提交 87450b9a 编写于 作者: M minqiyang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into fix_vlog

test=develop
......@@ -26,7 +26,6 @@ message(STATUS "C compiler: ${CMAKE_C_COMPILER}, version: "
"${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
if(WIN32)
set(CMAKE_STATIC_LIBRARY_PREFIX lib)
set(CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS} "/MT") #create multithread dynamic library
endif(WIN32)
if(NOT CMAKE_CROSSCOMPILING)
......@@ -34,6 +33,7 @@ if(NOT CMAKE_CROSSCOMPILING)
endif(NOT CMAKE_CROSSCOMPILING)
find_package(Git REQUIRED)
find_package(Threads REQUIRED)
include(simd)
################################ Configurations #######################################
......@@ -178,10 +178,10 @@ include(external/eigen) # download eigen3
include(external/pybind11) # download pybind11
include(external/cares)
include(external/cub)
include(external/xxhash) # download xxhash
if (NOT WIN32)
# there is no official support of snappystream, warpctc, nccl, cupti in windows
include(external/xxhash) # download xxhash
include(external/snappy) # download snappy
include(external/snappystream) # download snappystream
include(external/warpctc) # download, build, install warpctc
......
......@@ -169,21 +169,18 @@ set(CUDA_PROPAGATE_HOST_FLAGS OFF)
# Release/Debug flags set by cmake. Such as -O3 -g -DNDEBUG etc.
# So, don't set these flags here.
if (NOT WIN32) # windows msvc2015 support c++11 natively.
# -std=c++11 -fPIC not recoginize by msvc
# -std=c++11 -fPIC not recoginize by msvc, -Xcompiler will be added by cmake.
list(APPEND CUDA_NVCC_FLAGS "-std=c++11")
# in cuda9, suppress cuda warning on eigen with "-w"
list(APPEND CUDA_NVCC_FLAGS "-w" "-Xcompiler -fPIC")
else(NOT WIN32)
list(APPEND CUDA_NVCC_FLAGS "-w" "-Xcompiler -fPIC" "-Xcompiler /w")
list(APPEND CUDA_NVCC_FLAGS "-Xcompiler -fPIC")
endif(NOT WIN32)
if(WITH_FAST_MATH)
# Make use of fast math library. https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
list(APPEND CUDA_NVCC_FLAGS "--use_fast_math")
endif(WITH_FAST_MATH)
endif()
# in cuda9, suppress cuda warning on eigen
list(APPEND CUDA_NVCC_FLAGS "-w")
# Set :expt-relaxed-constexpr to suppress Eigen warnings
list(APPEND CUDA_NVCC_FLAGS "--expt-relaxed-constexpr")
......
......@@ -48,6 +48,7 @@ find_library(CUDNN_LIBRARY NAMES ${CUDNN_LIB_NAME} # libcudnn_static.a
NO_DEFAULT_PATH
DOC "Path to cuDNN library.")
if(CUDNN_INCLUDE_DIR AND CUDNN_LIBRARY)
set(CUDNN_FOUND ON)
else()
......@@ -82,7 +83,7 @@ if(CUDNN_FOUND)
if(NOT CUDNN_MAJOR_VERSION)
set(CUDNN_VERSION "???")
else()
else()
math(EXPR CUDNN_VERSION
"${CUDNN_MAJOR_VERSION} * 1000 +
${CUDNN_MINOR_VERSION} * 100 + ${CUDNN_PATCHLEVEL_VERSION}")
......
......@@ -48,7 +48,7 @@ ExternalProject_Add(
DOWNLOAD_DIR ${BOOST_DOWNLOAD_DIR}
DOWNLOAD_COMMAND wget --no-check-certificate ${BOOST_URL} -c -q -O ${BOOST_TAR}.tar.gz
&& tar zxf ${BOOST_TAR}.tar.gz
DOWNLOAD_NO_PROGRESS 1
DOWNLOAD_NO_PROGRESS 1
PREFIX ${BOOST_SOURCES_DIR}
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
......
......@@ -35,9 +35,7 @@ ExternalProject_Add(
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DBUILD_STATIC_LIBS=ON
-DCMAKE_INSTALL_PREFIX=${GFLAGS_INSTALL_DIR}
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DBUILD_TESTING=OFF
......@@ -47,10 +45,6 @@ ExternalProject_Add(
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_BUILD_TYPE:STRING=${THIRD_PARTY_BUILD_TYPE}
)
ADD_LIBRARY(gflags STATIC IMPORTED GLOBAL)
SET_PROPERTY(TARGET gflags PROPERTY IMPORTED_LOCATION ${GFLAGS_LIBRARIES})
ADD_DEPENDENCIES(gflags extern_gflags)
IF(WIN32)
IF(NOT EXISTS "${GFLAGS_INSTALL_DIR}/lib/libgflags.lib")
add_custom_command(TARGET extern_gflags POST_BUILD
......@@ -58,6 +52,9 @@ IF(WIN32)
)
ENDIF()
ENDIF(WIN32)
ADD_LIBRARY(gflags STATIC IMPORTED GLOBAL)
SET_PROPERTY(TARGET gflags PROPERTY IMPORTED_LOCATION ${GFLAGS_LIBRARIES})
ADD_DEPENDENCIES(gflags extern_gflags)
LIST(APPEND external_project_dependencies gflags)
......
......@@ -34,6 +34,7 @@ ELSE()
SET(GLOG_REPOSITORY "https://github.com/google/glog.git")
SET(GLOG_TAG "v0.3.5")
ENDIF()
ExternalProject_Add(
extern_glog
${EXTERNAL_PROJECT_LOG_ARGS}
......@@ -45,7 +46,6 @@ ExternalProject_Add(
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_INSTALL_PREFIX=${GLOG_INSTALL_DIR}
-DCMAKE_INSTALL_LIBDIR=${GLOG_INSTALL_DIR}/lib
......
......@@ -51,7 +51,6 @@ IF(WITH_TESTING)
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE}
-DCMAKE_INSTALL_PREFIX=${GTEST_INSTALL_DIR}
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DBUILD_GMOCK=ON
......@@ -71,5 +70,6 @@ IF(WITH_TESTING)
ADD_LIBRARY(gtest_main STATIC IMPORTED GLOBAL)
SET_PROPERTY(TARGET gtest_main PROPERTY IMPORTED_LOCATION ${GTEST_MAIN_LIBRARIES})
ADD_DEPENDENCIES(gtest_main extern_gtest)
LIST(APPEND external_project_dependencies gtest gtest_main)
ENDIF(WITH_TESTING)
......@@ -124,7 +124,6 @@ INCLUDE_DIRECTORIES(${CBLAS_INC_DIR})
# linear algebra libraries for cc_library(xxx SRCS xxx.c DEPS cblas)
SET(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/cblas_dummy.c)
FILE(WRITE ${dummyfile} "const char *dummy_cblas = \"${dummyfile}\";")
ADD_LIBRARY(cblas STATIC ${dummyfile})
IF("${CBLAS_PROVIDER}" STREQUAL "MKLML")
......
......@@ -144,14 +144,11 @@ set(GPU_COMMON_FLAGS
-Wno-error=unused-function # Warnings in Numpy Header.
-Wno-error=array-bounds # Warnings in Eigen::array
)
else(NOT WIN32)
set(COMMON_FLAGS
-fPIC
-fno-omit-frame-pointer
"/w") #disable all warnings.
set(GPU_COMMON_FLAGS
-fPIC
-fno-omit-frame-pointer
"/w") #disable all warnings
endif(NOT WIN32)
......@@ -167,8 +164,8 @@ endif(APPLE)
if(LINUX)
set(GPU_COMMON_FLAGS
-Wall
-Werror
-Wextra
-Werror
${GPU_COMMON_FLAGS})
endif(LINUX)
......
......@@ -238,7 +238,6 @@ function(cc_library TARGET_NAME)
# add libxxx.lib prefix in windows
set(${TARGET_NAME}_LIB_NAME "${CMAKE_STATIC_LIBRARY_PREFIX}${TARGET_NAME}${CMAKE_STATIC_LIBRARY_SUFFIX}" CACHE STRING "output library name for target ${TARGET_NAME}")
endif(WIN32)
if(cc_library_SRCS)
if(cc_library_SHARED OR cc_library_shared) # build *.so
add_library(${TARGET_NAME} SHARED ${cc_library_SRCS})
......@@ -308,11 +307,7 @@ function(cc_test TARGET_NAME)
set(multiValueArgs SRCS DEPS ARGS)
cmake_parse_arguments(cc_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_executable(${TARGET_NAME} ${cc_test_SRCS})
if(WIN32) # in windows deps. shlwapi library.
target_link_libraries(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog shlwapi)
else(WIN32)
target_link_libraries(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog)
endif(WIN32)
add_dependencies(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog)
add_test(NAME ${TARGET_NAME}
COMMAND ${TARGET_NAME} ${cc_test_ARGS}
......@@ -383,11 +378,7 @@ function(nv_test TARGET_NAME)
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(nv_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
cuda_add_executable(${TARGET_NAME} ${nv_test_SRCS})
if(WIN32)
target_link_libraries(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog shlwapi)
else(WIN32)
target_link_libraries(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog)
endif(WIN32)
add_dependencies(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog)
add_test(${TARGET_NAME} ${TARGET_NAME})
if (nv_test_SERIAL)
......
