Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
889bdde3
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
889bdde3
编写于
7月 20, 2022
作者:
zhouweiwei2014
提交者:
GitHub
7月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Phi] migrate exponential kernel to phi (#44376)
* [Phi] migrate exponential kernel to phi * fix comment * fix CI
上级
99bf7007
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
181 addition
and
78 deletion
+181
-78
paddle/fluid/operators/exponential_op.cc
paddle/fluid/operators/exponential_op.cc
+13
-73
paddle/phi/api/yaml/generator/wrapped_infermeta_gen.py
paddle/phi/api/yaml/generator/wrapped_infermeta_gen.py
+2
-1
paddle/phi/api/yaml/legacy_api.yaml
paddle/phi/api/yaml/legacy_api.yaml
+11
-0
paddle/phi/api/yaml/legacy_backward.yaml
paddle/phi/api/yaml/legacy_backward.yaml
+9
-0
paddle/phi/kernels/cpu/exponential_kernel.cc
paddle/phi/kernels/cpu/exponential_kernel.cc
+45
-0
paddle/phi/kernels/exponential_kernel.h
paddle/phi/kernels/exponential_kernel.h
+27
-0
paddle/phi/kernels/gpu/exponential_kernel.cu
paddle/phi/kernels/gpu/exponential_kernel.cu
+36
-0
paddle/phi/ops/compat/exponential_sig.cc
paddle/phi/ops/compat/exponential_sig.cc
+26
-0
python/paddle/fluid/tests/unittests/test_exponential_op.py
python/paddle/fluid/tests/unittests/test_exponential_op.py
+9
-3
python/paddle/tensor/random.py
python/paddle/tensor/random.py
+3
-1
未找到文件。
paddle/fluid/operators/exponential_op.cc
浏览文件 @
889bdde3
...
@@ -12,7 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,7 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/operators/exponential_op.h"
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/infermeta/unary.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -21,13 +23,6 @@ class ExponentialOp : public framework::OperatorWithKernel {
...
@@ -21,13 +23,6 @@ class ExponentialOp : public framework::OperatorWithKernel {
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"ExponentialOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"ExponentialOp"
);
auto
dim
=
ctx
->
GetInputDim
(
"X"
);
ctx
->
SetOutputDim
(
"Out"
,
dim
);
}
protected:
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
@@ -51,52 +46,6 @@ exponential distribution.
...
@@ -51,52 +46,6 @@ exponential distribution.
}
}
};
};
class
ExponentialOpInferVarType
:
public
framework
::
PassInDtypeAndVarTypeToOutput
{
protected:
std
::
unordered_map
<
std
::
string
,
std
::
string
>
&
GetInputOutputWithSameType
()
const
override
{
static
std
::
unordered_map
<
std
::
string
,
std
::
string
>
m
{{
"X"
,
/*->*/
"Out"
}};
return
m
;
}
};
template
<
typename
T
>
class
ExponentialKernel
<
phi
::
CPUContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
lambda
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"lambda"
));
int64_t
size
=
out
->
numel
();
auto
gen
=
framework
::
DefaultCPUGenerator
();
auto
engine
=
gen
->
GetCPUEngine
();
std
::
uniform_real_distribution
<
T
>
uniform
(
0.0
,
1.0
);
phi
::
funcs
::
exponential_transform
<
T
>
trans
(
lambda
);
for
(
int64_t
i
=
0
;
i
<
size
;
++
i
)
{
out_data
[
i
]
=
trans
(
uniform
(
*
engine
));
}
}
};
class
ExponentialGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input"
,
"Out_Grad"
,
"ExponentialGradOp"
);
auto
dout_dim
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
dout_dim
);
}
};
template
<
typename
T
>
template
<
typename
T
>
class
ExponentialGradOpMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
class
ExponentialGradOpMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
public:
...
@@ -104,10 +53,10 @@ class ExponentialGradOpMaker : public framework::SingleGradOpMaker<T> {
...
