Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
8758a338
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8758a338
编写于
11月 11, 2022
作者:
Y
Yiqun Liu
提交者:
GitHub
11月 11, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Simplify the autotune cache codes. (#47667)
上级
6cdc18af
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
229 addition
and
242 deletion
+229
-242
paddle/phi/kernels/autotune/cache.cc
paddle/phi/kernels/autotune/cache.cc
+1
-1
paddle/phi/kernels/autotune/cache.h
paddle/phi/kernels/autotune/cache.h
+11
-241
paddle/phi/kernels/autotune/cache_base.h
paddle/phi/kernels/autotune/cache_base.h
+217
-0
未找到文件。
paddle/phi/kernels/autotune/cache.cc
浏览文件 @
8758a338
...
@@ -59,7 +59,7 @@ void AutoTuneCache::UpdateStatus() {
...
@@ -59,7 +59,7 @@ void AutoTuneCache::UpdateStatus() {
cache_misses
+=
v
.
second
.
CacheMisses
();
cache_misses
+=
v
.
second
.
CacheMisses
();
}
}
for
(
auto
&
v
:
c
udnn
_auto_tune_map_
)
{
for
(
auto
&
v
:
c
onv
_auto_tune_map_
)
{
VLOG
(
4
)
<<
"AlgoType: "
<<
std
::
setfill
(
' '
)
<<
std
::
setw
(
name_width
)
VLOG
(
4
)
<<
"AlgoType: "
<<
std
::
setfill
(
' '
)
<<
std
::
setw
(
name_width
)
<<
AlgorithmTypeString
(
v
.
first
)
<<
AlgorithmTypeString
(
v
.
first
)
<<
" Cache Size: "
<<
v
.
second
.
Size
()
<<
" Cache Size: "
<<
v
.
second
.
Size
()
...
...
paddle/phi/kernels/autotune/cache.h
浏览文件 @
8758a338
...
@@ -15,43 +15,10 @@
...
@@ -15,43 +15,10 @@
#pragma once
#pragma once
#include <algorithm>
#include <algorithm>
#include <mutex>
#include <numeric>
#include <numeric>
#include <unordered_map>
#include <vector>
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/kernels/autotune/cache_base.h"
#include "paddle/phi/core/errors.h"
DECLARE_int32
(
search_cache_max_number
);
inline
void
HashCombine
(
std
::
size_t
*
seed
)
{}
// combine hash value
// https://stackoverflow.com/questions/2590677/how-do-i-combine-hash-values-in-c0x
template
<
typename
T
,
typename
...
Rest
>
inline
void
HashCombine
(
std
::
size_t
*
seed
,
const
T
&
v
,
Rest
...
rest
)
{
std
::
hash
<
T
>
hasher
;
*
seed
^=
hasher
(
v
)
+
0x9e3779b9
+
(
*
seed
<<
6
)
+
(
*
seed
>>
2
);
*
seed
*=
0x00000100000001B3
;
HashCombine
(
seed
,
rest
...);
}
// custom specialization of std::hash can be injected in namespace std
// ref: https://en.cppreference.com/w/cpp/utility/hash
namespace
std
{
template
<
typename
T
>
struct
hash
<
std
::
vector
<
T
>>
{
std
::
size_t
operator
()(
std
::
vector
<
T
>
const
&
vec
)
const
noexcept
{
std
::
size_t
seed
=
0xcbf29ce484222325
;
for
(
auto
val
:
vec
)
{
HashCombine
(
&
seed
,
val
);
}
return
seed
;
}
};
}
// namespace std
namespace
phi
{
namespace
phi
{
namespace
autotune
{
namespace
autotune
{
...
@@ -66,208 +33,10 @@ struct ConvAutoTuneResult {
...
@@ -66,208 +33,10 @@ struct ConvAutoTuneResult {
bool
exhaustive_search
=
false
;
bool
exhaustive_search
=
false
;
};
};
template
<
typename
...