......@@ -31,31 +31,10 @@ function(copy TARGET)
foreach(index RANGE ${len})
list(GET copy_lib_SRCS ${index} src)
list(GET copy_lib_DSTS ${index} dst)
if (WIN32)
# windows cmd shell will not expand wildcard automatically.
# below expand the files,libs and copy them by rules.
file(GLOB header_files ${src} "*.h")
file(GLOB static_lib_files ${src} "*.lib")
file(GLOB dll_lib_files ${src} "*.dll")
set(src_files ${header_files} ${static_lib_files} ${dll_lib_files})
if (NOT "${src_files}" STREQUAL "")
list(REMOVE_DUPLICATES src_files)
endif()
add_custom_command(TARGET ${TARGET} PRE_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory "${dst}"
)
foreach(src_file ${src_files})
add_custom_command(TARGET ${TARGET} PRE_BUILD
COMMAND ${CMAKE_COMMAND} -E copy "${src_file}" "${dst}"
COMMENT "copying ${src_file} -> ${dst}")
endforeach()
else(WIN32) # not windows
add_custom_command(TARGET ${TARGET} PRE_BUILD
add_custom_command(TARGET ${TARGET} PRE_BUILD
COMMAND mkdir -p "${dst}"
COMMAND cp -r "${src}" "${dst}"
COMMENT "copying ${src} -> ${dst}")
endif(WIN32)
endforeach()
endfunction()
......@@ -87,14 +66,13 @@ copy(boost_lib
DSTS ${dst_dir}
DEPS boost
)
if(NOT WIN32)
set(dst_dir "${FLUID_INSTALL_DIR}/third_party/install/xxhash")
copy(xxhash_lib
SRCS ${XXHASH_INCLUDE_DIR} ${XXHASH_LIBRARIES}
DSTS ${dst_dir} ${dst_dir}/lib
DEPS xxhash
)
endif(NOT WIN32)
if(NOT PROTOBUF_FOUND)
set(dst_dir "${FLUID_INSTALL_DIR}/third_party/install/protobuf")
......
......@@ -44,5 +44,5 @@ while ("${PADDLE_VERSION}" STREQUAL "")
endif()
endwhile()
add_definitions(-DPADDLE_VERSION="${PADDLE_VERSION}")
add_definitions(-DPADDLE_VERSION=${PADDLE_VERSION})
message(STATUS "Paddle version is ${PADDLE_VERSION}")
../../v2/dev/contribute_to_paddle_cn.md
../../v2/dev/contribute_to_paddle_en.md
../../../CONTRIBUTING.md
../../../CONTRIBUTING.md
\ No newline at end of file
......@@ -648,6 +648,12 @@ int MultiDevSSAGraphBuilder::GetVarDeviceID(
const ir::Graph &graph, const std::string &varname,
const std::unordered_map<std::string, int> &sharded_var_device) const {
auto got = sharded_var_device.find(varname);
if (got == sharded_var_device.end()) {
auto pos = varname.find(framework::kNewGradSuffix);
if (pos != std::string::npos) {
got = sharded_var_device.find(varname.substr(0, pos));
}
}
return got == sharded_var_device.end() ? -1 : got->second;
}
......
......@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
......@@ -48,7 +46,6 @@ ExecutorPrepareContext::~ExecutorPrepareContext() {
VLOG(50) << "destroy ExecutorPrepareContext";
}
#ifndef _WIN32
template <typename RefCntMap>
static void DeleteUnusedTensors(const Scope& scope, const OperatorBase* op,
GarbageCollector<Tensor>* gc,
......@@ -83,7 +80,6 @@ static void DeleteUnusedTensors(const Scope& scope, const OperatorBase* op,
gc->Add(erase_tensors);
}
}
#endif
Executor::Executor(const platform::Place& place) : place_(place) {}
......@@ -371,7 +367,6 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
}
#ifndef _WIN32
int64_t max_memory_size = GetEagerDeletionThreshold();
std::unique_ptr<GarbageCollector<Tensor>> gc;
// WhileOp would set keep_kids to false
......@@ -413,16 +408,6 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
} else {
platform::DeviceContextPool::Instance().Get(place_)->Wait();
}
#else // WIN32
for (auto& op : ctx->ops_) {
op->Run(*local_scope, place_);
if (FLAGS_benchmark) {
VLOG(2) << "Memory used after operator " + op->Type() + " running: "
<< memory::memory_usage(place_);
}
}
platform::DeviceContextPool::Instance().Get(place_)->Wait();
#endif // NOT WIN32
if (local_scope != scope) {
scope->DeleteScope(local_scope);
......
......@@ -17,14 +17,12 @@ limitations under the License. */
#include <map>
#include <string>
#include <vector>
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#ifndef _WIN32
#include "paddle/fluid/framework/garbage_collector.h"
#endif
namespace paddle {
namespace framework {
......
......@@ -17,12 +17,7 @@ limitations under the License. */
namespace paddle {
namespace framework {
namespace ir {
// msvc15 don't support constexpr in correct way.
#if !defined(_WIN32)
constexpr char Node::kControlDepVarName[];
#else
const char Node::kControlDepVarName[] = "__control_var";
#endif
int Node::count_ = 0;
std::unique_ptr<Node> CreateNodeForTest(const std::string& name,
......
......@@ -55,11 +55,7 @@ class Node {
}
enum class Type { kOperation, kVariable };
#if !defined(_WIN32) // msvc not support constexpr correctly.
static constexpr char kControlDepVarName[] = "__control_var";
#else
static const char kControlDepVarName[];
#endif
Type NodeType() const { return type_; }
......
......@@ -21,7 +21,6 @@ limitations under the License. */
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/platform/port.h"
#include "paddle/fluid/platform/variant.h"
namespace paddle {
......@@ -196,7 +195,6 @@ struct PassRegistrar : public Registrar {
__test_global_namespace_##uniq_name##__>::value, \
msg)
#if !defined(_WIN32)
// Register a new pass that can be applied on the IR.
#define REGISTER_PASS(pass_type, pass_class) \
STATIC_ASSERT_PASS_GLOBAL_NAMESPACE( \
......@@ -219,32 +217,7 @@ struct PassRegistrar : public Registrar {
extern int TouchPassRegistrar_##pass_type(); \
static int use_pass_itself_##pass_type##_ __attribute__((unused)) = \
TouchPassRegistrar_##pass_type()
#else
// windows version of __attribute__((unused))
#define UNUSED(x) __pragma(warning(suppress : 4100)) x
#define REGISTER_PASS(pass_type, pass_class) \
STATIC_ASSERT_PASS_GLOBAL_NAMESPACE( \
__reg_pass__##pass_type, \
"REGISTER_PASS must be called in global namespace"); \
static ::paddle::framework::ir::PassRegistrar<pass_class> \
__pass_registrar_##pass_type##__(#pass_type); \
int TouchPassRegistrar_##pass_type() { \
__pass_registrar_##pass_type##__.Touch(); \
return 0; \
} \
static ::paddle::framework::ir::PassRegistrar<pass_class> UNUSED( \
&__pass_tmp_registrar_##pass_type##__) = \
__pass_registrar_##pass_type##__
#define USE_PASS(pass_type) \
STATIC_ASSERT_PASS_GLOBAL_NAMESPACE( \
__use_pass_itself_##pass_type, \
"USE_PASS must be called in global namespace"); \
extern int TouchPassRegistrar_##pass_type(); \
static int UNUSED(use_pass_itself_##pass_type##_) = \
TouchPassRegistrar_##pass_type()
#endif // !_WIN32
} // namespace ir
} // namespace framework
} // namespace paddle
......@@ -358,7 +358,7 @@ static bool VarIsTensor(const Variable& var) {
return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
}
const Tensor* GetTensorFromVar(const Variable& var) {
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
if (var.IsType<LoDTensor>()) {
return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
} else if (var.IsType<SelectedRows>()) {
......@@ -369,7 +369,7 @@ const Tensor* GetTensorFromVar(const Variable& var) {
}
}
static Tensor* GetMutableTensorFromVar(Variable* var) {
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
if (var->IsType<LoDTensor>()) {
return var->GetMutable<LoDTensor>();
} else if (var->IsType<SelectedRows>()) {
......@@ -414,8 +414,7 @@ bool ExecutionContext::HasOutput(const std::string& name) const {
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
auto* var = InputVar(name);
return var == nullptr ? nullptr : GetTensorFromVar(*var);
return Input<LoDTensor>(name);
}
template <>
......@@ -425,17 +424,21 @@ const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
std::vector<const Tensor*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[&](const std::string& sub_name) {
[&](const std::string& sub_name) -> const Tensor* {
auto var = scope_.FindVar(sub_name);
return var == nullptr ? nullptr : GetTensorFromVar(*var);
if (var == nullptr) return nullptr;
PADDLE_ENFORCE(
var->IsType<LoDTensor>(),
"%s should be LoDTensor, but the received type is %s",
sub_name, var->Type().name());
return &(var->Get<LoDTensor>());
});
return res;
}
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
auto var = OutputVar(name);
return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
return Output<LoDTensor>(name);
}
template <>
......@@ -445,10 +448,14 @@ std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
std::vector<Tensor*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[&](const std::string& sub_name) {
[&](const std::string& sub_name) -> Tensor* {
auto var = scope_.FindVar(sub_name);
return var == nullptr ? nullptr
: GetMutableTensorFromVar(var);
if (var == nullptr) return nullptr;
PADDLE_ENFORCE(
var->IsType<LoDTensor>(),
"%s should be LoDTensor, but the received type is %s",
sub_name, var->Type().name());
return var->GetMutable<LoDTensor>();
});
return res;
}
......@@ -769,11 +776,12 @@ void OperatorWithKernel::TransferInplaceVarsBack(
for (auto& var_name : inplace_vars) {
VLOG(30) << "share inplace var " + var_name +
" back to it's original scope";
auto* original_tensor = GetMutableTensorFromVar(scope.FindVar(var_name));
auto* original_tensor =
GetMutableLoDTensorOrSelectedRowsValueFromVar(scope.FindVar(var_name));
auto* var = transfer_scope.FindVar(var_name);
PADDLE_ENFORCE(var != nullptr, "The var[%s] should not be nullptr",
var_name);
auto* transformed_tensor = GetTensorFromVar(*var);
auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
original_tensor->ShareDataWith(*transformed_tensor);
}
}
......@@ -790,7 +798,7 @@ Scope* OperatorWithKernel::TryTransferData(
continue;
}
auto* tensor_in = GetTensorFromVar(*var);
auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
if (!tensor_in->IsInitialized()) {
continue;
}
......
