Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
8965819f
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8965819f
编写于
3月 21, 2019
作者:
Z
Zhen Wang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
rewrite the cuda kernels of channel_wise_quant_op and channe_wise_dequant_op. test=develop
上级
ec88b6cc
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
405 addition
and
116 deletion
+405
-116
paddle/fluid/operators/fake_dequantize_op.cc
paddle/fluid/operators/fake_dequantize_op.cc
+43
-0
paddle/fluid/operators/fake_dequantize_op.cu
paddle/fluid/operators/fake_dequantize_op.cu
+58
-0
paddle/fluid/operators/fake_dequantize_op.h
paddle/fluid/operators/fake_dequantize_op.h
+16
-27
paddle/fluid/operators/fake_quantize_op.cc
paddle/fluid/operators/fake_quantize_op.cc
+45
-0
paddle/fluid/operators/fake_quantize_op.cu
paddle/fluid/operators/fake_quantize_op.cu
+103
-22
paddle/fluid/operators/fake_quantize_op.h
paddle/fluid/operators/fake_quantize_op.h
+17
-15
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+0
-2
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
...paddle/fluid/contrib/slim/tests/test_quantization_pass.py
+123
-50
未找到文件。
paddle/fluid/operators/fake_dequantize_op.cc
浏览文件 @
8965819f
...
...
@@ -33,8 +33,51 @@ struct DequantizeFunctor<platform::CPUDeviceContext, T> {
}
};
template
<
typename
T
>
struct
ChannelDequantizeFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
dev_ctx
,
const
framework
::
Tensor
*
in
,
const
framework
::
Tensor
**
scales
,
const
int
scale_num
,
T
max_range
,
framework
::
Tensor
*
out
)
{
if
(
scale_num
==
1
)
{
const
int
channel
=
in
->
dims
()[
0
];
const
T
*
scale_factor
=
scales
[
0
]
->
data
<
T
>
();
for
(
int
i
=
0
;
i
<
channel
;
i
++
)
{
T
s
=
scale_factor
[
i
];
framework
::
Tensor
one_channel_in
=
in
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
auto
in_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_in
);
auto
out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_out
);
auto
&
dev
=
*
dev_ctx
.
eigen_device
();
out_e
.
device
(
dev
)
=
(
s
/
max_range
)
*
in_e
;
}
}
else
if
(
scale_num
==
2
)
{
int
batch_size
=
in
->
dims
()[
0
];
int
channel
=
in
->
dims
()[
1
];
const
T
*
scale_one
=
scales
[
0
]
->
data
<
T
>
();
const
T
*
scale_two
=
scales
[
1
]
->
data
<
T
>
();
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
framework
::
Tensor
one_batch_in
=
in
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
slice_ddim
(
in
->
dims
(),
1
,
in
->
dims
().
size
()));
framework
::
Tensor
one_batch_out
=
out
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
slice_ddim
(
out
->
dims
(),
1
,
out
->
dims
().
size
()));
for
(
int
j
=
0
;
j
<
channel
;
j
++
)
{
T
s
=
scale_one
[
j
];
framework
::
Tensor
one_channel_in
=
one_batch_in
.
Slice
(
j
,
j
+
1
);
framework
::
Tensor
one_channel_out
=
one_batch_out
.
Slice
(
j
,
j
+
1
);
auto
in_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_in
);
auto
out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_out
);
auto
&
dev
=
*
dev_ctx
.
eigen_device
();
out_e
.
device
(
dev
)
=
(
s
*
scale_two
[
0
]
/
max_range
)
*
in_e
;
}
}
}
}
};
template
struct
DequantizeFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
DequantizeFunctor
<
platform
::
CPUDeviceContext
,
double
>;
template
struct
ChannelDequantizeFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
ChannelDequantizeFunctor
<
platform
::
CPUDeviceContext
,
double
>;
class
FakeDequantizeMaxAbsOp
:
public
framework
::
OperatorWithKernel
{
public:
...
...
paddle/fluid/operators/fake_dequantize_op.cu
浏览文件 @
8965819f
...
...
