Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
897e5746
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
897e5746
编写于
9月 04, 2020
作者:
W
wawltor
提交者:
GitHub
9月 04, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cherry-pick from the develop PR#26792, fix the argmin, argmax
cherry-pick from the develop PR#26792, fix the argmin, argmax
上级
2c298d62
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
108 addition
and
56 deletion
+108
-56
paddle/fluid/operators/arg_max_op.cc
paddle/fluid/operators/arg_max_op.cc
+18
-0
paddle/fluid/operators/arg_min_max_op_base.h
paddle/fluid/operators/arg_min_max_op_base.h
+28
-7
paddle/fluid/operators/arg_min_op.cc
paddle/fluid/operators/arg_min_op.cc
+18
-0
python/paddle/fluid/tests/unittests/test_arg_min_max_v2_op.py
...on/paddle/fluid/tests/unittests/test_arg_min_max_v2_op.py
+18
-4
python/paddle/tensor/search.py
python/paddle/tensor/search.py
+26
-45
未找到文件。
paddle/fluid/operators/arg_max_op.cc
浏览文件 @
897e5746
...
@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/arg_min_max_op_base.h"
#include "paddle/fluid/operators/arg_min_max_op_base.h"
REGISTER_OPERATOR
(
REGISTER_OPERATOR
(
...
@@ -31,3 +32,20 @@ REGISTER_OP_CPU_KERNEL(
...
@@ -31,3 +32,20 @@ REGISTER_OP_CPU_KERNEL(
int16_t
>
,
int16_t
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
uint8_t
>
);
uint8_t
>
);
REGISTER_OP_VERSION
(
arg_max
)
.
AddCheckpoint
(
R"ROC(
Upgrade argmax add a new attribute [flatten] and modify the attribute of dtype)ROC"
,
paddle
::
framework
::
compatible
::
OpVersionDesc
()
.
NewAttr
(
"flatten"
,
"In order to compute the argmax over the flattened array "
"when the "
"argument `axis` in python API is None."
,
false
)
.
ModifyAttr
(
"dtype"
,
"change the default value of dtype, the older version "
"is -1, means return the int64 indices."
"The new version is 3, return the int64 indices directly."
"And supporting the dtype of -1 in new version."
,
3
));
paddle/fluid/operators/arg_min_max_op_base.h
浏览文件 @
897e5746
...
@@ -70,6 +70,8 @@ struct VisitDataArgMinMaxFunctor {
...
@@ -70,6 +70,8 @@ struct VisitDataArgMinMaxFunctor {
auto
axis
=
ctx
.
Attr
<
int64_t
>
(
"axis"
);
auto
axis
=
ctx
.
Attr
<
int64_t
>
(
"axis"
);
auto
keepdims
=
ctx
.
Attr
<
bool
>
(
"keepdims"
);
auto
keepdims
=
ctx
.
Attr
<
bool
>
(
"keepdims"
);
const
bool
&
flatten
=
ctx
.
Attr
<
bool
>
(
"flatten"
);
const
bool
&
flatten
=
ctx
.
Attr
<
bool
>
(
"flatten"
);
// paddle do not have the scalar tensor, just return the shape [1] tensor
if
(
flatten
)
keepdims
=
true
;
// if flatten, will construct the new dims for the cacluate
// if flatten, will construct the new dims for the cacluate
framework
::
DDim
x_dims
;
framework
::
DDim
x_dims
;
...
@@ -164,15 +166,30 @@ class ArgMinMaxOp : public framework::OperatorWithKernel {
...
@@ -164,15 +166,30 @@ class ArgMinMaxOp : public framework::OperatorWithKernel {
platform
::
errors
::
InvalidArgument
(
platform
::
errors
::
InvalidArgument
(
"'axis'(%d) must be less than Rank(X)(%d)."
,
axis
,
x_dims
.
size
()));
"'axis'(%d) must be less than Rank(X)(%d)."
,
axis
,
x_dims
.
size
()));
auto
x_rank
=
x_dims
.
size
();
if
(
axis
<
0
)
axis
+=
x_rank
;
if
(
ctx
->
IsRuntime
())
{
const
int
&
dtype
=
ctx
->
Attrs
().
Get
<
int
>
(
"dtype"
);
if
(
dtype
==
framework
::
proto
::
VarType
::
INT32
)
{
int64_t
all_element_num
=
0
;
if
(
flatten
)
{
all_element_num
=
framework
::
product
(
x_dims
);
}
else
{
all_element_num
=
x_dims
[
axis
];
}
PADDLE_ENFORCE_LE
(
all_element_num
,
INT_MAX
,
"The element num of the argmin/argmax input at axis is "
"%d, is larger than int32 maximum value:%d, you must "
"set the dtype of argmin/argmax to 'int64'."