......@@ -54,6 +54,9 @@ constexpr char kGradVarSuffix[] = "@GRAD";
/// Variables with this suffix are supposed to be filled up with zeros.
constexpr char kZeroVarSuffix[] = "@ZERO";
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";
// define some kernel priority
/* Define multiple kernel type fallback order*/
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;
......@@ -63,7 +66,8 @@ inline std::string GradVarName(const std::string& var_name) {
}
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
const Tensor* GetTensorFromVar(const Variable& var);
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
class OperatorBase;
class ExecutionContext;
......@@ -224,7 +228,7 @@ class ExecutionContext {
std::vector<const T*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[&](const std::string& sub_name) {
[&](const std::string& sub_name) -> const T* {
auto var = scope_.FindVar(sub_name);
return var == nullptr ? nullptr : &var->Get<T>();
});
......@@ -237,7 +241,7 @@ class ExecutionContext {
std::vector<T*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[&](const std::string& sub_name) {
[&](const std::string& sub_name) -> T* {
auto var = scope_.FindVar(sub_name);
return var == nullptr ? nullptr : var->GetMutable<T>();
});
......
......@@ -20,11 +20,6 @@ limitations under the License. */
#include <typeindex>
#include <vector>
#if defined(_WIN32)
#define GLOG_NO_ABBREVIATED_SEVERITIES // msvc conflict logging with windows.h
#define GOOGLE_GLOG_DLL_DECL
#endif
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/memory/memory.h"
......
......@@ -16,10 +16,6 @@ cc_library(paddle_fluid_api
DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
get_property(fluid_modules GLOBAL PROPERTY FLUID_MODULES)
get_property(fluid_third_partys GLOBAL PROPERTY FLUID_THRID_PARTYS)
if (WIN32)
list(APPEND fluid_third_partys gflags glog protobuf cblas)
endif(WIN32)
# paddle_fluid_origin exclude inference api interface
cc_library(paddle_fluid_origin DEPS ${fluid_modules} paddle_fluid_api)
......@@ -37,11 +33,7 @@ if (WITH_GPU AND TENSORRT_FOUND)
endif()
# Create static library
if (WIN32)
cc_library(paddle_fluid DEPS ${fluid_modules} ${fluid_third_partys} paddle_fluid_api paddle_inference_api)
else(WIND32)
cc_library(paddle_fluid DEPS ${fluid_modules} ${STATIC_INFERENCE_APIS} zero_copy_tensor reset_tensor_array)
endif(WIN32)
if(NOT APPLE)
# TODO(liuyiqu: Temporarily disable the link flag because it is not support on Mac.
......
......@@ -26,7 +26,6 @@
#include <string>
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/inference/analysis/data_flow_graph.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/variant.h"
namespace paddle {
......@@ -103,6 +102,7 @@ struct Argument {
std::unordered_map<std::string, std::function<void()>> attr_deleters_;
};
#define UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)
#define ANALYSIS_ARGUMENT_CHECK_FIELD(field__) \
if (UNLIKELY(!(field__))) { \
LOG(ERROR) << "field " << #field__ << " should be set."; \
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <sys/stat.h>
#include <cstdio>
#include <fstream>
#include <string>
......@@ -25,7 +26,6 @@ limitations under the License. */
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/port.h"
namespace paddle {
namespace inference {
......@@ -124,6 +124,20 @@ T &GetFromScope(const framework::Scope &scope, const std::string &name) {
return *var->GetMutable<T>();
}
static void ExecShellCommand(const std::string &cmd, std::string *message) {
char buffer[128];
std::shared_ptr<FILE> pipe(popen(cmd.c_str(), "r"), pclose);
if (!pipe) {
LOG(ERROR) << "error running command: " << cmd;
return;
}
while (!feof(pipe.get())) {
if (fgets(buffer, 128, pipe.get()) != nullptr) {
*message += buffer;
}
}
}
static framework::proto::ProgramDesc LoadProgramDesc(
const std::string &model_path) {
std::ifstream fin(model_path, std::ios::in | std::ios::binary);
......@@ -145,6 +159,16 @@ static bool FileExists(const std::string &filepath) {
return exists;
}
static bool PathExists(const std::string &path) {
struct stat statbuf;
if (stat(path.c_str(), &statbuf) != -1) {
if (S_ISDIR(statbuf.st_mode)) {
return true;
}
}
return false;
}
} // namespace analysis
} // namespace inference
} // namespace paddle
......
......@@ -24,7 +24,6 @@ if(WITH_GPU AND TENSORRT_FOUND)
endif()
cc_library(reset_tensor_array SRCS details/reset_tensor_array.cc DEPS lod_tensor scope)
cc_library(helper SRCS helper.cc DEPS reset_tensor_array lod_tensor scope)
cc_library(paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS reset_tensor_array lod_tensor scope)
cc_library(analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api analysis naive_executor zero_copy_tensor)
cc_library(zero_copy_tensor SRCS details/zero_copy_tensor.cc DEPS paddle_inference_api)
......
......@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <fstream>
#include <map>
#include <set>
#include <sstream>
......@@ -25,7 +24,6 @@ limitations under the License. */
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/timer.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/profiler.h"
......@@ -33,6 +31,16 @@ DEFINE_bool(profile, false, "Turn on profiler for fluid");
DECLARE_int32(paddle_num_threads);
namespace paddle {
namespace {
using paddle::inference::Timer;
template <class T>
std::string num2str(T a) {
std::stringstream istr;
istr << a;
return istr.str();
}
} // namespace
void NativePaddlePredictor::PrepareFeedFetch() {
for (auto *op : inference_program_->Block(0).AllOps()) {
......@@ -55,6 +63,7 @@ void NativePaddlePredictor::PrepareFeedFetch() {
bool NativePaddlePredictor::Init(
std::shared_ptr<framework::Scope> parent_scope) {
VLOG(3) << "Predictor::init()";
#if !defined(_WIN32)
if (FLAGS_profile) {
LOG(WARNING) << "Profiler is actived, might affect the performance";
......@@ -82,21 +91,21 @@ bool NativePaddlePredictor::Init(
paddle::framework::InitDevices(false);
scope_.reset(new paddle::framework::Scope());
}
executor_.reset(new paddle::framework::Executor(place_));
// Initialize the inference program
if (!config_.model_dir.empty()) {
// Parameters are saved in separate files sited in
// the specified `dirname`.
inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
config_.model_dir);
} else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
// All parameters are saved in a single file.
// The file names should be consistent with that used
// in Python API `fluid.io.save_inference_model`.
inference_program_ = paddle::inference::Load(
executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
} else {
LOG(ERROR) << "fail to load inference model from " << config_.model_dir;
return false;
......@@ -126,7 +135,7 @@ NativePaddlePredictor::~NativePaddlePredictor() {
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
std::vector<PaddleTensor> *output_data,
int batch_size) {
using Timer = paddle::inference::Timer;
VLOG(3) << "Predictor::predict";
Timer timer;
timer.tic();
// set feed variable
......@@ -138,9 +147,11 @@ bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
}
// Run the inference program
// if share variables, we need not create variables
VLOG(4) << "Run prepared context";
executor_->RunPreparedContext(ctx_.get(), scope,
false, /* don't create local scope each time*/
false /* don't create variable each time */);
VLOG(4) << "Finish prepared context";
// get fetch variable
if (!GetFetch(output_data, scope)) {
LOG(ERROR) << "fail to get fetches";
......@@ -155,6 +166,7 @@ bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
}
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
VLOG(3) << "Predictor::clone";
std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));
if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
......@@ -172,6 +184,7 @@ std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
framework::Scope *scope) {
VLOG(3) << "Predictor::set_feed";
if (inputs.size() != feeds_.size()) {
LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
<< inputs.size();
......@@ -231,6 +244,7 @@ void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
framework::Scope *scope) {
VLOG(3) << "Predictor::get_fetch";
outputs->resize(fetchs_.size());
for (size_t i = 0; i < fetchs_.size(); ++i) {
int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
......@@ -255,22 +269,25 @@ bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
VLOG(3) << "create NativePaddlePredictor";
if (config.use_gpu) {
// 1. GPU memeroy
PADDLE_ENFORCE_GT(
config.fraction_of_gpu_memory, 0.f,
"fraction_of_gpu_memory in the config should be set to range (0.,1.]");
"fraction_of_gpu_memory in the config should be set to range (0., 1.]");
PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
std::vector<std::string> flags;
if (config.fraction_of_gpu_memory >= 0.0f ||
config.fraction_of_gpu_memory <= 0.95f) {
flags.push_back("dummpy");
std::string flag = "--fraction_of_gpu_memory_to_use=" +
std::to_string(config.fraction_of_gpu_memory);
num2str<float>(config.fraction_of_gpu_memory);
flags.push_back(flag);
VLOG(3) << "set flag: " << flag;
framework::InitGflags(flags);
}
}
std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
return nullptr;
......
......@@ -31,10 +31,10 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/init.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle_inference_api.h" // NOLINT
namespace paddle {
......