@@ -44,8 +44,66 @@ struct DequantizeFunctor<platform::CUDADeviceContext, T> {
}
};
template
<
typename
T
>
__global__
void
DequantizeOneScale
(
const
T
*
in
,
const
T
*
scale
,
T
max_range
,
int
num
,
int
channel
,
T
*
out
)
{
int
tid
=
threadIdx
.
x
;
int
channel_size
=
num
/
channel
;
const
T
*
in_c
=
in
+
blockIdx
.
x
*
channel_size
;
T
*
out_c
=
out
+
blockIdx
.
x
*
channel_size
;
for
(
int
i
=
tid
;
i
<
channel_size
;
i
+=
blockDim
.
x
)
{
out_c
[
i
]
=
in_c
[
i
]
*
scale
[
blockIdx
.
x
]
/
max_range
;
}
}
template
<
typename
T
>
__global__
void
DequantizeTwoScale
(
const
T
*
in
,
const
T
*
scale_one
,
const
T
*
scale_two
,
T
max_range
,
int
num
,
int
batch_size
,
int
channel
,
T
*
out
)
{
int
tid
=
threadIdx
.
x
;
int
channel_size
=
num
/
(
batch_size
*
channel
);
int
scale_index
=
blockIdx
.
x
%
channel
;
const
T
*
in_c
=
in
+
blockIdx
.
x
*
channel_size
;
T
*
out_c
=
out
+
blockIdx
.
x
*
channel_size
;
for
(
int
i
=
tid
;
i
<
channel_size
;
i
+=
blockDim
.
x
)
{
out_c
[
i
]
=
in_c
[
i
]
*
scale_one
[
scale_index
]
*
scale_two
[
0
]
/
max_range
;
}
}
template
<
typename
T
>
struct
ChannelDequantizeFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
dev_ctx
,
const
framework
::
Tensor
*
in
,
const
framework
::
Tensor
**
scales
,
const
int
scale_num
,
T
max_range
,
framework
::
Tensor
*
out
)
{
const
T
*
in_data
=
in
->
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
if
(
scale_num
==
1
)
{
int
num
=
in
->
numel
();
int
channel
=
in
->
dims
()[
0
];
const
T
*
scale_factor
=
scales
[
0
]
->
data
<
T
>
();
int
block
=
1024
;
int
grid
=
channel
;
DequantizeOneScale
<
T
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
in_data
,
scale_factor
,
max_range
,
num
,
channel
,
out_data
);
}
else
if
(
scale_num
==
2
)
{
int
num
=
in
->
numel
();
int
batch_size
=
in
->
dims
()[
0
];
int
channel
=
in
->
dims
()[
1
];
const
T
*
scale_one
=
scales
[
0
]
->
data
<
T
>
();
const
T
*
scale_two
=
scales
[
1
]
->
data
<
T
>
();
int
block
=
1024
;
int
grid
=
batch_size
*
channel
;
DequantizeTwoScale
<
T
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
in_data
,
scale_one
,
scale_two
,
max_range
,
num
,
batch_size
,
channel
,
out_data
);
}
}
};
template
struct
DequantizeFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
struct
DequantizeFunctor
<
platform
::
CUDADeviceContext
,
double
>;
template
struct
ChannelDequantizeFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
struct
ChannelDequantizeFunctor
<
platform
::
CUDADeviceContext
,
double
>;
}
// namespace operators
}
// namespace paddle
...
...
paddle/fluid/operators/fake_dequantize_op.h
浏览文件 @
8965819f
...
...
@@ -29,6 +29,13 @@ struct DequantizeFunctor {
framework
::
Tensor
*
out
);
};
template
<
typename
DeviceContext
,
typename
T
>
struct
ChannelDequantizeFunctor
{
void
operator
()(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
*
in
,
const
framework
::
Tensor
**
scales
,
const
int
scale_num
,
T
max_range
,
framework
::
Tensor
*
out
);
};
template
<
typename
DeviceContext
,
typename
T
>
class
FakeDequantizeMaxAbsKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -56,50 +63,32 @@ class FakeChannelWiseDequantizeMaxAbsKernel : public framework::OpKernel<T> {
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
quant_bits
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"quant_bits"
);
int
max_range
=
std
::
pow
(
2
,
quant_bits
[
0
]
-
1
)
-
1
;
int
max_range
=
1
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
auto
dequant
=
DequantizeFunctor
<
DeviceContext
,
T
>
();
if
(
scales
.
size
()
==
1
)
{
int
scale_num
=
scales
.
size
();
if
(
scale_num
==
1
)
{
PADDLE_ENFORCE_EQ
(
scales
[
0
]
->
numel
(),
in
->
dims
()[
0
],
"The number of first scale values must be the same with "
"first dimension value of Input(X) when the `Scales` has only one "
"element."
);
for
(
int64_t
i
=
0
;
i
<
in
->
dims
()[
0
];
i
++
)
{
framework
::
Tensor
one_channel_in
=
in
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_scale
=
scales
[
0
]
->
Slice
(
i
,
i
+
1
);
dequant
(
dev_ctx
,
&
one_channel_in
,
&
one_channel_scale
,
static_cast
<
T
>
(
max_range
),
&
one_channel_out
);
}
}
else
if
(
scales
.
size
()
==
2
)
{
max_range
*=
(
std
::
pow
(
2
,
quant_bits
[
0
]
-
1
)
-
1
);
}
else
if
(
scale_num
==
2
)
{
PADDLE_ENFORCE_EQ
(
scales
[
0
]
->
numel
(),
in
->
dims
()[
1
],
"The number of first scale values must be the same with "
"second dimension value of Input(X) when the `Scales` has two "
"elements."