Args
>
size_t
GetKey
(
Args
&&
...
args
)
{
size_t
seed
=
0
;
HashCombine
(
&
seed
,
std
::
forward
<
Args
>
(
args
)...);
return
seed
;
}
struct
ConvCacheKey
{
ConvCacheKey
()
{}
ConvCacheKey
(
const
std
::
vector
<
int64_t
>&
arg_x_dims
,
const
std
::
vector
<
int64_t
>&
arg_w_dims
,
const
std
::
vector
<
int
>&
arg_strides
,
const
std
::
vector
<
int
>&
arg_paddings
,
const
std
::
vector
<
int
>&
arg_dilations
,
phi
::
DataType
arg_dtype
,
int
arg_groups
,
int64_t
arg_data_layout
)
:
x_dims
(
arg_x_dims
),
w_dims
(
arg_w_dims
),
strides
(
arg_strides
),
paddings
(
arg_paddings
),
dilations
(
arg_dilations
),
dtype
(
arg_dtype
),
groups
(
arg_groups
),
data_layout
(
arg_data_layout
)
{}
size_t
hash_value
()
const
{
return
GetKey
(
x_dims
,
w_dims
,
strides
,
paddings
,
dilations
,
static_cast
<
int64_t
>
(
dtype
),
groups
,
data_layout
);
}
std
::
vector
<
int64_t
>
x_dims
;
std
::
vector
<
int64_t
>
w_dims
;
std
::
vector
<
int
>
strides
;
std
::
vector
<
int
>
paddings
;
std
::
vector
<
int
>
dilations
;
phi
::
DataType
dtype
;
int
groups
;
int64_t
data_layout
;
};
struct
ConvCacheKeyHash
{
size_t
operator
()(
const
ConvCacheKey
&
cache
)
const
{
return
cache
.
hash_value
();
}
};
struct
ConvCacheKeyEqual
{
size_t
operator
()(
const
ConvCacheKey
&
first
,
const
ConvCacheKey
&
second
)
const
{
if
(
first
.
x_dims
!=
second
.
x_dims
)
return
false
;
if
(
first
.
w_dims
!=
second
.
w_dims
)
return
false
;
if
(
first
.
strides
!=
second
.
strides
)
return
false
;
if
(
first
.
paddings
!=
second
.
paddings
)
return
false
;
if
(
first
.
dilations
!=
second
.
dilations
)
return
false
;
if
(
first
.
dtype
!=
second
.
dtype
)
return
false
;
if
(
first
.
groups
!=
second
.
groups
)
return
false
;
if
(
first
.
data_layout
!=
second
.
data_layout
)
return
false
;
return
true
;
}
};
class
CudnnAlgorithmsCacheMap
{
public:
CudnnAlgorithmsCacheMap
()
:
cache_mutex_
(
new
std
::
mutex
())
{
hash_
.
clear
();
}
ConvAutoTuneResult
Get
(
const
ConvCacheKey
&
key
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
cache_mutex_
);
PADDLE_ENFORCE_NE
(
hash_
.
find
(
key
),
hash_
.
end
(),
phi
::
errors
::
PreconditionNotMet
(
"The key does not exist."
));
return
hash_
[
key
];
}
bool
Find
(
const
ConvCacheKey
&
key
)
{
bool
ret
=
false
;
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
cache_mutex_
);
if
(
hash_
.
find
(
key
)
!=
hash_
.
end
())
{
cache_hits_
++
;
ret
=
true
;
}
else
{
cache_misses_
++
;
}
return
ret
;
}
void
Clean
()
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
cache_mutex_
);
hash_
.
clear
();
cache_hits_
=
0
;
cache_misses_
=
0
;
}
void
Set
(
const
ConvCacheKey
&
key
,
ConvAutoTuneResult
algo
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
cache_mutex_
);
if
(
hash_
.
size
()
>
static_cast
<
size_t
>
(
FLAGS_search_cache_max_number
))
{
hash_
.
clear
();
}
hash_
[
key
]
=
algo
;
}
int64_t
CacheMisses
()
const
{
return
cache_misses_
;
}
int64_t
CacheHits
()
const
{
return
cache_hits_
;
}
float
CacheHitRate
()
const
{
int64_t
num_accesses
=
cache_hits_
+
cache_misses_
;
float
cache_hit_rate
=
0.