......@@ -6,13 +6,13 @@ option(WITH_STATIC_LIB "Compile demo with static/shared library, default use sta
option(USE_TENSORRT "Compile demo with TensorRT." OFF)
macro(safe_set_static_flag)
foreach(flag_var
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO)
if(${flag_var} MATCHES "/MD")
string(REGEX REPLACE "/MD" "/MT" ${flag_var} "${${flag_var}}")
endif(${flag_var} MATCHES "/MD")
endforeach(flag_var)
foreach(flag_var
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO)
if(${flag_var} MATCHES "/MD")
string(REGEX REPLACE "/MD" "/MT" ${flag_var} "${${flag_var}}")
endif(${flag_var} MATCHES "/MD")
endforeach(flag_var)
endmacro()
if (WIN32)
......@@ -37,25 +37,26 @@ if(NOT DEFINED DEMO_NAME)
endif()
if(WITH_GPU) # default gpu path
if(WITH_GPU)
if(NOT WIN32)
set(CUDA_LIB "/usr/local/cuda/lib64/" CACHE STRING "CUDA Library")
else()
if(CUDA_LIB STREQUAL "")
set(CUDA_LIB "C:\\Program\ Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v8.0\\lib\\x64")
set(CUDA_LIB "C:\\Program\ Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v8.0\\lib\\x64")
endif()
endif(NOT WIN32)
endif()
include_directories("D:/Paddle/")
include_directories("${PADDLE_LIB}")
include_directories("${PADDLE_LIB}/third_party/install/protobuf/include")
include_directories("${PADDLE_LIB}/third_party/install/glog/include")
include_directories("${PADDLE_LIB}/third_party/install/gflags/include")
include_directories("${PADDLE_LIB}/third_party/install/xxhash/include")
if (NOT WIN32)
include_directories("${PADDLE_LIB}/third_party/install/snappy/include")
include_directories("${PADDLE_LIB}/third_party/install/snappystream/include")
include_directories("${PADDLE_LIB}/third_party/install/zlib/include")
include_directories("${PADDLE_LIB}/third_party/install/snappy/include")
include_directories("${PADDLE_LIB}/third_party/install/snappystream/include")
include_directories("${PADDLE_LIB}/third_party/install/zlib/include")
endif(NOT WIN32)
include_directories("${PADDLE_LIB}/third_party/boost")
......@@ -63,15 +64,15 @@ include_directories("${PADDLE_LIB}/third_party/eigen3")
if (NOT WIN32)
if (USE_TENSORRT AND WITH_GPU)
include_directories("${TENSORRT_INCLUDE_DIR}")
link_directories("${TENSORRT_LIB_DIR}")
include_directories("${TENSORRT_INCLUDE_DIR}")
link_directories("${TENSORRT_LIB_DIR}")
endif()
endif(NOT WIN32)
if (NOT WIN32)
link_directories("${PADDLE_LIB}/third_party/install/snappy/lib")
link_directories("${PADDLE_LIB}/third_party/install/snappystream/lib")
link_directories("${PADDLE_LIB}/third_party/install/zlib/lib")
link_directories("${PADDLE_LIB}/third_party/install/snappy/lib")
link_directories("${PADDLE_LIB}/third_party/install/snappystream/lib")
link_directories("${PADDLE_LIB}/third_party/install/zlib/lib")
endif(NOT WIN32)
link_directories("${PADDLE_LIB}/third_party/install/protobuf/lib")
......@@ -85,7 +86,7 @@ add_executable(${DEMO_NAME} ${DEMO_NAME}.cc)
if(WITH_MKL)
include_directories("${PADDLE_LIB}/third_party/install/mklml/include")
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX}
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5${CMAKE_SHARED_LIBRARY_SUFFIX})
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5${CMAKE_SHARED_LIBRARY_SUFFIX})
set(MKLDNN_PATH "${PADDLE_LIB}/third_party/install/mkldnn")
if(EXISTS ${MKLDNN_PATH})
include_directories("${MKLDNN_PATH}/include")
......@@ -98,25 +99,25 @@ endif()
# Note: libpaddle_inference_api.so/a must put before libpaddle_fluid.so/a
if(WITH_STATIC_LIB)
set(DEPS
${PADDLE_LIB}/paddle/lib/libpaddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX})
${PADDLE_LIB}/paddle/lib/libpaddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX})
else()
set(DEPS
${PADDLE_LIB}/paddle/lib/libpaddle_fluid${CMAKE_SHARED_LIBRARY_SUFFIX})
${PADDLE_LIB}/paddle/lib/libpaddle_fluid${CMAKE_SHARED_LIBRARY_SUFFIX})
endif()
if (NOT WIN32)
set(EXTERNAL_LIB "-lrt -ldl -lpthread")
set(DEPS ${DEPS}
set(EXTERNAL_LIB "-lrt -ldl -lpthread")
set(DEPS ${DEPS}
${MATH_LIB} ${MKLDNN_LIB}
glog gflags protobuf snappystream snappy z xxhash
${EXTERNAL_LIB})
else()
set(DEPS ${DEPS}
set(DEPS ${DEPS}
${MATH_LIB} ${MKLDNN_LIB}
${CMAKE_STATIC_LIBRARY_PREFIX}glog ${CMAKE_STATIC_LIBRARY_PREFIX}gflags ${CMAKE_STATIC_LIBRARY_PREFIX}protobuf
${EXTERNAL_LIB})
# NOTE(dzhwinter) shlwapi will be deprecated.
set(DEPS ${DEPS} libcmt shlwapi)
# NOTE(dzhwinter) shlwapi is deprecated.
set(DEPS ${DEPS} libcmt shlwapi)
endif(NOT WIN32)
if(WITH_GPU)
......@@ -128,8 +129,8 @@ if(WITH_GPU)
set(DEPS ${DEPS} ${CUDA_LIB}/libcudart${CMAKE_SHARED_LIBRARY_SUFFIX})
else()
set(DEPS ${DEPS} ${CUDA_LIB}/cudart${CMAKE_STATIC_LIBRARY_SUFFIX} )
set(DEPS ${DEPS} ${CUDA_LIB}/cublas${CMAKE_STATIC_LIBRARY_SUFFIX} )
set(DEPS ${DEPS} ${CUDA_LIB}/cudnn${CMAKE_STATIC_LIBRARY_SUFFIX} )
set(DEPS ${DEPS} ${CUDA_LIB}/cublas${CMAKE_STATIC_LIBRARY_SUFFIX} )
set(DEPS ${DEPS} ${CUDA_LIB}/cudnn${CMAKE_STATIC_LIBRARY_SUFFIX} )
endif()
endif()
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#define GOOGLE_GLOG_DLL_DECL
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <chrono> // NOLINT
#include <fstream>
#include <iostream>
#include <thread> // NOLINT
#include <utility>
#include "paddle/fluid/inference/paddle_inference_api.h"
namespace paddle {
NativeConfig GetConfig() {
NativeConfig config;
config.prog_file = "hs_lb_without_bn_cudnn/__model__";
config.param_file = "hs_lb_without_bn_cudnn/__params__";
config.fraction_of_gpu_memory = 0.0;
config.use_gpu = true;
config.device = 0;
return config;
}
using Time = decltype(std::chrono::high_resolution_clock::now());
Time TimeNow() { return std::chrono::high_resolution_clock::now(); }
double TimeDiff(Time t1, Time t2) {
typedef std::chrono::microseconds ms;
auto diff = t2 - t1;
ms counter = std::chrono::duration_cast<ms>(diff);
return counter.count() / 1000.0;
}
std::vector<PaddleTensor> PrepareData() {
int height = 449;
int width = 581;
std::vector<float> data;
for (int i = 0; i < 3 * height * width; ++i) {
data.push_back(0.0);
}
PaddleTensor tensor;
tensor.shape = std::vector<int>({batch_size, 3, height, width});
tensor.data.Resize(sizeof(float) * batch_size * 3 * height * width);
std::copy(data.begin(), data.end(), static_cast<float*>(tensor.data.data()));
tensor.dtype = PaddleDType::FLOAT32;
std::vector<PaddleTensor> paddle_tensor_feeds(1, tensor);
return std::move(paddle_tensor_feeds);
}
void TestNaive(int batch_size, int thread_num) {
NativeConfig config = GetConfig();
int num_jobs = thread_num; // parallel jobs.
constexpr int epoches = 10; // each job run epoches.
std::vector<std::thread> threads;
std::vector<std::unique_ptr<PaddlePredictor>> predictors;
for (int tid = 0; tid < num_jobs; ++tid) {
auto& pred = CreatePaddlePredictor<NativeConfig>(config);
predictors.emplace_back(std::move(pred));
}
auto time1 = TimeNow();
for (int tid = 0; tid < num_jobs; ++tid) {
threads.emplace_back([&, tid]() {
auto& predictor = predictors[tid];
PaddleTensor tensor_out;
std::vector<PaddleTensor> outputs(1, tensor_out);
for (size_t i = 0; i < epoches; i++) {
ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
VLOG(3) << "tid : " << tid << " run: " << i << "finished";
ASSERT_EQ(outputs.size(), 1UL);
}
});
}
for (int i = 0; i < num_jobs; ++i) {
threads[i].join();
}
auto time2 = TimeNow();
VLOG(3) << "Thread num " << thread_num << "total time cost"
<< (time2 - time1);
}
} // namespace paddle
int main(int argc, char** argv) {
paddle::TestNaive(1, 1); // single thread.
paddle::TestNaive(1, 5); // 5 threads.
return 0;
}
......@@ -14,22 +14,37 @@
#pragma once
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
#include <glog/logging.h>
#include <sys/time.h>
#include <algorithm>
#include <chrono> // NOLINT
#include <iterator>
#include <numeric>
#include <sstream>
#include <string>
#include <vector>
#include "paddle/fluid/inference/api/timer.h"
#include "paddle_inference_api.h" //NOLINT
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/string/printf.h"
namespace paddle {
namespace inference {
// Timer for timer
class Timer {
public:
std::chrono::high_resolution_clock::time_point start;
std::chrono::high_resolution_clock::time_point startu;
void tic() { start = std::chrono::high_resolution_clock::now(); }
double toc() {
startu = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> time_span =
std::chrono::duration_cast<std::chrono::duration<double>>(startu -
start);
double used_time_ms = static_cast<double>(time_span.count()) * 1000.0;
return used_time_ms;
}
};
static void split(const std::string &str, char sep,
std::vector<std::string> *pieces) {
pieces->clear();
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <chrono> // NOLINT
namespace paddle {
namespace inference {
// Timer for timer
class Timer {
public:
std::chrono::high_resolution_clock::time_point start;
std::chrono::high_resolution_clock::time_point startu;
void tic() { start = std::chrono::high_resolution_clock::now(); }
double toc() {
startu = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> time_span =
std::chrono::duration_cast<std::chrono::duration<double>>(startu -
start);
double used_time_ms = static_cast<double>(time_span.count()) * 1000.0;
return used_time_ms;
}
};
} // namespace inference
} // namespace paddle
......@@ -11,8 +11,7 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
#include "paddle/fluid/memory/detail/buddy_allocator.h"
#include "glog/logging.h"
......