);
for
(
int64_t
i
=
0
;
i
<
in
->
dims
()[
0
];
i
++
)
{
framework
::
Tensor
one_batch_in
=
in
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
slice_ddim
(
in
->
dims
(),
1
,
in
->
dims
().
size
()));
framework
::
Tensor
one_batch_out
=
out
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
slice_ddim
(
out
->
dims
(),
1
,
out
->
dims
().
size
()));
for
(
int64_t
j
=
0
;
j
<
in
->
dims
()[
1
];
j
++
)
{
framework
::
Tensor
one_channel_in
=
one_batch_in
.
Slice
(
j
,
j
+
1
);
framework
::
Tensor
one_channel_out
=
one_batch_out
.
Slice
(
j
,
j
+
1
);
framework
::
Tensor
one_channel_scale
=
scales
[
0
]
->
Slice
(
j
,
j
+
1
);
dequant
(
dev_ctx
,
&
one_channel_in
,
&
one_channel_scale
,
static_cast
<
T
>
(
max_range
),
&
one_channel_out
);
}
}
PADDLE_ENFORCE_EQ
(
scales
[
1
]
->
numel
(),
1
,
"The second scale tensor should only have one value at now."
);
max_range
=
std
::
pow
(
2
,
quant_bits
[
1
]
-
1
)
-
1
;
dequant
(
dev_ctx
,
out
,
scales
[
1
],
static_cast
<
T
>
(
max_range
),
out
);
max_range
*=
(
std
::
pow
(
2
,
quant_bits
[
0
]
-
1
)
-
1
)
*
(
std
::
pow
(
2
,
quant_bits
[
1
]
-
1
)
-
1
);
}
ChannelDequantizeFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in
,
scales
.
data
(),
scale_num
,
static_cast
<
T
>
(
max_range
),
out
);
}
};
...
...
paddle/fluid/operators/fake_quantize_op.cc
浏览文件 @
8965819f
...
...
@@ -37,6 +37,21 @@ struct FindAbsMaxFunctor<platform::CPUDeviceContext, T> {
template
struct
FindAbsMaxFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
<
typename
T
>
struct
FindChannelAbsMaxFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
const
T
*
in
,
const
int
num
,
const
int
channel
,
T
*
out
)
{
const
int
channel_size
=
num
/
channel
;
for
(
int
i
=
0
;
i
<
channel
;
i
++
)
{
auto
*
start
=
in
+
i
*
channel_size
;
auto
*
end
=
in
+
(
i
+
1
)
*
channel_size
;
out
[
i
]
=
std
::
abs
(
*
(
std
::
max_element
(
start
,
end
,
Compare
<
T
>
())));
}
}
};
template
struct
FindChannelAbsMaxFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
<
typename
T
>
struct
ClipAndFakeQuantFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
...
...
@@ -53,6 +68,36 @@ struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
template
struct
ClipAndFakeQuantFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
<
typename
T
>
struct
ChannelClipAndFakeQuantFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
const
int
channel
,
framework
::
Tensor
*
out
)
{
auto
*
scale_data
=
scale
.
data
<
T
>
();
auto
*
in_data
=
in
.
data
<
T
>
();
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
int
channel_size
=
in
.
numel
()
/
channel
;
platform
::
Transform
<
platform
::
CPUDeviceContext
>
trans
;
for
(
int
i
=
0
;
i
<
channel
;
i
++
)
{
T
s
=
scale_data
[
i
];
auto
*
start
=
in_data
+
i
*
channel_size
;
auto
*
end
=
in_data
+
(
i
+
1
)
*
channel_size
;
trans
(
ctx
,
start
,
end
,
out_data
+
i
*
channel_size
,
ClipFunctor
<
T
>
(
-
s
,
s
));
}
for
(
int
i
=
0
;
i
<
channel
;
i
++
)
{
T
s
=
scale_data
[
i
];
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
auto
out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_out
);
out_e
.
device
(
*
ctx
.
eigen_device
())
=
(
bin_cnt
/
s
*
out_e
).
round
();
}
}
};
template
struct
ChannelClipAndFakeQuantFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
<
typename
T
>
struct
FindRangeAbsMaxFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
...
...
paddle/fluid/operators/fake_quantize_op.cu
浏览文件 @
8965819f
...
...