;
if
(
num_accesses
!=
0
)
{
cache_hit_rate
=
static_cast
<
float
>
(
cache_hits_
)
/
static_cast
<
float
>
(
num_accesses
);
}
return
cache_hit_rate
;
}
int64_t
Size
()
const
{
return
hash_
.
size
();
}
private:
std
::
unordered_map
<
ConvCacheKey
,
ConvAutoTuneResult
,
ConvCacheKeyHash
,
ConvCacheKeyEqual
>
hash_
;
std
::
shared_ptr
<
std
::
mutex
>
cache_mutex_
;
int64_t
cache_hits_
{
0
};
int64_t
cache_misses_
{
0
};
};
size_t
TransposeKey
(
const
std
::
vector
<
int64_t
>&
x_dims
,
size_t
TransposeKey
(
const
std
::
vector
<
int64_t
>&
x_dims
,
const
std
::
vector
<
int32_t
>&
perm
,
const
std
::
vector
<
int32_t
>&
perm
,
phi
::
DataType
dtype
);
phi
::
DataType
dtype
);
template
<
typename
AlgorithmT
>
class
AlgorithmsCache
{
public:
AlgorithmsCache
()
:
cache_mutex_
(
new
std
::
mutex
())
{
hash_
.
clear
();
}
AlgorithmT
Get
(
const
size_t
&
key
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
cache_mutex_
);
PADDLE_ENFORCE_NE
(
hash_
.
find
(
key
),
hash_
.
end
(),
phi
::
errors
::
PreconditionNotMet
(
"The key does not exist."
));
return
hash_
[
key
];
}
bool
Find
(
const
size_t
&
key
)
{
bool
ret
=
false
;
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
cache_mutex_
);
if
(
hash_
.
find
(
key
)
!=
hash_
.
end
())
{
cache_hits_
++
;
ret
=
true
;
}
else
{
cache_misses_
++
;
}
return
ret
;
}
void
Clean
()
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
cache_mutex_
);
hash_
.
clear
();
cache_hits_
=
0
;
cache_misses_
=
0
;
}
void
Set
(
const
size_t
&
key
,
AlgorithmT
algo
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
cache_mutex_
);
hash_
[
key
]
=
algo
;
}
int64_t
CacheMisses
()
const
{
return
cache_misses_
;
}
int64_t
CacheHits
()
const
{
return
cache_hits_
;
}
float
CacheHitRate
()
const
{
int64_t
num_accesses
=
cache_hits_
+
cache_misses_
;
float
cache_hit_rate
=
0.
;
if
(
num_accesses
!=
0
)
{
cache_hit_rate
=
static_cast
<
float
>
(
cache_hits_
)
/
static_cast
<
float
>
(
num_accesses
);
}
return
cache_hit_rate
;
}
int64_t
Size
()
const
{
return
hash_
.
size
();
}
private:
std
::
unordered_map
<
size_t
,
AlgorithmT
>
hash_
;
std
::
shared_ptr
<
std
::
mutex
>
cache_mutex_
;
int64_t
cache_hits_
{
0
};
int64_t
cache_misses_
{
0
};
};
enum
class
AlgorithmType
{
enum
class
AlgorithmType
{
kConvForward
=
1
,
kConvForward
=
1
,
kConvBackwardData
=
2
,
kConvBackwardData
=
2
,
...
@@ -278,11 +47,12 @@ enum class AlgorithmType {
...