,
all_element_num
,
INT_MAX
);
}
}
std
::
vector
<
int64_t
>
vec
;
std
::
vector
<
int64_t
>
vec
;
if
(
flatten
)
{
if
(
flatten
)
{
// if is flatten, will return the only on element
vec
.
emplace_back
(
static_cast
<
int64_t
>
(
1
));
if
(
keepdims
)
{
vec
.
emplace_back
(
static_cast
<
int64_t
>
(
1
));
}
}
else
{
}
else
{
auto
x_rank
=
x_dims
.
size
();
if
(
axis
<
0
)
axis
+=
x_rank
;
for
(
int64_t
i
=
0
;
i
<
axis
;
i
++
)
vec
.
emplace_back
(
x_dims
[
i
]);
for
(
int64_t
i
=
0
;
i
<
axis
;
i
++
)
vec
.
emplace_back
(
x_dims
[
i
]);
if
(
keepdims
)
{
if
(
keepdims
)
{
vec
.
emplace_back
(
static_cast
<
int64_t
>
(
1
));
vec
.
emplace_back
(
static_cast
<
int64_t
>
(
1
));
...
@@ -194,10 +211,14 @@ class BaseArgMinMaxOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -194,10 +211,14 @@ class BaseArgMinMaxOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"Output tensor."
);
AddOutput
(
"Out"
,
"Output tensor."
);
AddAttr
<
int64_t
>
(
"axis"
,
"The axis in which to compute the arg indics."
);
AddAttr
<
int64_t
>
(
"axis"
,
"The axis in which to compute the arg indics."
);
AddAttr
<
bool
>
(
"keepdims"
,
"Keep the dim that to reduce."
).
SetDefault
(
false
);
AddAttr
<
bool
>
(
"keepdims"
,
"Keep the dim that to reduce."
).
SetDefault
(
false
);
AddAttr
<
int
>
(
"dtype"
,
"Keep the dim that to reduce."
).
SetDefault
(
-
1
);
AddAttr
<
bool
>
(
"flatten"
,
AddAttr
<
bool
>
(
"flatten"
,
"Flatten the input value, and search the min or max indices"
)
"Flatten the input value, and search the min or max indices"
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddAttr
<
int
>
(
"dtype"
,
"(int, 3), the dtype of indices, the indices dtype must be "
"int32, int64."
"default dtype is int64, and proto value is 3."
)
.
SetDefault
(
3
);
AddComment
(
string
::
Sprintf
(
R"DOC(
AddComment
(
string
::
Sprintf
(
R"DOC(
%s Operator.
%s Operator.
...
...
paddle/fluid/operators/arg_min_op.cc
浏览文件 @
897e5746
...
@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/arg_min_max_op_base.h"
#include "paddle/fluid/operators/arg_min_max_op_base.h"
REGISTER_OPERATOR
(
REGISTER_OPERATOR
(
...
@@ -31,3 +32,20 @@ REGISTER_OP_CPU_KERNEL(
...
@@ -31,3 +32,20 @@ REGISTER_OP_CPU_KERNEL(
int16_t
>
,
int16_t
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
uint8_t
>
);
uint8_t
>
);
REGISTER_OP_VERSION
(
arg_min
)
.
AddCheckpoint
(
R"ROC(
Upgrade argmin add a new attribute [flatten] and modify the attribute of dtype)ROC"
,
paddle
::
framework
::
compatible
::
OpVersionDesc
()
.
NewAttr
(
"flatten"
,
"In order to compute the argmin over the flattened array "
"when the "
"argument `axis` in python API is None."
,
false
)
.
ModifyAttr
(
"dtype"
,
"change the default value of dtype, the older version "
"is -1, means return the int64 indices."
"The new version is 3, return the int64 indices directly."
"And supporting the dtype of -1 in new version."
,
3
));
python/paddle/fluid/tests/unittests/test_arg_min_max_v2_op.py
浏览文件 @
897e5746
...
@@ -218,7 +218,7 @@ def create_test_case(op_type):
...
@@ -218,7 +218,7 @@ def create_test_case(op_type):
self
.
assertTrue
(
"test_arg_api"
in
result
.
name
)
self
.
assertTrue
(
"test_arg_api"
in
result
.
name
)
def
run_dygraph
(
self
,
place
):
def
run_dygraph
(
self
,
place
):
paddle
.
disable_static
()
paddle
.
disable_static
(
place
)
op
=
eval
(
"paddle.%s"
%
(
op_type
))
op
=
eval
(
"paddle.%s"
%
(
op_type
))
data_tensor
=
paddle
.
to_tensor
(
self
.
input_data
)
data_tensor
=
paddle
.
to_tensor
(
self
.
input_data
)
...