@@ -74,6 +74,45 @@ struct FindAbsMaxFunctor<platform::CUDADeviceContext, T> {
template
struct
FindAbsMaxFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
<
typename
T
>
__global__
void
FindChannelAbsMaxKernel
(
const
T
*
in
,
const
int
n
,
const
int
c
,
T
*
out
)
{
int
tid
=
threadIdx
.
x
;
int
channel_size
=
n
/
c
;
const
T
*
in_c
=
in
+
blockIdx
.
x
*
channel_size
;
extern
__shared__
T
shared_max_data
[];
shared_max_data
[
tid
]
=
T
(
0
);
for
(
int
i
=
tid
;
i
<
channel_size
;
i
+=
blockDim
.
x
)
{
T
tmp
=
fabs
(
in_c
[
i
]);
if
(
tmp
>
shared_max_data
[
tid
])
{
shared_max_data
[
tid
]
=
tmp
;
}
}
__syncthreads
();
for
(
int
i
=
blockDim
.
x
/
2
;
i
>
0
;
i
>>=
1
)
{
if
(
tid
<
i
&&
(
shared_max_data
[
tid
]
<
shared_max_data
[
tid
+
i
]))
{
shared_max_data
[
tid
]
=
shared_max_data
[
tid
+
i
];
}
__syncthreads
();
}
if
(
tid
==
0
)
{
out
[
blockIdx
.
x
]
=
shared_max_data
[
0
];
}
}
template
<
typename
T
>
struct
FindChannelAbsMaxFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
T
*
in
,
const
int
num
,
const
int
channel
,
T
*
out
)
{
int
block
=
1024
;
int
grid
=
channel
;
FindChannelAbsMaxKernel
<
T
><<<
grid
,
block
,
1024
*
sizeof
(
T
),
ctx
.
stream
()
>>>
(
in
,
num
,
channel
,
out
);
}
};
template
struct
FindChannelAbsMaxFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
<
typename
T
>
__global__
void
ClipAndQuantKernel
(
const
T
*
in
,
const
T
*
scale
,
const
int
bin_cnt
,
const
int
n
,
T
*
out
)
{
...
...
@@ -82,14 +121,76 @@ __global__ void ClipAndQuantKernel(const T* in, const T* scale,
T
s
=
scale
[
0
];
for
(
int
i
=
bid
;
i
<
n
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
x
=
in
[
bid
];
T
x
=
in
[
i
];
T
v
=
x
>
s
?
s
:
x
;
v
=
v
<
-
s
?
-
s
:
v
;
v
=
bin_cnt
/
s
*
v
;
out
[
bid
]
=
round
(
v
);
out
[
i
]
=
round
(
v
);
}
}
template
<
typename
T
>
struct
ClipAndFakeQuantFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
framework
::
Tensor
*
out
)
{
int
num
=
in
.
numel
();
int
block
=
1024
;
int
grid
=
(
block
-
1
+
num
)
/
block
;
const
T
*
in_data
=
in
.
data
<
T
>
();
const
T
*
scale_data
=
scale
.
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ClipAndQuantKernel
<
T
><<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
scale_data
,
bin_cnt
,
num
,
out_data
);
}
};
template
struct
ClipAndFakeQuantFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
<
typename
T
>
__global__
void
ChannelClipAndQuantKernel
(
const
T
*
in
,
const
T
*
scale
,
const
int
bin_cnt
,
const
int
n
,
const
int
c
,
T
*
out
)
{
int
tid
=
threadIdx
.
x
;
int
channel_size
=
n
/
c
;
const
T
*
in_c
=
in
+
blockIdx
.
x
*
channel_size
;
T
*
out_c
=
out
+
blockIdx
.
x
*
channel_size
;
T
s
=
scale
[
blockIdx
.
x
];
for
(
int
i
=
tid
;
i
<
channel_size
;
i
+=
blockDim
.
x
)
{
T
x
=
in_c
[
i
];
T
v
=
x
>
s
?
s
:
x
;
v
=
v
<
-
s
?
-
s
:
v
;
v
=
bin_cnt
/
s
*
v
;
out_c
[
i
]
=
round
(
v
);
}
}
template
<
typename
T
>
struct
ChannelClipAndFakeQuantFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
const
int
channel
,
framework
::
Tensor
*
out
)
{
int
num
=
in
.
numel
();
int
block
=
1024
;
int
grid
=
channel
;
const
T
*
in_data
=
in
.
data
<
T
>
();
const
T
*
scale_data
=
scale
.
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ChannelClipAndQuantKernel
<
T
><<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
scale_data
,
bin_cnt
,
num
,
channel
,
out_data
);
}
};
template
struct
ChannelClipAndFakeQuantFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
<
typename
T
>
__global__
void
FindRangeAbsMaxAndFillArray
(
const
T
*
cur_scale
,
const
T
*
last_scale
,
...