......@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
#include "glog/logging.h"
#include "paddle/fluid/memory/detail/memory_block.h"
#include "paddle/fluid/platform/assert.h"
......
......@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
#include "paddle/fluid/memory/detail/system_allocator.h"
......
......@@ -86,7 +86,7 @@ function(op_library TARGET)
# remove windows unsupported op, because windows has no nccl, no warpctc such ops.
foreach(windows_unsupport_op "nccl_op" "gen_nccl_id_op" "warpctc_op" "hierarchical_sigmoid_op"
"crf_decoding_op" "select_op" "lstmp_op" "gru_op" "fusion_gru_op" "lstm_op" "fusion_lstm_op" "cumsum_op"
"fusion_seqconv_eltadd_relu_op" "hash_op")
"fusion_seqconv_eltadd_relu_op" "channel_send_op" "channel_create_op" "channel_close_op" "channel_recv_op")
if ("${TARGET}" STREQUAL "${windows_unsupport_op}")
return()
endif()
......@@ -284,17 +284,18 @@ op_library(array_to_lod_tensor_op DEPS lod_rank_table_op)
op_library(max_sequence_len_op DEPS lod_rank_table)
op_library(sequence_conv_op DEPS context_project)
op_library(sequence_pool_op DEPS sequence_pooling)
op_library(lstm_op DEPS sequence2batch lstm_compute)
op_library(hierarchical_sigmoid_op DEPS matrix_bit_code)
op_library(lstmp_op DEPS sequence2batch lstm_compute)
op_library(gru_op DEPS sequence2batch gru_compute)
if (NOT WIN32)
op_library(lstm_op DEPS sequence2batch lstm_compute)
op_library(hierarchical_sigmoid_op DEPS matrix_bit_code)
op_library(lstmp_op DEPS sequence2batch lstm_compute)
op_library(gru_op DEPS sequence2batch gru_compute)
endif(NOT WIN32)
op_library(recurrent_op DEPS executor)
op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale)
op_library(cos_sim_op DEPS cos_sim_functor)
op_library(parallel_do_op DEPS executor)
op_library(unsqueeze_op DEPS reshape_op)
op_library(squeeze_op DEPS reshape_op)
op_library(extract_rows_op DEPS memory)
op_library(flatten_op DEPS reshape_op)
op_library(sequence_pad_op DEPS sequence_padding)
op_library(unstack_op DEPS stack_op)
......
......@@ -14,7 +14,6 @@ limitations under the License. */
#pragma once
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
......
......@@ -54,7 +54,6 @@ class CastOpKernel : public framework::OpKernel<InT> {
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<framework::Tensor>("X");
auto* out = context.Output<framework::Tensor>("Out");
framework::VisitDataType(
static_cast<framework::proto::VarType::Type>(
context.Attr<int>("out_dtype")),
......
......@@ -31,12 +31,12 @@ namespace operators {
template <typename T>
__device__ bool GT_E(T a, T b) {
return (a > b) || fabsf(static_cast<float>(a - b)) < 1e-4;
return (a > b) || fabs(a - b) < 1e-4;
}
template <typename T>
__device__ bool LT_E(T a, T b) {
return (a < b) || fabsf(static_cast<float>(a - b)) < 1e-4;
return (a < b) || fabs(a - b) < 1e-4;
}
template <typename T>
......
......@@ -28,9 +28,9 @@ struct AddFunctor {
};
template <typename DeviceContext, typename T>
void default_elementwise_add(const framework::ExecutionContext& ctx,
const framework::Tensor* x,
const framework::Tensor* y, framework::Tensor* z) {
void default_elementwise_add(const framework::ExecutionContext &ctx,
const framework::Tensor *x,
const framework::Tensor *y, framework::Tensor *z) {
int axis = ctx.Attr<int>("axis");
ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
AddFunctor<T>(), z);
......@@ -40,9 +40,9 @@ template <typename DeviceContext, typename T>
typename std::enable_if<
std::is_floating_point<T>::value &&
std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_add(const framework::ExecutionContext& ctx,
const framework::Tensor* x, const framework::Tensor* y,
framework::Tensor* z) {
elementwise_add(const framework::ExecutionContext &ctx,
const framework::Tensor *x, const framework::Tensor *y,
framework::Tensor *z) {
auto eigen_x = framework::EigenVector<T>::Flatten(*x);
auto eigen_y = framework::EigenVector<T>::Flatten(*y);
auto eigen_z = framework::EigenVector<T>::Flatten(*z);
......@@ -55,21 +55,20 @@ template <typename DeviceContext, typename T>
typename std::enable_if<
!std::is_floating_point<T>::value ||
!std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_add(const framework::ExecutionContext& ctx,
const framework::Tensor* x, const framework::Tensor* y,
framework::Tensor* z) {
elementwise_add(const framework::ExecutionContext &ctx,
const framework::Tensor *x, const framework::Tensor *y,
framework::Tensor *z) {
default_elementwise_add<DeviceContext, T>(ctx, x, y, z);
}
template <typename DeviceContext, typename T>
class ElementwiseAddKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using Tensor = framework::Tensor;
void Compute(const framework::ExecutionContext &ctx) const override {
auto *x = ctx.Input<framework::LoDTensor>("X");
auto *y = ctx.Input<framework::LoDTensor>("Y");
auto *z = ctx.Output<framework::LoDTensor>("Out");
const auto x = ctx.Input<Tensor>("X");
const auto y = ctx.Input<Tensor>("Y");
auto z = ctx.Output<Tensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
auto dims_equal = x->dims() == y->dims();
......@@ -87,13 +86,13 @@ struct IdentityGrad {
};
template <typename DeviceContext, typename T>
void default_elementwise_add_grad(const framework::ExecutionContext& ctx,
const framework::Tensor* x,
const framework::Tensor* y,
const framework::Tensor* out,
const framework::Tensor* dout,
framework::Tensor* dx,
framework::Tensor* dy) {
void default_elementwise_add_grad(const framework::ExecutionContext &ctx,
const framework::Tensor *x,
const framework::Tensor *y,
const framework::Tensor *out,
const framework::Tensor *dout,
framework::Tensor *dx,
framework::Tensor *dy) {
int axis = ctx.Attr<int>("axis");
ElemwiseExplicitGradCompute<DeviceContext, T, IdentityGrad<T>,
......@@ -106,11 +105,11 @@ template <typename DeviceContext, typename T>
typename std::enable_if<
std::is_floating_point<T>::value &&
std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_add_grad(const framework::ExecutionContext& ctx,
const framework::Tensor* x, const framework::Tensor* y,
const framework::Tensor* out,
const framework::Tensor* dout, framework::Tensor* dx,
framework::Tensor* dy) {
elementwise_add_grad(const framework::ExecutionContext &ctx,
const framework::Tensor *x, const framework::Tensor *y,
const framework::Tensor *out,
const framework::Tensor *dout, framework::Tensor *dx,
framework::Tensor *dy) {
auto blas = math::GetBlas<DeviceContext, T>(ctx);
if (dx) {
......@@ -128,27 +127,27 @@ template <typename DeviceContext, typename T>
typename std::enable_if<
!std::is_floating_point<T>::value ||
!std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_add_grad(const framework::ExecutionContext& ctx,
const framework::Tensor* x, const framework::Tensor* y,
const framework::Tensor* out,
const framework::Tensor* dout, framework::Tensor* dx,
framework::Tensor* dy) {
elementwise_add_grad(const framework::ExecutionContext &ctx,
const framework::Tensor *x, const framework::Tensor *y,
const framework::Tensor *out,
const framework::Tensor *dout, framework::Tensor *dx,
framework::Tensor *dy) {
default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
}
template <typename DeviceContext, typename T>
class ElementwiseAddGradKernel : public ElemwiseGradKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
void Compute(const framework::ExecutionContext &ctx) const override {
ElemwiseGradKernel<T>::Compute(ctx);
using Tensor = framework::Tensor;
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
// skip out, x, y
auto* out = dout;
auto *out = dout;
auto *x = dout, *y = dout;
if (platform::is_cpu_place(ctx.GetPlace()) && dx != nullptr &&
......
......@@ -28,11 +28,10 @@ template <typename DeviceContext, typename T>
class ElementwiseDivKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using Tensor = framework::Tensor;
auto* x = ctx.Input<framework::LoDTensor>("X");
auto* y = ctx.Input<framework::LoDTensor>("Y");
auto* z = ctx.Output<framework::LoDTensor>("Out");
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* z = ctx.Output<Tensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
int axis = ctx.Attr<int>("axis");
ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
......
......@@ -29,11 +29,10 @@ template <typename DeviceContext, typename T>
class ElementwiseMaxKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using Tensor = framework::Tensor;
auto* x = ctx.Input<framework::LoDTensor>("X");
auto* y = ctx.Input<framework::LoDTensor>("Y");
auto* z = ctx.Output<framework::LoDTensor>("Out");
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* z = ctx.Output<Tensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
int axis = ctx.Attr<int>("axis");
ElementwiseComputeEx<MaxFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
......