@@ -278,11 +47,12 @@ enum class AlgorithmType {
// AlgorithmsConfigKey -> AlgorithmsID
// AlgorithmsConfigKey -> AlgorithmsID
// (todo. hong) use cudnnConvolutionFwdAlgo_t
// (todo. hong) use cudnnConvolutionFwdAlgo_t
using
AlgorithmsCacheMap
=
AlgorithmsCache
<
int64_t
>
;
using
AlgorithmsCacheMap
=
AlgorithmsCache
<
size_t
,
int64_t
>
;
// AlgorithmType -> AlgorithmsCache
// AlgorithmType -> AlgorithmsCache
using
AlgorithmsTypeMap
=
std
::
unordered_map
<
int64_t
,
AlgorithmsCacheMap
>
;
using
AlgorithmsTypeMap
=
std
::
unordered_map
<
int64_t
,
AlgorithmsCacheMap
>
;
using
CudnnAlgorithmsTypeMap
=
using
ConvAlgorithmsCacheMap
=
ConvAlgorithmsCache
<
ConvAutoTuneResult
>
;
std
::
unordered_map
<
int64_t
,
CudnnAlgorithmsCacheMap
>
;
using
ConvAlgorithmsTypeMap
=
std
::
unordered_map
<
int64_t
,
ConvAlgorithmsCacheMap
>
;
class
AutoTuneCache
{
class
AutoTuneCache
{
public:
public:
...
@@ -295,8 +65,8 @@ class AutoTuneCache {
...
@@ -295,8 +65,8 @@ class AutoTuneCache {
return
auto_tune_map_
[
static_cast
<
int64_t
>
(
algo_type
)];
return
auto_tune_map_
[
static_cast
<
int64_t
>
(
algo_type
)];
}
}
C
udnn
AlgorithmsCacheMap
&
GetConv
(
const
AlgorithmType
&
algo_type
)
{
C
onv
AlgorithmsCacheMap
&
GetConv
(
const
AlgorithmType
&
algo_type
)
{
return
c
udnn
_auto_tune_map_
[
static_cast
<
int64_t
>
(
algo_type
)];
return
c
onv
_auto_tune_map_
[
static_cast
<
int64_t
>
(
algo_type
)];
}
}
AlgorithmsCacheMap
&
GetTranspose
()
{
return
Get
(
AlgorithmType
::
kTranspose
);
}
AlgorithmsCacheMap
&
GetTranspose
()
{
return
Get
(
AlgorithmType
::
kTranspose
);
}
...
@@ -306,7 +76,7 @@ class AutoTuneCache {
...
@@ -306,7 +76,7 @@ class AutoTuneCache {
v
.
second
.
Clean
();
v
.
second
.
Clean
();
}
}
for
(
auto
&
v
:
c
udnn
_auto_tune_map_
)
{
for
(
auto
&
v
:
c
onv
_auto_tune_map_
)
{
v
.
second
.
Clean
();
v
.
second
.
Clean
();
}
}
}
}
...
@@ -344,8 +114,8 @@ class AutoTuneCache {
...
@@ -344,8 +114,8 @@ class AutoTuneCache {
algo_type
==
AlgorithmType
::
kConvBackwardFilter
)
{
algo_type
==
AlgorithmType
::
kConvBackwardFilter
)
{
int64_t
key
=
static_cast
<
int64_t
>
(
algo_type
);
int64_t
key
=
static_cast
<
int64_t
>
(
algo_type
);
if
(
auto_tune_map_
.
find
(
key
)
==
auto_tune_map_
.
end
())
{
if
(
auto_tune_map_
.
find
(
key
)
==
auto_tune_map_
.
end
())
{
C
udnn
AlgorithmsCacheMap
cache
;
C
onv
AlgorithmsCacheMap
cache
;
c
udnn
_auto_tune_map_
[
key
]
=
cache
;
c
onv
_auto_tune_map_
[
key
]
=
cache
;
}
}
}
else
{
}
else
{
int64_t
key
=
static_cast
<
int64_t
>
(
algo_type
);
int64_t
key
=
static_cast
<
int64_t
>
(
algo_type
);
...
@@ -357,7 +127,7 @@ class AutoTuneCache {
...