...
@@ -182,26 +283,6 @@ struct FindMovingAverageAbsMaxFunctor<platform::CUDADeviceContext, T> {
template
struct
FindMovingAverageAbsMaxFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
<
typename
T
>
struct
ClipAndFakeQuantFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
framework
::
Tensor
*
out
)
{
int
num
=
in
.
numel
();
int
block
=
1024
;
int
grid
=
(
block
-
1
+
num
)
/
block
;
const
T
*
in_data
=
in
.
data
<
T
>
();
const
T
*
scale_data
=
scale
.
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ClipAndQuantKernel
<
T
><<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
scale_data
,
bin_cnt
,
num
,
out_data
);
}
};
template
struct
ClipAndFakeQuantFunctor
<
platform
::
CUDADeviceContext
,
float
>;
}
// namespace operators
}
// namespace paddle
...
...
paddle/fluid/operators/fake_quantize_op.h
浏览文件 @
8965819f
...
...
@@ -42,6 +42,19 @@ struct FindRangeAbsMaxFunctor {
framework
::
Tensor
*
scales_arr
,
framework
::
Tensor
*
out_scale
);
};
template
<
typename
DeviceContext
,
typename
T
>
struct
FindChannelAbsMaxFunctor
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
T
*
in
,
const
int
num
,
const
int
channel
,
T
*
out
);
};
template
<
typename
DeviceContext
,
typename
T
>
struct
ChannelClipAndFakeQuantFunctor
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
const
int
channel
,
framework
::
Tensor
*
out
);
};
template
<
typename
DeviceContext
,
typename
T
>
struct
FindMovingAverageAbsMaxFunctor
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
in_accum
,
...
...
@@ -86,21 +99,10 @@ class FakeChannelWiseQuantizeAbsMaxKernel : public framework::OpKernel<T> {
int
bin_cnt
=
std
::
pow
(
2
,
bit_length
-
1
)
-
1
;
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
find_abs_max
=
FindAbsMaxFunctor
<
DeviceContext
,
T
>
();
for
(
int64_t
i
=
0
;
i
<
in
->
dims
()[
0
];
i
++
)
{
framework
::
Tensor
one_channel
=
in
->
Slice
(
i
,
i
+
1
);
const
T
*
one_channel_data
=
one_channel
.
data
<
T
>
();
find_abs_max
(
dev_ctx
,
one_channel_data
,
one_channel
.
numel
(),
&
out_scale_data
[
i
]);
}
auto
clip_quant
=
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
();
for
(
int64_t
i
=
0
;
i
<
in
->
dims
()[
0
];
i
++
)
{
framework
::
Tensor
one_channel_in
=
in
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_scale
=
out_scale
->
Slice
(
i
,
i
+
1
);
clip_quant
(
dev_ctx
,
one_channel_in
,
one_channel_scale
,
bin_cnt
,
&
one_channel_out
);
}
FindChannelAbsMaxFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in
->
data
<
T
>
(),
in
->
numel
(),
in
->
dims
()[
0
],
out_scale_data
);
ChannelClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
in
->
dims
()[
0
],
out
);
}
};
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
8965819f
...
...
@@ -576,8 +576,6 @@ class QuantizationFreezePass(object):
elif
self
.
_weight_quantize_type
==
'channel_wise_abs_max'
:
param
=
self
.
_load_var
(
input_arg_name
)
if
len
(
param
.
shape
)
==
4
:
# conv2d or depthwise_conv2d
print
(
'DEBUG**************************: %s'
%
input_arg_name
)
scale_v
=
[]
for
i
in
range
(
param
.
shape
[
0
]):
scale_v
.
append
(
np
.
max
(
np
.
abs
(
param
[
i
])))
...
...
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
浏览文件 @
8965819f
...
...
@@ -127,7 +127,7 @@ class TestQuantizationTransformPass(unittest.TestCase):
arg_name
.
endswith
(
'.quantized.dequantized'
))
self
.
assertTrue
(
arg_name
in
quantized_ops
)
def
linear_fc_quant
(
self
,
quant_type
,
for_ci
=
False
):
def
linear_fc_quant
(
self
,
activation_
quant_type
,
for_ci
=
False
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
...
...
@@ -140,14 +140,15 @@ class TestQuantizationTransformPass(unittest.TestCase):
transform_pass
=
QuantizationTransformPass
(
scope
=
fluid
.
global_scope
(),
place
=
place
,
activation_quantize_type
=
quant_type
)
activation_quantize_type
=
activation_
quant_type
)
transform_pass
.
apply
(
graph
)
if
not
for_ci
:
marked_nodes
=
set
()
for
op
in
graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
graph
.
draw
(
'.'