@@ -104,10 +53,10 @@ class ExponentialGradOpMaker : public framework::SingleGradOpMaker<T> {
protected:
protected:
void
Apply
(
GradOpPtr
<
T
>
retv
)
const
override
{
void
Apply
(
GradOpPtr
<
T
>
retv
)
const
override
{
retv
->
SetType
(
"
exponential_grad
"
);
retv
->
SetType
(
"
fill_any_like
"
);
retv
->
SetInput
(
framework
::
GradVarName
(
"Out"
)
,
this
->
OutputGrad
(
"Out"
));
retv
->
SetInput
(
"X"
,
this
->
OutputGrad
(
"Out"
));
retv
->
Set
Output
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
)
);
retv
->
Set
Attr
(
"value"
,
0.0
f
);
retv
->
Set
AttrMap
(
this
->
Attrs
(
));
retv
->
Set
Output
(
"Out"
,
this
->
InputGrad
(
"X"
));
}
}
};
};
...
@@ -118,24 +67,15 @@ namespace ops = paddle::operators;
...
@@ -118,24 +67,15 @@ namespace ops = paddle::operators;
namespace
plat
=
paddle
::
platform
;
namespace
plat
=
paddle
::
platform
;
DECLARE_INPLACE_OP_INFERER
(
ExponentialInferer
,
{
"X"
,
"Out"
});
DECLARE_INPLACE_OP_INFERER
(
ExponentialInferer
,
{
"X"
,
"Out"
});
DECLARE_INPLACE_OP_INFERER
(
ExponentialGradInferer
,
{
paddle
::
framework
::
GradVarName
(
"Out"
),
DECLARE_INFER_SHAPE_FUNCTOR
(
exponential
,
paddle
::
framework
::
GradVarName
(
"X"
)});
ExponentialInfershapeFunctor
,
PD_INFER_META
(
phi
::
UnchangedInferMeta
));
REGISTER_OPERATOR
(
exponential
,
REGISTER_OPERATOR
(
exponential
,
ops
::
ExponentialOp
,
ops
::
ExponentialOp
,
ops
::
ExponentialOpMaker
,
ops
::
ExponentialOpMaker
,
ops
::
ExponentialOpInferVarType
,
ops
::
ExponentialGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
ExponentialGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
ExponentialGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
ops
::
ExponentialGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
ExponentialInferer
);
ExponentialInferer
,
REGISTER_OPERATOR
(
exponential_grad
,
ExponentialInfershapeFunctor
);
ops
::
ExponentialGradOp
,
ExponentialGradInferer
);
REGISTER_OP_CPU_KERNEL
(
exponential
,
ops
::
ExponentialKernel
<
phi
::
CPUContext
,
float
>
,
ops
::
ExponentialKernel
<
phi
::
CPUContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
exponential_grad
,
ops
::
ExponentialGradKernel
<
phi
::
CPUContext
,
float
>
,
ops
::
ExponentialGradKernel
<
phi
::
CPUContext
,
double
>
);
paddle/phi/api/yaml/generator/wrapped_infermeta_gen.py
浏览文件 @
889bdde3
...
@@ -46,7 +46,8 @@ PD_REGISTER_INFER_META_FN({api.kernel['func'][0]}, phi::{api.infer_meta['func']}
...
@@ -46,7 +46,8 @@ PD_REGISTER_INFER_META_FN({api.kernel['func'][0]}, phi::{api.infer_meta['func']}
'const paddle::optional<Tensor>&'
:
'const MetaTensor&'
'const paddle::optional<Tensor>&'
:
'const MetaTensor&'
}
}
wrapped_infermeta_name
=
get_wrapped_infermeta_name
(
api
.
api
)
wrapped_infermeta_name
=
get_wrapped_infermeta_name
(
api
.
kernel
[
'func'
][
0
])
args
=
[]
args
=
[]
for
input_name
in
api
.
inputs
[
'names'
]:
for
input_name
in
api
.
inputs
[
'names'
]:
if
input_name
in
kernel_params
:
if
input_name
in
kernel_params
:
...
...
paddle/phi/api/yaml/legacy_api.yaml
浏览文件 @
889bdde3
...
@@ -689,6 +689,17 @@
...
@@ -689,6 +689,17 @@
func
:
expm1
func
:
expm1
backward
:
expm1_grad
backward
:
expm1_grad
-
api
:
exponential_
args
:
(Tensor x, float lambda)
output
:
Tensor(out)
infer_meta
:
func
:
UnchangedInferMeta
param
:
[
x
]
kernel
:
func
:
exponential
inplace
:
(x -> out)
backward
:
exponential__grad
-
api
:
eye
-
api
:
eye
args
:
(int64_t num_rows, int64_t num_columns, DataType dtype=DataType::FLOAT32, Place place={})
args
:
(int64_t num_rows, int64_t num_columns, DataType dtype=DataType::FLOAT32, Place place={})
output
:
Tensor(out)
output
:
Tensor(out)
...