@@ -240,7 +240,7 @@ def create_test_case(op_type):
...
@@ -240,7 +240,7 @@ def create_test_case(op_type):
#case 4
#case 4
result_data
=
op
(
data_tensor
,
axis
=-
1
,
keepdim
=
True
)
result_data
=
op
(
data_tensor
,
axis
=-
1
,
keepdim
=
True
)
excepted_data
=
self
.
numpy_op
(
self
.
input_data
,
axis
=-
1
)
excepted_data
=
self
.
numpy_op
(
self
.
input_data
,
axis
=-
1
)
excepted_data
=
excepted_data
.
reshape
((
10
))
excepted_data
=
excepted_data
.
reshape
((
10
,
1
))
self
.
assertTrue
((
result_data
.
numpy
()
==
excepted_data
).
all
(),
True
)
self
.
assertTrue
((
result_data
.
numpy
()
==
excepted_data
).
all
(),
True
)
#case 5
#case 5
...
@@ -299,14 +299,28 @@ class TestArgMinMaxOpError(unittest.TestCase):
...
@@ -299,14 +299,28 @@ class TestArgMinMaxOpError(unittest.TestCase):
name
=
"test_argmax"
,
shape
=
[
10
],
dtype
=
"float32"
)
name
=
"test_argmax"
,
shape
=
[
10
],
dtype
=
"float32"
)
output
=
paddle
.
argmax
(
x
=
data
,
dtype
=
"float32"
)
output
=
paddle
.
argmax
(
x
=
data
,
dtype
=
"float32"
)
self
.
assertRaises
(
Valu
eError
,
test_argmax_attr_type
)
self
.
assertRaises
(
Typ
eError
,
test_argmax_attr_type
)
def
test_argmin_attr_type
():
def
test_argmin_attr_type
():
data
=
paddle
.
static
.
data
(
data
=
paddle
.
static
.
data
(
name
=
"test_argmax"
,
shape
=
[
10
],
dtype
=
"float32"
)
name
=
"test_argmax"
,
shape
=
[
10
],
dtype
=
"float32"
)
output
=
paddle
.
argmin
(
x
=
data
,
dtype
=
"float32"
)
output
=
paddle
.
argmin
(
x
=
data
,
dtype
=
"float32"
)
self
.
assertRaises
(
ValueError
,
test_argmin_attr_type
)
self
.
assertRaises
(
TypeError
,
test_argmin_attr_type
)
def
test_argmax_axis_type
():
data
=
paddle
.
static
.
data
(
name
=
"test_argmax"
,
shape
=
[
10
],
dtype
=
"float32"
)
output
=
paddle
.
argmax
(
x
=
data
,
axis
=
1.2
)
self
.
assertRaises
(
TypeError
,
test_argmax_axis_type
)
def
test_argmin_axis_type
():
data
=
paddle
.
static
.
data
(
name
=
"test_argmin"
,
shape
=
[
10
],
dtype
=
"float32"
)
output
=
paddle
.
argmin
(
x
=
data
,
axis
=
1.2
)
self
.
assertRaises
(
TypeError
,
test_argmin_axis_type
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
python/paddle/tensor/search.py
浏览文件 @
897e5746
...
@@ -18,7 +18,6 @@ from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtyp
...
@@ -18,7 +18,6 @@ from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtyp
from
..fluid
import
core
,
layers
from
..fluid
import
core
,
layers
# TODO: define searching & indexing functions of a tensor
# TODO: define searching & indexing functions of a tensor
from
..fluid.layers
import
argmin
#DEFINE_ALIAS
from
..fluid.layers
import
has_inf
#DEFINE_ALIAS
from
..fluid.layers
import
has_inf
#DEFINE_ALIAS
from
..fluid.layers
import
has_nan
#DEFINE_ALIAS
from
..fluid.layers
import
has_nan
#DEFINE_ALIAS
...
@@ -123,7 +122,7 @@ def argsort(x, axis=-1, descending=False, name=None):
...
@@ -123,7 +122,7 @@ def argsort(x, axis=-1, descending=False, name=None):
return
ids
return
ids
def
argmax
(
x
,
axis
=
None
,
dtype
=
None
,
keepdim
=
False
,
name
=
None
):
def
argmax
(
x
,
axis
=
None
,
keepdim
=
False
,
dtype
=
"int64"
,
name
=
None
):
"""
"""
This OP computes the indices of the max elements of the input tensor's
This OP computes the indices of the max elements of the input tensor's
element along the provided axis.
element along the provided axis.