,
'quantize_fc_'
+
quant_type
,
marked_nodes
)
graph
.
draw
(
'.'
,
'quantize_fc_'
+
activation_quant_type
,
marked_nodes
)
program
=
graph
.
to_program
()
self
.
check_program
(
transform_pass
,
program
)
val_graph
=
IrGraph
(
core
.
Graph
(
program
.
desc
),
for_test
=
False
)
...
...
@@ -156,7 +157,8 @@ class TestQuantizationTransformPass(unittest.TestCase):
for
op
in
val_graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
val_marked_nodes
.
add
(
op
)
val_graph
.
draw
(
'.'
,
'val_fc_'
+
quant_type
,
val_marked_nodes
)
val_graph
.
draw
(
'.'
,
'val_fc_'
+
activation_quant_type
,
val_marked_nodes
)
def
test_linear_fc_quant_abs_max
(
self
):
self
.
linear_fc_quant
(
'abs_max'
,
for_ci
=
True
)
...
...
@@ -167,7 +169,7 @@ class TestQuantizationTransformPass(unittest.TestCase):
def
test_linear_fc_quant_moving_average_abs_max
(
self
):
self
.
linear_fc_quant
(
'moving_average_abs_max'
,
for_ci
=
True
)
def
residual_block_quant
(
self
,
quant_type
,
for_ci
=
False
):
def
residual_block_quant
(
self
,
activation_
quant_type
,
for_ci
=
False
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
...
...
@@ -180,14 +182,15 @@ class TestQuantizationTransformPass(unittest.TestCase):
transform_pass
=
QuantizationTransformPass
(
scope
=
fluid
.
global_scope
(),
place
=
place
,
activation_quantize_type
=
quant_type
)
activation_quantize_type
=
activation_
quant_type
)
transform_pass
.
apply
(
graph
)
if
not
for_ci
:
marked_nodes
=
set
()
for
op
in
graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
graph
.
draw
(
'.'
,
'quantize_residual_'
+
quant_type
,
marked_nodes
)
graph
.
draw
(
'.'
,
'quantize_residual_'
+
activation_quant_type
,
marked_nodes
)
program
=
graph
.
to_program
()
self
.
check_program
(
transform_pass
,
program
)
val_graph
=
IrGraph
(
core
.
Graph
(
program
.
desc
),
for_test
=
False
)
...
...
@@ -196,7 +199,8 @@ class TestQuantizationTransformPass(unittest.TestCase):
for
op
in
val_graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
val_marked_nodes
.
add
(
op
)
val_graph
.
draw
(
'.'
,
'val_residual_'
+
quant_type
,
val_marked_nodes
)
val_graph
.
draw
(
'.'
,
'val_residual_'
+
activation_quant_type
,
val_marked_nodes
)
def
test_residual_block_abs_max
(
self
):
self
.
residual_block_quant
(
'abs_max'
,
for_ci
=
True
)
...
...
@@ -209,7 +213,12 @@ class TestQuantizationTransformPass(unittest.TestCase):
class
TestQuantizationFreezePass
(
unittest
.
TestCase
):
def
freeze_graph
(
self
,
use_cuda
,
seed
,
quant_type
,
for_ci
=
False
):
def
freeze_graph
(
self
,
use_cuda
,
seed
,
activation_quant_type
,
weight_quant_type
=
'abs_max'
,
for_ci
=
False
):
def
build_program
(
main
,
startup
,
is_test
):
main
.
random_seed
=
seed
startup
.
random_seed
=
seed
...
...
@@ -245,10 +254,10 @@ class TestQuantizationFreezePass(unittest.TestCase):
transform_pass
=
QuantizationTransformPass
(
scope
=
scope
,
place
=
place
,
activation_quantize_type
=
quant_type
,
weight_quantize_type
=
'channel_wise_abs_max'
)
activation_quantize_type
=
activation_
quant_type
,
weight_quantize_type
=
weight_quant_type
)
#transform_pass = QuantizationTransformPass(
# scope=scope, place=place, activation_quantize_type=quant_type)
# scope=scope, place=place, activation_quantize_type=
activation_
quant_type)
transform_pass
.
apply
(
main_graph
)
transform_pass
.
apply
(
test_graph
)
dev_name
=
'_gpu_'
if
use_cuda
else
'_cpu_'
...
...
@@ -257,12 +266,14 @@ class TestQuantizationFreezePass(unittest.TestCase):
for
op
in
main_graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
main_graph
.
draw
(
'.'
,
'main'
+
dev_name
+
quant_type
,
marked_nodes
)
main_graph
.
draw
(
'.'
,
'main'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
marked_nodes
)
marked_nodes
=
set
()
for
op
in
test_graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
test_graph
.
draw
(
'.'