...
paddle/phi/api/yaml/legacy_backward.yaml
浏览文件 @
889bdde3
...
@@ -720,6 +720,15 @@
...
@@ -720,6 +720,15 @@
func
:
expm1_grad
func
:
expm1_grad
inplace
:
(out_grad -> x_grad)
inplace
:
(out_grad -> x_grad)
-
backward_api
:
exponential__grad
forward
:
exponential_ (Tensor x, float lambda) -> Tensor(out)
args
:
(Tensor out_grad)
output
:
Tensor(x_grad)
infer_meta
:
func
:
UnchangedInferMeta
invoke
:
zeros_like(out_grad, DataType::UNDEFINED, {})
inplace
:
(out_grad -> x_grad)
-
backward_api
:
flatten_grad
-
backward_api
:
flatten_grad
forward
:
flatten(Tensor x, int start_axis, int stop_axis) -> Tensor(out), Tensor(xshape)
forward
:
flatten(Tensor x, int start_axis, int stop_axis) -> Tensor(out), Tensor(xshape)
args
:
(Tensor xshape, Tensor out_grad)
args
:
(Tensor xshape, Tensor out_grad)
...
...
paddle/phi/kernels/cpu/exponential_kernel.cc
0 → 100644
浏览文件 @
889bdde3
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/exponential_kernel.h"
#include <random>
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/generator.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/distribution_helper.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ExponentialKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
float
lambda
,
DenseTensor
*
out
)
{
T
*
out_data
=
dev_ctx
.
template
Alloc
<
T
>(
out
);
auto
engine
=
dev_ctx
.
GetGenerator
()
->
GetCPUEngine
();
std
::
uniform_real_distribution
<
T
>
uniform
(
0.0
,
1.0
);
phi
::
funcs
::
exponential_transform
<
T
>
trans
(
lambda
);
for
(
int64_t
i
=
0
;
i
<
out
->
numel
();
++
i
)
{
out_data
[
i
]
=
trans
(
uniform
(
*
engine
));
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
exponential
,
CPU
,
ALL_LAYOUT
,
phi
::
ExponentialKernel
,
float
,
double
)
{}
paddle/phi/kernels/exponential_kernel.h
0 → 100644
浏览文件 @
889bdde3
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ExponentialKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
float
lambda
,
DenseTensor
*
out
);
}
// namespace phi
paddle/
fluid/operators/exponential_op.h
→
paddle/
phi/kernels/gpu/exponential_kernel.cu
浏览文件 @
889bdde3
// Copyright (c) 202
1
PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
//
//
// Licensed under the Apache License, Version 2.0 (the "License");
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// you may not use this file except in compliance with the License.
...
@@ -12,31 +12,25 @@
...
@@ -12,31 +12,25 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#
pragma once
#
include "paddle/phi/kernels/exponential_kernel.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/phi/kernels/funcs/distribution_helper.h"
#include "paddle/phi/kernels/funcs/distribution_helper.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
paddle
{
namespace
phi
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
,
typename
Context
>
class
ExponentialKernel
;
void
ExponentialKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
float
lambda
,
DenseTensor
*
out
)
{
phi
::
funcs
::
uniform_distribution
<
T
>
dist
;
phi
::
funcs
::
exponential_transform
<
T
>
trans
(
lambda
);
phi
::
funcs
::
distribution_and_transform
<
T
>
(
dev_ctx
,
out
,
dist
,
trans
);
}
template
<
typename
DeviceContext
,
typename
T
>
}
// namespace phi
class
ExponentialGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
phi
::
funcs
::
SetConstant
<
DeviceContext
,
T
>
functor
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
functor
(
dev_ctx
,
dx
,
static_cast
<
T
>
(
0
));
}
};
}
// namespace operators
PD_REGISTER_KERNEL
(
}
// namespace paddle
exponential
,
GPU
,
ALL_LAYOUT
,
phi
::
ExponentialKernel
,
float
,
double
)
{}
paddle/
fluid/operators/exponential_op.cu
→
paddle/
phi/ops/compat/exponential_sig.cc
浏览文件 @
889bdde3
/* Copyright (c) 202
1
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
you may not use this file except in compliance with the License.