...
@@ -134,10 +133,10 @@ def argmax(x, axis=None, dtype=None, keepdim=False, name=None):
...
@@ -134,10 +133,10 @@ def argmax(x, axis=None, dtype=None, keepdim=False, name=None):
axis(int, optional): Axis to compute indices along. The effective range
axis(int, optional): Axis to compute indices along. The effective range
is [-R, R), where R is x.ndim. when axis < 0, it works the same way
is [-R, R), where R is x.ndim. when axis < 0, it works the same way
as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
dtype(str): Data type of the output tensor which can
be int32, int64. The default value is None, and it will
return the int64 indices.
keepdim(bool, optional): Keep the axis that selecting max. The defalut value is False.
keepdim(bool, optional): Keep the axis that selecting max. The defalut value is False.
dtype(str|np.dtype, optional): Data type of the output tensor which can
be int32, int64. The default value is 'int64', and it will
return the int64 indices.
name(str, optional): The default value is None. Normally there is no
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
refer to :ref:`api_guide_Name`.
...
@@ -163,48 +162,39 @@ def argmax(x, axis=None, dtype=None, keepdim=False, name=None):
...
@@ -163,48 +162,39 @@ def argmax(x, axis=None, dtype=None, keepdim=False, name=None):
print(out3.numpy())
print(out3.numpy())
# [2 3 1]
# [2 3 1]
"""
"""
if
axis
is
not
None
and
not
isinstance
(
axis
,
int
):
raise
TypeError
(
"The type of 'axis' must be int or None in argmax, but received %s."
%
(
type
(
axis
)))
var_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
check_dtype
(
var_dtype
,
'dtype'
,
[
'int32'
,
'int64'
],
'argmin'
)
flatten
=
False
flatten
=
False
if
axis
is
None
:
if
axis
is
None
:
flatten
=
True
flatten
=
True
axis
=
0
axis
=
0
if
in_dygraph_mode
():
if
in_dygraph_mode
():
if
dtype
!=
None
:
out
=
core
.
ops
.
arg_max
(
x
,
'axis'
,
axis
,
'dtype'
,
var_dtype
,
'keepdims'
,
var_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
keepdim
,
'flatten'
,
flatten
)
out
=
core
.
ops
.
arg_max
(
x
,
'axis'
,
axis
,
'dtype'
,
var_dtype
,
'keepdim'
,
keepdim
,
'flatten'
,
flatten
)
else
:
out
=
core
.
ops
.
arg_max
(
x
,
'axis'
,
axis
,
'keepdim'
,
keepdim
,
'flatten'
,
flatten
)
return
out
return
out
helper
=
LayerHelper
(
"argmax"
,
**
locals
())
helper
=
LayerHelper
(
"argmax"
,
**
locals
())
check_variable_and_dtype
(
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
,
'int16'
,
'int32'
,
'int64'
,
'uint8'
],
x
,
'x'
,
[
'float32'
,
'float64'
,
'int16'
,
'int32'
,
'int64'
,
'uint8'
],
'paddle.argmax'
)
'paddle.argmax'
)
var_dtype
=
None
attrs
=
{}
attrs
=
{}
if
dtype
is
not
None
:
if
dtype
not
in
[
'int32'
,
'int64'
]:
raise
ValueError
(
"The value of 'dtype' in argmax op must be int32, int64, but received of {}"
.
format
(
dtype
))
var_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
attrs
[
"dtype"
]
=
var_dtype
else
:
var_dtype
=
VarDesc
.
VarType
.
INT64
out
=
helper
.
create_variable_for_type_inference
(
var_dtype
)
out
=
helper
.
create_variable_for_type_inference
(
var_dtype
)
attrs
[
'keepdims'
]
=
keepdim
attrs
[
'keepdims'
]
=
keepdim
attrs
[
'axis'
]
=
axis
attrs
[
'axis'
]
=
axis
attrs
[
'flatten'
]
=
flatten
attrs
[
'flatten'
]
=
flatten
attrs
[
'dtype'
]
=
var_dtype
helper
.
append_op
(
helper
.
append_op
(
type
=
'arg_max'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
attrs
)
type
=
'arg_max'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
attrs
)
out
.
stop_gradient
=
True
out
.
stop_gradient
=
True
return
out
return
out
def
argmin
(
x
,
axis
=
None
,
dtype
=
None
,
keepdim
=
False
,
name
=
None
):
def
argmin
(
x
,
axis
=
None
,
keepdim
=
False
,
dtype
=
"int64"
,
name
=
None
):
"""
"""
This OP computes the indices of the min elements of the input tensor's
This OP computes the indices of the min elements of the input tensor's
element along the provided axis.
element along the provided axis.