,
'test'
+
dev_name
+
quant_type
,
marked_nodes
)
test_graph
.
draw
(
'.'
,
'test'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
marked_nodes
)
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
memory_optimize
=
False
...
...
@@ -287,8 +298,9 @@ class TestQuantizationFreezePass(unittest.TestCase):
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
])
if
not
for_ci
:
print
(
'{}: {}'
.
format
(
'loss'
+
dev_name
+
quant_type
,
loss_v
))
print
(
'{}: {}'
.
format
(
'loss'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
loss_v
))
test_data
=
next
(
test_reader
())
with
fluid
.
program_guard
(
quantized_test_program
):
...
...
@@ -302,9 +314,7 @@ class TestQuantizationFreezePass(unittest.TestCase):
# Freeze graph for inference, but the weight of fc/conv is still float type.
freeze_pass
=
QuantizationFreezePass
(
scope
=
scope
,
place
=
place
,
weight_quantize_type
=
'channel_wise_abs_max'
)
scope
=
scope
,
place
=
place
,
weight_quantize_type
=
weight_quant_type
)
#freeze_pass = QuantizationFreezePass(scope=scope, place=place)
freeze_pass
.
apply
(
test_graph
)
if
not
for_ci
:
...
...
@@ -312,7 +322,8 @@ class TestQuantizationFreezePass(unittest.TestCase):
for
op
in
test_graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
test_graph
.
draw
(
'.'
,
'test_freeze'
+
dev_name
+
quant_type
,
test_graph
.
draw
(
'.'
,
'test_freeze'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
marked_nodes
)
server_program
=
test_graph
.
to_program
()
...
...
@@ -322,18 +333,20 @@ class TestQuantizationFreezePass(unittest.TestCase):
fetch_list
=
[
loss
])
self
.
assertAlmostEqual
(
test_loss1
,
test_loss2
,
delta
=
5e-3
)
if
not
for_ci
:
print
(
'{}: {}'
.
format
(
'test_loss1'
+
dev_name
+
quant_type
,
test_loss1
))
print
(
'{}: {}'
.
format
(
'test_loss2'
+
dev_name
+
quant_type
,
test_loss2
))
print
(
'{}: {}'
.
format
(
'test_loss1'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
test_loss1
))
print
(
'{}: {}'
.
format
(
'test_loss2'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
test_loss2
))
w_freeze
=
np
.
array
(
scope
.
find_var
(
'conv2d_1.w_0'
).
get_tensor
())
# Maybe failed, this is due to the calculation precision
# self.assertAlmostEqual(np.sum(w_freeze), np.sum(w_quant))
if
not
for_ci
:
print
(
'{}: {}'
.
format
(
'w_freeze'
+
dev_name
+
quant_type
,
np
.
sum
(
w_freeze
)))
print
(
'{}: {}'
.
format
(
'w_quant'
+
dev_name
+
quant_type
,
np
.
sum
(
w_quant
)))
print
(
'{}: {}'
.
format
(
'w_freeze'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
np
.
sum
(
w_freeze
)))
print
(
'{}: {}'
.
format
(
'w_quant'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
np
.
sum
(
w_quant
)))
# Convert parameter to 8-bit.
convert_int8_pass
=
ConvertToInt8Pass
(
scope
=
scope
,
place
=
place
)
...
...
@@ -343,26 +356,28 @@ class TestQuantizationFreezePass(unittest.TestCase):
for
op
in
test_graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
test_graph
.
draw
(
'.'
,
'test_int8'
+
dev_name
+
quant_type
,
marked_nodes
)
test_graph
.
draw
(
'.'
,
'test_int8'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
marked_nodes
)
server_program_int8
=
test_graph
.
to_program
()
# Save the 8-bit parameter and model file.
with
fluid
.
scope_guard
(
scope
):
fluid
.
io
.
save_inference_model
(
'server_int8'
+
dev_name
+
quant_type
,
[
'image'
,
'label'
],
[
loss
],
exe
,
server_program_int8
)
fluid
.
io
.
save_inference_model
(
'server_int8'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
[
'image'
,
'label'
],
[
loss
],
exe
,
server_program_int8
)
# Test whether the 8-bit parameter and model file can be loaded successfully.
[
infer
,
feed
,
fetch
]
=
fluid
.
io
.
load_inference_model
(
'server_int8'
+
dev_name
+
quant_type
,
exe
)
'server_int8'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
exe
)
# Check the loaded 8-bit weight.
w_8bit
=
np
.
array
(
scope
.
find_var
(
'conv2d_1.w_0.int8'
).
get_tensor
())
self
.
assertEqual
(
w_8bit
.
dtype
,
np
.
int8
)
self
.
assertEqual
(
np
.