...
@@ -12,37 +12,15 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,37 +12,15 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/operators/exponential_op.h"
#include "paddle/phi/core/compat/op_utils.h"
namespace
paddle
{
namespace
phi
{
namespace
operators
{
KernelSignature
ExponentialOpArgumentMapping
(
template
<
typename
T
>
const
ArgumentMappingContext
&
ctx
)
{
class
ExponentialKernel
<
platform
::
CUDADeviceContext
,
T
>
return
KernelSignature
(
"exponential"
,
{
"X"
},
{
"lambda"
},
{
"Out"
});
:
public
framework
::
OpKernel
<
T
>
{
}
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
}
// namespace phi
framework
::
Tensor
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
&
dev_cxt
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
PD_REGISTER_ARG_MAPPING_FN
(
exponential
,
phi
::
ExponentialOpArgumentMapping
);
T
lambda
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"lambda"
));
phi
::
funcs
::
uniform_distribution
<
T
>
dist
;
phi
::
funcs
::
exponential_transform
<
T
>
trans
(
lambda
);
phi
::
funcs
::
distribution_and_transform
<
T
>
(
dev_cxt
,
out
,
dist
,
trans
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
exponential
,
ops
::
ExponentialKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
ExponentialKernel
<
plat
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
exponential_grad
,
ops
::
ExponentialGradKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
ExponentialGradKernel
<
plat
::
CUDADeviceContext
,
double
>
);
python/paddle/fluid/tests/unittests/test_exponential_op.py
浏览文件 @
889bdde3
...
@@ -18,13 +18,13 @@ import numpy as np
...
@@ -18,13 +18,13 @@ import numpy as np
from
op_test
import
OpTest
from
op_test
import
OpTest
import
os
import
os
paddle
.
enable_static
()
paddle
.
seed
(
100
)
paddle
.
seed
(
100
)
class
TestExponentialOp1
(
OpTest
):
class
TestExponentialOp1
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
paddle
.
enable_static
()
self
.
op_type
=
"exponential"
self
.
op_type
=
"exponential"
self
.
config
()
self
.
config
()
...
@@ -87,8 +87,14 @@ class TestExponentialAPI(unittest.TestCase):
...
@@ -87,8 +87,14 @@ class TestExponentialAPI(unittest.TestCase):
def
test_dygraph
(
self
):
def
test_dygraph
(
self
):
paddle
.
disable_static
()
paddle
.
disable_static
()
x
=
paddle
.
full
([
10
,
10
],
-
1.
,
dtype
=
'float32'
)
x
=
paddle
.
full
([
10
,
10
],
-
1.
,
dtype
=
'float32'
)
x
.
exponential_
(
0.5
)
x
.
stop_gradient
=
False
self
.
assertTrue
(
np
.
min
(
x
.
numpy
())
>=
0
)
y
=
2
*
x
y
.
exponential_
(
0.5
)
print
(
y
)
self
.
assertTrue
(
np
.
min
(
y
.
numpy
())
>=
0
)
y
.
backward
()
self
.
assertTrue
(
np
.
array_equal
(
x
.
grad
.
numpy
(),
np
.
zeros
([
10
,
10
])))
paddle
.
enable_static
()
paddle
.
enable_static
()
def
test_fixed_random_number
(
self
):
def
test_fixed_random_number
(
self
):
...
...
python/paddle/tensor/random.py
浏览文件 @
889bdde3
...
@@ -1052,7 +1052,9 @@ def exponential_(x, lam=1.0, name=None):
...
@@ -1052,7 +1052,9 @@ def exponential_(x, lam=1.0, name=None):
# [0.72520673, 0.45208144, 0.30234432]]
# [0.72520673, 0.45208144, 0.30234432]]
"""
"""
if
paddle
.
in_dynamic_mode
():
if
in_dygraph_mode
():
return
_C_ops
.
final_state_exponential_
(
x
,
lam
)
elif
paddle
.
in_dynamic_mode
():
return
_C_ops
.
exponential_
(
x
,
"lambda"
,
lam
)
return
_C_ops
.
exponential_
(
x
,
"lambda"
,
lam
)
check_variable_and_dtype
(
x
,
"x"
,
[
"float32"
,
"float64"
],
"exponential"
)
check_variable_and_dtype
(
x
,
"x"
,
[
"float32"
,
"float64"
],
"exponential"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录