......@@ -28,11 +28,10 @@ template <typename DeviceContext, typename T>
class ElementwiseMinKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using Tensor = framework::Tensor;
auto* x = ctx.Input<framework::LoDTensor>("X");
auto* y = ctx.Input<framework::LoDTensor>("Y");
auto* z = ctx.Output<framework::LoDTensor>("Out");
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* z = ctx.Output<Tensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
int axis = ctx.Attr<int>("axis");
ElementwiseComputeEx<MinFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
......
......@@ -60,11 +60,10 @@ template <typename DeviceContext, typename T>
class ElementwiseMulKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using Tensor = framework::Tensor;
auto* x = ctx.Input<framework::LoDTensor>("X");
auto* y = ctx.Input<framework::LoDTensor>("Y");
auto* z = ctx.Output<framework::LoDTensor>("Out");
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* z = ctx.Output<Tensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
if (x->numel() == y->numel()) {
elementwise_mul<DeviceContext, T>(ctx, x, y, z);
......
......@@ -13,10 +13,12 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
......@@ -29,7 +31,8 @@ class ElementwiseOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
using Tensor = framework::Tensor;
void InferShape(framework::InferShapeContext* ctx) const override {
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of elementwise op should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Y"),
......@@ -37,6 +40,17 @@ class ElementwiseOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of elementwise op should not be null.");
PADDLE_ENFORCE(
ctx->GetInputsVarType("X").front() ==
framework::proto::VarType::LOD_TENSOR,
"The input var's type should be LoDTensor, but the received is %s",
ctx->Inputs("X").front(), ctx->GetInputsVarType("X").front());
PADDLE_ENFORCE(
ctx->GetInputsVarType("Y").front() ==
framework::proto::VarType::LOD_TENSOR,
"The input var's type should be LoDTensor, but the received is %s",
ctx->Inputs("Y").front(), ctx->GetInputsVarType("Y").front());
auto x_dim = ctx->GetInputDim("X");
auto y_dim = ctx->GetInputDim("Y");
PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
......@@ -47,9 +61,8 @@ class ElementwiseOp : public framework::OperatorWithKernel {
}
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto input_data_type =
framework::ToDataType(ctx.Input<Tensor>("X")->type());
const framework::ExecutionContext &ctx) const override {
auto input_data_type = framework::GetDataTypeOfVar(ctx.InputVar("X"));
#ifdef PADDLE_WITH_MKLDNN
if (platform::CanMKLDNNBeUsed(ctx)) {
......@@ -64,12 +77,12 @@ class ElementwiseOp : public framework::OperatorWithKernel {
class ElementwiseOpInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto x_name = op_desc.Input("X")[0];
auto out_name = op_desc.Output("Out")[0];
auto& x = block->FindRecursiveOrCreateVar(x_name);
auto& out = block->FindRecursiveOrCreateVar(out_name);
auto &x = block->FindRecursiveOrCreateVar(x_name);
auto &out = block->FindRecursiveOrCreateVar(out_name);
out.SetType(x.GetType());
out.SetDataType(x.GetDataType());
}
......@@ -131,6 +144,7 @@ But the output only shares the LoD information with the input $X$.
protected:
virtual std::string GetName() const = 0;
virtual std::string GetEquation() const = 0;
};
......@@ -139,7 +153,7 @@ class ElementwiseOpGrad : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
using Tensor = framework::Tensor;
void InferShape(framework::InferShapeContext* ctx) const override {
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
......@@ -165,7 +179,7 @@ class ElementwiseOpGrad : public framework::OperatorWithKernel {
}
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
const framework::ExecutionContext &ctx) const override {
auto input_data_type = framework::ToDataType(
ctx.Input<Tensor>(framework::GradVarName("Out"))->type());
......@@ -187,7 +201,7 @@ class ElementwiseOpExplicitGrad : public ElementwiseOpGrad {
using operators::ElementwiseOpGrad::GetExpectedKernelType;
using Tensor = framework::Tensor;
void InferShape(framework::InferShapeContext* ctx) const override {
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
......@@ -209,11 +223,11 @@ class ElementwiseOpExplicitGrad : public ElementwiseOpGrad {
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* dx =
void Compute(const framework::ExecutionContext &context) const override {
auto *dx =
context.Output<framework::LoDTensor>(framework::GradVarName("X"));
if (dx != nullptr) {
auto& dout =
auto &dout =
*context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
dx->set_lod(dout.lod());
}
......@@ -234,7 +248,7 @@ class ElemwiseGradKernel : public framework::OpKernel<T> {
\
protected: \
std::unique_ptr<paddle::framework::OpDesc> Apply() const override { \
auto* op = new paddle::framework::OpDesc(); \
auto *op = new paddle::framework::OpDesc(); \
op->SetType(#kernel_type "_grad"); \
op->SetInput("Y", Input("Y")); \
op->SetInput(::paddle::framework::GradVarName("Out"), \
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <glog/logging.h>
#include <algorithm>
#include <iterator>
#include <vector>
......
......@@ -28,11 +28,10 @@ template <typename DeviceContext, typename T>
class ElementwiseSubKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using Tensor = framework::Tensor;
auto* x = ctx.Input<framework::LoDTensor>("X");
auto* y = ctx.Input<framework::LoDTensor>("Y");
auto* z = ctx.Output<framework::LoDTensor>("Out");
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* z = ctx.Output<Tensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
int axis = ctx.Attr<int>("axis");
ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
class ExtractRowsOpInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of ExtractRowsOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of ExtractRowsOp should not be null.");
PADDLE_ENFORCE_EQ(ctx->GetInputsVarType("X")[0],
framework::proto::VarType::SELECTED_ROWS,
"The type of input(X) must be SelectedRows.");
auto in_dims = ctx->GetInputDim("X");
ctx->SetOutputDim(
"Out", framework::make_ddim(std::vector<int64_t>{in_dims[0], 1}));
}
};
class ExtractRowsOp : public framework::OperatorBase {
public:
ExtractRowsOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: framework::OperatorBase(type, inputs, outputs, attrs) {}
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &place) const override {
auto &in = scope.FindVar(Input("X"))->Get<framework::SelectedRows>();
auto out = scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>();
auto &in_rows = in.rows();
auto out_dim = framework::make_ddim(
std::vector<int64_t>{static_cast<int64_t>(in_rows.size()), 1});
auto dst_ptr = out->mutable_data<int64_t>(out_dim, in.place());
if (paddle::platform::is_gpu_place(in.place())) {
#ifdef PADDLE_WITH_CUDA
platform::DeviceContextPool &pool =
platform::DeviceContextPool::Instance();
auto *dev_ctx = pool.Get(in.place());
auto src_ptr = in_rows.Data(in.place());
auto stream =
reinterpret_cast<const platform::CUDADeviceContext &>(*dev_ctx)
.stream();
memory::Copy(boost::get<platform::CUDAPlace>(out->place()), dst_ptr,
boost::get<platform::CUDAPlace>(in.place()), src_ptr,
in_rows.size() * sizeof(int64_t), stream);
#else
PADDLE_THROW("Not compiled with CUDA.");
#endif
} else {
memory::Copy(platform::CPUPlace(), dst_ptr, platform::CPUPlace(),
in_rows.data(), in_rows.size() * sizeof(int64_t));
}
}
};
class ExtractRowsOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(SelectedRows). The input tensor of extract_rows operator,"
" and its type is SelectedRows.");
AddOutput("Out", "(Tensor). The the rows of input(X).");
AddComment(R"DOC(
ExtractRows Operator.
The function of extract_rows_op is extracting the rows from the input(X)
whose type is SelectedRows.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(extract_rows, ops::ExtractRowsOp, ops::ExtractRowsOpMaker,
ops::ExtractRowsOpInferShape);
......@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include <memory>
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h"
......@@ -33,15 +32,9 @@ class LoadCombineOp : public framework::OperatorBase {
const platform::Place &place) const override {
auto filename = Attr<std::string>("file_path");
auto load_as_fp16 = Attr<bool>("load_as_fp16");
auto format = Attr<std::string>("format");
std::unique_ptr<std::ifstream> fin;
if (format == "windows") {
fin.reset(new std::ifstream(filename,
std::ios_base::in | std::ios_base::binary));
} else {
fin.reset(new std::ifstream(filename));
}
PADDLE_ENFORCE(static_cast<bool>(*fin),
std::ifstream fin(filename);
PADDLE_ENFORCE(static_cast<bool>(fin),
"Cannot open file %s for load_combine op", filename);
auto out_var_names = Outputs("Out");
......@@ -61,11 +54,11 @@ class LoadCombineOp : public framework::OperatorBase {
auto *tensor = out_var->GetMutable<framework::LoDTensor>();
// Error checking
PADDLE_ENFORCE(static_cast<bool>(*fin), "Cannot read more from file %s",
PADDLE_ENFORCE(static_cast<bool>(fin), "Cannot read more from file %s",
filename);
// Get data from fin to tensor
DeserializeFromStream(*fin, tensor, dev_ctx);
DeserializeFromStream(fin, tensor, dev_ctx);
auto in_dtype = framework::ToDataType(tensor->type());
auto out_dtype =
......@@ -110,18 +103,6 @@ class LoadCombineOpProtoMaker : public framework::OpProtoAndCheckerMaker {
"LoDTensors will be loaded from \"file_path\".")
.AddCustomChecker(
[](const std::string &path) { return !path.empty(); });
AddAttr<std::string>("format",
R"DOC((windows|linux)" "saved model file format
windows and linux file newline symbol is
different. windows(newline is \n\r) or linux(newline is \r)
So if you set attribute format to windows, then we saved model file in binary.