sum
(
w_8bit
),
np
.
sum
(
w_freeze
))
if
not
for_ci
:
print
(
'{}: {}'
.
format
(
'w_8bit'
+
dev_name
+
quant_type
,
np
.
sum
(
w_8bit
)))
print
(
'{}: {}'
.
format
(
'w_freeze'
+
dev_name
+
quant_type
,
np
.
sum
(
w_freeze
)))
print
(
'{}: {}'
.
format
(
'w_8bit'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
np
.
sum
(
w_8bit
)))
print
(
'{}: {}'
.
format
(
'w_freeze'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
np
.
sum
(
w_freeze
)))
mobile_pass
=
TransformForMobilePass
()
mobile_pass
.
apply
(
test_graph
)
...
...
@@ -371,45 +386,103 @@ class TestQuantizationFreezePass(unittest.TestCase):
for
op
in
test_graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
test_graph
.
draw
(
'.'
,
'test_mobile'
+
dev_name
+
quant_type
,
test_graph
.
draw
(
'.'
,
'test_mobile'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
marked_nodes
)
mobile_program
=
test_graph
.
to_program
()
with
fluid
.
scope_guard
(
scope
):
fluid
.
io
.
save_inference_model
(
'mobile_int8'
+
dev_name
+
quant_type
,
[
'image'
,
'label'
],
[
loss
],
exe
,
mobile_program
)
fluid
.
io
.
save_inference_model
(
'mobile_int8'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
[
'image'
,
'label'
],
[
loss
],
exe
,
mobile_program
)
def
test_freeze_graph_cuda_dynamic
(
self
):
if
fluid
.
core
.
is_compiled_with_cuda
():
with
fluid
.
unique_name
.
guard
():
self
.
freeze_graph
(
True
,
seed
=
1
,
quant_type
=
'abs_max'
,
for_ci
=
False
)
True
,
seed
=
1
,
activation_quant_type
=
'abs_max'
,
weight_quant_type
=
'abs_max'
,
for_ci
=
True
)
with
fluid
.
unique_name
.
guard
():
self
.
freeze_graph
(
True
,
seed
=
1
,
activation_quant_type
=
'abs_max'
,
weight_quant_type
=
'channel_wise_abs_max'
,
for_ci
=
True
)
def
test_freeze_graph_cpu_dynamic
(
self
):
with
fluid
.
unique_name
.
guard
():
self
.
freeze_graph
(
False
,
seed
=
2
,
quant_type
=
'abs_max'
,
for_ci
=
False
)
self
.
freeze_graph
(
False
,
seed
=
2
,
activation_quant_type
=
'abs_max'
,
weight_quant_type
=
'abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
False
,
seed
=
2
,
activation_quant_type
=
'abs_max'
,
weight_quant_type
=
'channel_wise_abs_max'
,
for_ci
=
True
)
def
test_freeze_graph_cuda_static
(
self
):
if
fluid
.
core
.
is_compiled_with_cuda
():
with
fluid
.
unique_name
.
guard
():
self
.
freeze_graph
(
True
,
seed
=
1
,
quant_type
=
'range_abs_max'
,
for_ci
=
False
)
True
,
seed
=
1
,
activation_quant_type
=
'range_abs_max'
,
weight_quant_type
=
'abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
True
,
seed
=
1
,
activation_quant_type
=
'moving_average_abs_max'
,
weight_quant_type
=
'abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
True
,
seed
=
1
,
quant_type
=
'moving_average_abs_max'
,
for_ci
=
False
)
activation_quant_type
=
'range_abs_max'
,
weight_quant_type
=
'channel_wise_abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
True
,
seed
=
1
,
activation_quant_type
=
'moving_average_abs_max'
,
weight_quant_type
=
'channel_wise_abs_max'
,
for_ci
=
True
)
def
test_freeze_graph_cpu_static
(
self
):
with
fluid
.
unique_name
.
guard
():
self
.
freeze_graph
(
False
,
seed
=
2
,
quant_type
=
'range_abs_max'
,
for_ci
=
False
)
False
,
seed
=
2
,
activation_quant_type
=
'range_abs_max'
,
weight_quant_type
=
'abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
False
,
seed
=
2
,
activation_quant_type
=
'moving_average_abs_max'
,
weight_quant_type
=
'abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
False
,
seed
=
2
,
activation_quant_type
=
'range_abs_max'
,
weight_quant_type
=
'channel_wise_abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
False
,
seed
=
2
,
quant_type
=
'moving_average_abs_max'
,
for_ci
=
False
)
activation_quant_type
=
'moving_average_abs_max'
,
weight_quant_type
=
'channel_wise_abs_max'
,
for_ci
=
True
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录