 4; i++) { for (int i = 0; i < kROISize; i++) {
int pos = pre_pos_data[pre_calc_index * 4 + i]; int pos = pre_pos_data[pre_calc_index * kROISize + i];
T w = pre_w_data[pre_calc_index * 4 + i]; T w = pre_w_data[pre_calc_index * kROISize + i];
output_val += w * batch_data[pos]; output_val += w * batch_data[pos];
} }
pre_calc_index += 1; pre_calc_index += 1;
...@@ -263,11 +265,11 @@ class CPUROIAlignGradOpKernel : public framework::OpKernel<T> { ...@@ -263,11 +265,11 @@ class CPUROIAlignGradOpKernel : public framework::OpKernel<T> {
auto sampling_ratio = ctx.Attr<int>("sampling_ratio"); auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
auto in_dims = in->dims(); auto in_dims = in->dims();
if (in_grad) { if (in_grad) {
int64_t channels = in_dims[1]; int channels = in_dims[1];
int64_t height = in_dims[2]; int height = in_dims[2];
int64_t width = in_dims[3]; int width = in_dims[3];
int rois_num = rois->dims()[0]; int rois_num = rois->dims()[0];
framework::Tensor roi_batch_id_list; Tensor roi_batch_id_list;
roi_batch_id_list.Resize({rois_num}); roi_batch_id_list.Resize({rois_num});
int* roi_batch_id_data = int* roi_batch_id_data =
roi_batch_id_list.mutable_data<int>(ctx.GetPlace()); roi_batch_id_list.mutable_data<int>(ctx.GetPlace());
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册