It can be used both linux and windows. If you set format to linux,
it will save file in normal file, newline symbol is \r. Need to note
that these two format is not inter-compatible.)DOC")
.SetDefault("linux")
.AddCustomChecker([](const std::string &s) {
return s == "windows" || s == "linux";
});
AddComment(R"DOC(
LoadCombine Operator.
......
......@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include <memory>
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/framework/op_registry.h"
......@@ -35,15 +34,8 @@ class LoadOp : public framework::OperatorBase {
// FIXME(yuyang18): We save variable to local file now, but we should change
// it to save an output stream.
auto filename = Attr<std::string>("file_path");
auto format = Attr<std::string>("format");
std::unique_ptr<std::ifstream> fin;
if (format == "windows") {
fin.reset(new std::ifstream(filename,
std::ios_base::in | std::ios_base::binary));
} else {
fin.reset(new std::ifstream(filename));
}
PADDLE_ENFORCE(static_cast<bool>(*fin), "Cannot open file %s for load op",
std::ifstream fin(filename);
PADDLE_ENFORCE(static_cast<bool>(fin), "Cannot open file %s for load op",
filename);
auto out_var_name = Output("Out");
......@@ -52,9 +44,9 @@ class LoadOp : public framework::OperatorBase {
out_var_name);
if (out_var->IsType<framework::LoDTensor>()) {
LoadLodTensor(*fin, place, out_var);
LoadLodTensor(fin, place, out_var);
} else if (out_var->IsType<framework::SelectedRows>()) {
LoadSelectedRows(*fin, place, out_var);
LoadSelectedRows(fin, place, out_var);
} else {
PADDLE_ENFORCE(
false,
......@@ -118,18 +110,6 @@ class LoadOpProtoMaker : public framework::OpProtoAndCheckerMaker {
R"(Variable will be loaded from "file_path")")
.AddCustomChecker(
[](const std::string &path) { return !path.empty(); });
AddAttr<std::string>("format",
R"DOC((windows|linux)" "saved model file format
windows and linux file newline symbol is
different. windows(newline is \n\r) or linux(newline is \r)
So if you set attribute format to windows, then we saved model file in binary.
It can be used both linux and windows. If you set format to linux,
it will save file in normal file, newline symbol is \r. Need to note
that these two format is not inter-compatible.)DOC")
.SetDefault("linux")
.AddCustomChecker([](const std::string &s) {
return s == "windows" || s == "linux";
});
AddComment(
"Load operator will load a LoDTensor / SelectedRows variable from disk "
"file.");
......
......@@ -4,7 +4,7 @@ Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
......
......@@ -57,6 +57,9 @@ math_library(sequence_padding)
math_library(sequence_pooling DEPS math_function)
math_library(sequence_scale)
math_library(softmax DEPS math_function)
if (NOT WIN32)
math_library(matrix_bit_code)
endif (NOT WIN32)
math_library(unpooling)
math_library(vol2col)
......@@ -72,9 +75,7 @@ if(WITH_GPU)
endif()
cc_test(concat_test SRCS concat_test.cc DEPS concat_and_split)
cc_test(cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info)
if (NOT WIN32)
math_library(matrix_bit_code)
endif (NOT WIN32)
set(JIT_KERNEL_SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_rnn.cc jit_kernel_crf_decode.cc)
set(JIT_KERNEL_DEPS cpu_info cblas gflags enforce)
if(WITH_XBYAK)
......
......@@ -18,6 +18,10 @@ limitations under the License. */
#include <string>
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/enforce.h"
#ifdef __AVX__
#include <immintrin.h>
#endif
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
......
......@@ -15,10 +15,13 @@ limitations under the License. */
#pragma once
#include <math.h>
#include <string>
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/hostdevice.h"
#ifdef __AVX__
#include <immintrin.h>
#endif
namespace paddle {
namespace operators {
namespace math {
......
......@@ -25,6 +25,10 @@ limitations under the License. */
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
#ifdef __AVX__
#include <immintrin.h>
#endif
namespace paddle {
namespace operators {
namespace math {
......
......@@ -16,6 +16,9 @@ limitations under the License. */
#include <limits>
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#ifdef __AVX__
#include <immintrin.h>
#endif
namespace paddle {
namespace operators {
......@@ -260,7 +263,6 @@ class CRFDecodeKernelImpl : public CRFDecodeKernel<T> {
} \
}
#ifndef _WIN32 // commented out crf decoding
#ifdef __AVX__
INTRIAVX_FLOAT(kEQ8);
INTRIAVX_FLOAT(kGT8LT16);
......@@ -273,7 +275,6 @@ INTRIAVX2_FLOAT(jit::avx2, kGT8LT16);
INTRIAVX2_FLOAT(jit::avx2, kEQ16);
INTRIAVX2_FLOAT(jit::avx2, kGT16);
#endif
#endif // WIN32
#ifdef __AVX512F__
INTRIAVX2_FLOAT(jit::avx512f, kEQ8);
INTRIAVX2_FLOAT(jit::avx512f, kGT8LT16);
......
......@@ -20,6 +20,10 @@ limitations under the License. */
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
#ifdef __AVX__
#include <immintrin.h>
#endif
namespace paddle {
namespace operators {
namespace math {
......@@ -62,18 +66,14 @@ namespace detail {
#ifdef __AVX__
#if defined(_WIN32)
#define ALIGN32 __declspec(align(32))
#else
#define ALIGN32 __attribute__((aligned(32)))
#endif // _WIN32
#define _PS256_CONST(Name, Val) \
static const float ALIGN32 _ps256_##Name[8] = {Val, Val, Val, Val, \
static const float _ps256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
Val, Val, Val, Val}
#define _PI256_CONST(Name, Val) \
static const int ALIGN32 _pi256_##Name[8] = {Val, Val, Val, Val, \
static const int _pi256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
Val, Val, Val, Val}
_PI256_CONST(0x7f, 0x7f);
......@@ -98,7 +98,7 @@ typedef union imm_xmm_union {
#define COPY_IMM_TO_XMM(imm_, xmm0_, xmm1_) \
{ \
imm_xmm_union ALIGN32 u; \
imm_xmm_union u ALIGN32; \
u.imm = imm_; \
xmm0_ = u.xmm[0]; \
xmm1_ = u.xmm[1]; \
......@@ -106,7 +106,7 @@ typedef union imm_xmm_union {
#define COPY_XMM_TO_IMM(xmm0_, xmm1_, imm_) \
{ \
imm_xmm_union ALIGN32 u; \
imm_xmm_union u ALIGN32; \
u.xmm[0] = xmm0_; \
u.xmm[1] = xmm1_; \
imm_ = u.imm; \
......@@ -508,14 +508,12 @@ class VTanhKernelImpl : public VTanhKernel<T> {
vaddbias_->Compute(-1.f, y, y); \
}
#ifndef __WIN32
#ifdef __AVX__
INTRI8_FLOAT(jit::avx, detail::ExpAVX);
INTRI16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT8LT16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT16_FLOAT(jit::avx, detail::ExpAVX);
#endif // AVX
#endif // WIN32
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx2, detail::ExpAVX2);
......
......@@ -18,6 +18,10 @@ limitations under the License. */
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/macros.h"
#ifdef __AVX__
#include <immintrin.h>
#endif
namespace paddle {
namespace operators {
namespace math {
......
......@@ -16,7 +16,6 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/math_function_impl.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/float16.h"
......
......@@ -64,6 +64,8 @@ struct SelectedRowsSumTo {
framework::SelectedRows* input2);
};
// FIXME: The result of SelectedRowsAddToTensor maybe non deterministic,
// because it uses CudaAtomicAdd.
// input2 = input1 + input2
template <typename DeviceContext, typename T>
struct SelectedRowsAddToTensor {
......
......@@ -16,12 +16,13 @@ limitations under the License. */
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_pooling.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/macros.h"
namespace paddle {
namespace operators {
namespace math {
#define FLT_MAX __FLT_MAX__
template <typename T>
struct MaxPoolFunctor {
HOSTDEVICE void operator()(const T* input, const size_t start,
......
......@@ -13,7 +13,6 @@
limitations under the License. */
#include <algorithm>
#include <iostream>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
......
......@@ -14,7 +14,6 @@ limitations under the License. */
#include <stdint.h>
#include <fstream>
#include <memory>
#include <numeric>
#include <sstream>
#include "paddle/fluid/framework/data_type.h"
......@@ -42,7 +41,6 @@ class SaveCombineOp : public framework::OperatorBase {
auto filename = Attr<std::string>("file_path");
auto overwrite = Attr<bool>("overwrite");
auto save_as_fp16 = Attr<bool>("save_as_fp16");
auto format = Attr<std::string>("format");
bool is_present = FileExists(filename);
if (is_present && !overwrite) {
......@@ -51,14 +49,8 @@ class SaveCombineOp : public framework::OperatorBase {
}
MkDirRecursively(DirName(filename).c_str());
std::unique_ptr<std::ofstream> fout;
if (format == "windows") {
fout.reset(new std::ofstream(filename,
std::ios_base::out | std::ios_base::binary));
} else {
fout.reset(new std::ofstream(filename));
}
PADDLE_ENFORCE(static_cast<bool>(*fout), "Cannot open %s to write",
std::ofstream fout(filename);
PADDLE_ENFORCE(static_cast<bool>(fout), "Cannot open %s to write",
filename);
auto inp_var_names = Inputs("X");
......@@ -94,11 +86,12 @@ class SaveCombineOp : public framework::OperatorBase {
// copy LoD info to the new tensor
out.set_lod(tensor.lod());
framework::TransDataType(in_kernel_type, out_kernel_type, tensor, &out);
framework::SerializeToStream(*fout, out, dev_ctx);
framework::SerializeToStream(fout, out, dev_ctx);
} else {
framework::SerializeToStream(*fout, tensor, dev_ctx);
framework::SerializeToStream(fout, tensor, dev_ctx);
}
}
fout.close();
}
};
......@@ -131,18 +124,6 @@ to a file on disk.