...
@@ -215,10 +205,10 @@ def argmin(x, axis=None, dtype=None, keepdim=False, name=None):
...
@@ -215,10 +205,10 @@ def argmin(x, axis=None, dtype=None, keepdim=False, name=None):
axis(int, optional): Axis to compute indices along. The effective range
axis(int, optional): Axis to compute indices along. The effective range
is [-R, R), where R is x.ndim. when axis < 0, it works the same way
is [-R, R), where R is x.ndim. when axis < 0, it works the same way
as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
keepdim(bool, optional): Keep the axis that selecting min. The defalut value is False.
dtype(str): Data type of the output tensor which can
dtype(str): Data type of the output tensor which can
be int32, int64. The default value is
None
, and it will
be int32, int64. The default value is
'int64'
, and it will
return the int64 indices.
return the int64 indices.
keepdim(bool, optional): Keep the axis that selecting min. The defalut value is False.
name(str, optional): The default value is None. Normally there is no
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
refer to :ref:`api_guide_Name`.
...
@@ -244,41 +234,32 @@ def argmin(x, axis=None, dtype=None, keepdim=False, name=None):
...
@@ -244,41 +234,32 @@ def argmin(x, axis=None, dtype=None, keepdim=False, name=None):
print(out3.numpy())
print(out3.numpy())
# [0 0 2]
# [0 0 2]
"""
"""
if
axis
is
not
None
and
not
isinstance
(
axis
,
int
):
raise
TypeError
(
"The type of 'axis' must be int or None in argmin, but received %s."
%
(
type
(
axis
)))
var_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
check_dtype
(
var_dtype
,
'dtype'
,
[
'int32'
,
'int64'
],
'argmin'
)
flatten
=
False
flatten
=
False
if
axis
is
None
:
if
axis
is
None
:
flatten
=
True
flatten
=
True
axis
=
0
axis
=
0
if
in_dygraph_mode
():
if
in_dygraph_mode
():
if
dtype
!=
None
:
out
=
core
.
ops
.
arg_min
(
x
,
'axis'
,
axis
,
'dtype'
,
var_dtype
,
'keepdims'
,
var_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
keepdim
,
'flatten'
,
flatten
)
out
=
core
.
ops
.
arg_min
(
x
,
'axis'
,
axis
,
'dtype'
,
var_dtype
,
'keepdim'
,
keepdim
,
'flatten'
,
flatten
)
else
:
out
=
core
.
ops
.
arg_min
(
x
,
'axis'
,
axis
,
'keepdim'
,
keepdim
,
'flatten'
,
flatten
)
return
out
return
out
helper
=
LayerHelper
(
"argmin"
,
**
locals
())
helper
=
LayerHelper
(
"argmin"
,
**
locals
())
check_variable_and_dtype
(
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
,
'int16'
,
'int32'
,
'int64'
,
'uint8'
],
x
,
'x'
,
[
'float32'
,
'float64'
,
'int16'
,
'int32'
,
'int64'
,
'uint8'
],
'paddle.argmin'
)
'paddle.argmin'
)
var_dtype
=
None
attrs
=
{}
if
dtype
is
not
None
:
if
dtype
not
in
[
'int32'
,
'int64'
]:
raise
ValueError
(
"The value of 'dtype' in argmin op must be int32, int64, but received of {}"
.
format
(
dtype
))
var_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
attrs
[
"dtype"
]
=
var_dtype
else
:
var_dtype
=
VarDesc
.
VarType
.
INT64
out
=
helper
.
create_variable_for_type_inference
(
var_dtype
)
out
=
helper
.
create_variable_for_type_inference
(
var_dtype
)
attrs
=
{}
attrs
[
'keepdims'
]
=
keepdim
attrs
[
'keepdims'
]
=
keepdim
attrs
[
'axis'
]
=
axis
attrs
[
'axis'
]
=
axis
attrs
[
'flatten'
]
=
flatten
attrs
[
'flatten'
]
=
flatten
attrs
[
'dtype'
]
=
var_dtype
helper
.
append_op
(
helper
.
append_op
(
type
=
'arg_min'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
attrs
)
type
=
'arg_min'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
attrs
)
out
.
stop_gradient
=
True
out
.
stop_gradient
=
True
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录