@@ -357,7 +127,7 @@ class AutoTuneCache {
}
}
AlgorithmsTypeMap
auto_tune_map_
;
AlgorithmsTypeMap
auto_tune_map_
;
C
udnnAlgorithmsTypeMap
cudnn
_auto_tune_map_
;
C
onvAlgorithmsTypeMap
conv
_auto_tune_map_
;
std
::
shared_ptr
<
std
::
mutex
>
autotune_cache_mutex_
;
std
::
shared_ptr
<
std
::
mutex
>
autotune_cache_mutex_
;
int64_t
total_cache_hits_
{
0
};
int64_t
total_cache_hits_
{
0
};
int64_t
total_cache_misses_
{
0
};
int64_t
total_cache_misses_
{
0
};
...
...
paddle/phi/kernels/autotune/cache_base.h
0 → 100644
浏览文件 @
8758a338
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <mutex>
#include <unordered_map>
#include <vector>
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/errors.h"
DECLARE_int32
(
search_cache_max_number
);
inline
void
HashCombine
(
std
::
size_t
*
seed
)
{}
// combine hash value
// https://stackoverflow.com/questions/2590677/how-do-i-combine-hash-values-in-c0x
template
<
typename
T
,
typename
...
Rest
>
inline
void
HashCombine
(
std
::
size_t
*
seed
,
const
T
&
v
,
Rest
...
rest
)
{
std
::
hash
<
T
>
hasher
;
*
seed
^=
hasher
(
v
)
+
0x9e3779b9
+
(
*
seed
<<
6
)
+
(
*
seed
>>
2
);
*
seed
*=
0x00000100000001B3
;
HashCombine
(
seed
,
rest
...);
}
// custom specialization of std::hash can be injected in namespace std
// ref: https://en.cppreference.com/w/cpp/utility/hash
namespace
std
{
template
<
typename
T
>
struct
hash
<
std
::
vector
<
T
>>
{
std
::
size_t
operator
()(
std
::
vector
<
T
>
const
&
vec
)
const
noexcept
{
std
::
size_t
seed
=
0xcbf29ce484222325
;
for
(
auto
val
:
vec
)
{
HashCombine
(
&
seed
,
val
);
}
return
seed
;
}
};
}
// namespace std
namespace
phi
{
namespace
autotune
{
template
<
typename
...
Args
>
size_t
GetKey
(
Args
&&
...
args
)
{
size_t
seed
=
0
;
HashCombine
(
&
seed
,
std
::
forward
<
Args
>
(
args
)...);
return
seed
;
}
struct
ConvCacheKey
{
ConvCacheKey
()
{}
ConvCacheKey
(
const
std
::
vector
<
int64_t
>&
arg_x_dims
,
const
std
::
vector
<
int64_t
>&
arg_w_dims
,
const
std
::
vector
<
int
>&
arg_strides
,
const
std
::
vector
<
int
>&
arg_paddings
,
const
std
::
vector
<
int
>&
arg_dilations
,
phi
::
DataType
arg_dtype
,
int
arg_groups
,
int64_t
arg_data_layout
)
:
x_dims
(
arg_x_dims
),
w_dims
(
arg_w_dims
),
strides
(
arg_strides
),
paddings
(
arg_paddings
),
dilations
(
arg_dilations
),
dtype
(
arg_dtype
),
groups
(
arg_groups
),
data_layout
(
arg_data_layout
)
{}
size_t
hash_value
()
const
{
return
GetKey
(
x_dims
,
w_dims
,
strides
,
paddings
,
dilations
,
static_cast
<
int64_t
>
(
dtype
),
groups
,
data_layout
);
}
std
::
vector
<
int64_t
>
x_dims
;
std
::
vector
<
int64_t
>
w_dims
;
std
::
vector
<
int
>
strides
;
std
::
vector
<
int
>
paddings
;
std
::
vector
<
int
>
dilations
;
phi
::
DataType
dtype
;
int
groups
;
int64_t
data_layout
;
};
struct
ConvCacheKeyHash
{
size_t
operator
()(
const
ConvCacheKey
&
cache
)
const
{
return
cache
.
hash_value
();
}
};
struct
ConvCacheKeyEqual
{
size_t
operator
()(
const
ConvCacheKey
&
first
,
const
ConvCacheKey
&
second
)
const
{
if
(
first
.
x_dims
!=
second
.
x_dims
)
return
false
;
if
(
first
.
w_dims
!=
second
.
w_dims
)
return
false
;
if
(
first
.
strides
!=
second
.
strides
)
return
false
;
if
(
first
.
paddings
!=
second
.
paddings
)
return
false
;
if
(
first
.
dilations
!=
second
.
dilations
)
return
false
;
if
(
first
.
dtype
!=
second
.
dtype
)
return
false
;
if
(
first
.
groups
!=
second
.
groups
)
return
false
;
if
(
first
.
data_layout
!=
second
.
data_layout
)
return
false
;
return
true
;
}
};
template
<
typename
KeyT
,
typename
AlgorithmT
,
typename
HashT
=
std
::
hash
<
KeyT
>,
typename
KeyEqualT
=
std
::
equal_to
<
KeyT
>>
class
AlgorithmsCache
{
public:
AlgorithmsCache
()
:
cache_mutex_
(
new
std
::
mutex
())
{}
AlgorithmT
Get
(
const
KeyT
&
key
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
cache_mutex_
);
PADDLE_ENFORCE_NE
(
hash_
.
find
(
key
),
hash_
.
end
(),
phi
::
errors
::
PreconditionNotMet
(
"The key does not exist."
));
return
hash_
[
key
];
}
bool
Find
(
const
KeyT
&
key
)
{
bool
ret
=
false
;
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
cache_mutex_
);
if
(
hash_
.
find
(
key
)
!=
hash_
.
end
())
{
cache_hits_
++
;
ret
=
true
;
}
else
{
cache_misses_
++
;
}
return
ret
;
}
void
Clean
()
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
cache_mutex_
);
hash_
.
clear
();
cache_hits_
=
0
;
cache_misses_
=
0
;
}
void
Set
(
const
KeyT
&
key
,
AlgorithmT
algo
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
cache_mutex_
);
hash_
[
key
]
=
algo
;
}
int64_t
CacheMisses
()
const
{
return
cache_misses_
;
}
int64_t
CacheHits
()
const
{
return
cache_hits_
;
}
float
CacheHitRate
()
const
{
int64_t
num_accesses
=
cache_hits_
+
cache_misses_
;
float
cache_hit_rate
=
0.
;
if
(
num_accesses
!=
0
)
{
cache_hit_rate
=
static_cast
<
float
>
(
cache_hits_
)
/
static_cast
<
float
>
(
num_accesses
);
}
return
cache_hit_rate
;
}
int64_t
Size
()
const
{
return
hash_
.
size
();
}
protected:
std
::
unordered_map
<
KeyT
,
AlgorithmT
,
HashT
,
KeyEqualT
>
hash_
;
std
::
shared_ptr
<
std
::
mutex
>
cache_mutex_
;
int64_t
cache_hits_
{
0
};
int64_t
cache_misses_
{
0
};
};
template
<
typename
AlgorithmT
>
class
ConvAlgorithmsCache
:
public
AlgorithmsCache
<
ConvCacheKey
,
AlgorithmT
,
ConvCacheKeyHash
,
ConvCacheKeyEqual
>
{
public:
using
AlgorithmsCacheBase
=
AlgorithmsCache
<
ConvCacheKey
,
AlgorithmT
,
ConvCacheKeyHash
,
ConvCacheKeyEqual
>
;
ConvAlgorithmsCache
()
:
AlgorithmsCache
<
ConvCacheKey
,
AlgorithmT
,
ConvCacheKeyHash
,
ConvCacheKeyEqual
>
()
{}
void
Set
(
const
ConvCacheKey
&
key
,
AlgorithmT
algo
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
AlgorithmsCacheBase
::
cache_mutex_
);
if
(
AlgorithmsCacheBase
::
hash_
.
size
()
>
static_cast
<
size_t
>
(
FLAGS_search_cache_max_number
))
{
AlgorithmsCacheBase
::
hash_
.
clear
();
}
AlgorithmsCacheBase
::
hash_
[
key
]
=
algo
;
}
};
}
// namespace autotune
}
// namespace phi
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录