"The \"file_path\" where the LoDTensor variables will be saved.")
.AddCustomChecker(
[](const std::string &path) { return !path.empty(); });
AddAttr<std::string>("format",
R"DOC((windows|linux)" "saved model file format
windows and linux file newline symbol is
different. windows(newline is \n\r) or linux(newline is \r)
So if you set attribute format to windows, then we saved model file in binary.
It can be used both linux and windows. If you set format to linux,
it will save file in normal file, newline symbol is \r. Need to note
that these two format is not inter-compatible.)DOC")
.SetDefault("linux")
.AddCustomChecker([](const std::string &s) {
return s == "windows" || s == "linux";
});
}
};
......
......@@ -14,7 +14,6 @@ limitations under the License. */
#include <stdint.h>
#include <fstream>
#include <memory>
#include <numeric>
#include "paddle/fluid/framework/data_type.h"
......@@ -65,7 +64,6 @@ class SaveOp : public framework::OperatorBase {
framework::Variable *var) const {
auto filename = Attr<std::string>("file_path");
auto overwrite = Attr<bool>("overwrite");
auto format = Attr<std::string>("format");
if (FileExists(filename) && !overwrite) {
PADDLE_THROW("%s is existed, cannot save to it when overwrite=false",
......@@ -82,14 +80,8 @@ class SaveOp : public framework::OperatorBase {
// FIXME(yuyang18): We save variable to local file now, but we should change
// it to save an output stream.
std::unique_ptr<std::ofstream> fout;
if (format == "windows") {
fout.reset(new std::ofstream(filename,
std::ios_base::out | std::ios_base::binary));
} else {
fout.reset(new std::ofstream(filename));
}
PADDLE_ENFORCE(static_cast<bool>(*fout), "Cannot open %s to write",
std::ofstream fout(filename);
PADDLE_ENFORCE(static_cast<bool>(fout), "Cannot open %s to write",
filename);
auto save_as_fp16 = Attr<bool>("save_as_fp16");
......@@ -103,10 +95,11 @@ class SaveOp : public framework::OperatorBase {
framework::TransDataType(in_kernel_type, out_kernel_type, tensor, &out);
// copy LoD info to the new tensor
out.set_lod(tensor.lod());
framework::SerializeToStream(*fout, out, dev_ctx);
framework::SerializeToStream(fout, out, dev_ctx);
} else {
framework::SerializeToStream(*fout, tensor, dev_ctx);
framework::SerializeToStream(fout, tensor, dev_ctx);
}
fout.close();
}
void SaveSelectedRows(const framework::Scope &scope,
......@@ -117,7 +110,6 @@ class SaveOp : public framework::OperatorBase {
lt_var != nullptr,
"Can not find variable kLookupTablePath for SaveSelectedRows");
std::string filename = lt_var->data();
auto format = Attr<std::string>("format");
VLOG(40) << "SaveSelectedRows get File name: " << filename;
MkDirRecursively(DirName(filename).c_str());
......@@ -130,16 +122,11 @@ class SaveOp : public framework::OperatorBase {
// FIXME(yuyang18): We save variable to local file now, but we should change
// it to save an output stream.
std::unique_ptr<std::ofstream> fout;
if (format == "windows") {
fout.reset(new std::ofstream(filename,
std::ios_base::out | std::ios_base::binary));
} else {
fout.reset(new std::ofstream(filename));
}
PADDLE_ENFORCE(static_cast<bool>(*fout), "Cannot open %s to write",
std::ofstream fout(filename);
PADDLE_ENFORCE(static_cast<bool>(fout), "Cannot open %s to write",
filename);
framework::SerializeToStream(*fout, selectedRows, dev_ctx);
framework::SerializeToStream(fout, selectedRows, dev_ctx);
fout.close();
}
};
......@@ -167,18 +154,6 @@ This operator will serialize and write LoDTensor / SelectedRows variable to file
"The \"file_path\" where the variable will be saved.")
.AddCustomChecker(
[](const std::string &path) { return !path.empty(); });
AddAttr<std::string>("format",
R"DOC((windows|linux)" "saved model file format
windows and linux file newline symbol is
different. windows(newline is \n\r) or linux(newline is \r)
So if you set attribute format to windows, then we saved model file in binary.
It can be used both linux and windows. If you set format to linux,
it will save file in normal file, newline symbol is \r. Need to note
that these two format is not inter-compatible.)DOC")
.SetDefault("linux")
.AddCustomChecker([](const std::string &s) {
return s == "windows" || s == "linux";
});
}
};
......
......@@ -24,19 +24,13 @@ class ScaleKernel : public framework::OpKernel<T> {
public:
virtual void Compute(const framework::ExecutionContext& ctx) const {
auto* in_var = ctx.InputVar("X");
auto* in = ctx.Input<framework::Tensor>("X");
auto* out_var = ctx.OutputVar("Out");
auto* out = ctx.Output<framework::Tensor>("Out");
out->mutable_data<T>(in->place());
PADDLE_ENFORCE_EQ(in->dims(), out->dims(),
"in and out should have the same dim");
auto* in = framework::GetLoDTensorOrSelectedRowsValueFromVar(*in_var);
auto scale = static_cast<T>(ctx.Attr<float>("scale"));
auto bias = static_cast<T>(ctx.Attr<float>("bias"));
auto bias_after_scale = ctx.Attr<bool>("bias_after_scale");
auto* out_var = ctx.OutputVar("Out");
if (in_var->IsType<framework::SelectedRows>() && in_var != out_var) {
auto& in_slr = in_var->Get<framework::SelectedRows>();
auto* out_slr = out_var->GetMutable<framework::SelectedRows>();
......@@ -44,6 +38,13 @@ class ScaleKernel : public framework::OpKernel<T> {
out_slr->set_height(in_slr.height());
}
auto* out =
framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(out_var);
out->mutable_data<T>(in->place());
PADDLE_ENFORCE_EQ(in->dims(), out->dims(),
"in and out should have the same dim");
auto eigen_out = framework::EigenVector<T>::Flatten(*out);
auto eigen_in = framework::EigenVector<T>::Flatten(*in);
auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
......
......@@ -64,8 +64,7 @@ class SplitIdsOp : public framework::OperatorWithKernel {
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
framework::ToDataType(
ctx.MultiInput<framework::Tensor>("Ids").front()->type()),
framework::GetDataTypeOfVar(ctx.MultiInputVar("Ids").front()),
ctx.GetPlace());
}
};
......
......@@ -113,6 +113,10 @@ class SplitIdsOpKernel : public framework::OpKernel<T> {
row_width * sizeof(T));
}
}
} else {
PADDLE_THROW(
"% should be LoDTensor or SelectedRows, but the received type is %s",
ctx.Inputs("Ids")[0], ids_var->Type().name());
}
}
};
......
......@@ -15,7 +15,6 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/port.h"
namespace paddle {
namespace operators {
......
......@@ -85,8 +85,8 @@ class SumOp : public framework::OperatorWithKernel {
for (size_t idx = 0; idx < x_vars.size(); ++idx) {
PADDLE_ENFORCE(x_vars[idx] != nullptr,
"Input var[%s] should not be nullptr", x_vars_name[idx]);
// FIXME(zcd): The input x_var may be SelectedRows or LoDTensor.
auto tensor = framework::GetTensorFromVar(*x_vars[idx]);
auto tensor =
framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_vars[idx]);
if (tensor->numel() == 0) {
continue;
}
......
......@@ -60,7 +60,7 @@ nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t>& shape) {
return nvinfer1::DimsCHW(shape[1], 1, 1);
}
} // NOLINT // namespace
} // namespace // NOLINT
using inference::Singleton;
using inference::tensorrt::TRT_EngineManager;
......
......@@ -16,18 +16,6 @@ limitations under the License. */
#include <stddef.h>
#ifdef _WIN32
#if defined(__AVX2__)
#include <immintrin.h> // avx2
#elif defined(__AVX__)
#include <intrin.h> // avx
#endif // AVX
#else // WIN32
#ifdef __AVX__
#include <immintrin.h>
#endif
#endif // WIN32
namespace paddle {
namespace platform {
......
......@@ -59,7 +59,6 @@ inline const char* cudnnGetErrorString(cudnnStatus_t status) {
#define CUDNN_VERSION_MIN(major, minor, patch) \
(CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))
#if !defined(_WIN32)
#define CUDNN_ENFORCE(condition) \
do { \
cudnnStatus_t status = condition; \
......@@ -67,16 +66,6 @@ inline const char* cudnnGetErrorString(cudnnStatus_t status) {
PADDLE_THROW(::paddle::platform::cudnnGetErrorString(status)); \
} \
} while (false)
#else
// windows
#define CUDNN_ENFORCE(condition) \
do { \
cudnnStatus_t status = condition; \
if (status != CUDNN_STATUS_SUCCESS) { \
std::cerr << ::paddle::platform::cudnnGetErrorString(status); \
} \
} while (false)
#endif
enum class DataLayout { // Not use
kNHWC,
......
......@@ -55,6 +55,7 @@ DeviceContextPool::DeviceContextPool(
for (auto& p : places) {
set.insert(p);
}
for (auto& p : set) {
if (platform::is_cpu_place(p)) {
#ifdef PADDLE_WITH_MKLDNN
......@@ -204,9 +205,7 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
<< ", Runtime Version: " << runtime_version_ / 1000
<< "." << (runtime_version_ % 100) / 10;
#ifndef _WIN32
callback_manager_.reset(new StreamCallbackManager(stream_));
#endif // NOT WIN32
}
CUDADeviceContext::~CUDADeviceContext() {
......
......@@ -32,7 +32,7 @@ limitations under the License. */
#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/stream_callback_manager.h"
#endif
#include "unsupported/Eigen/CXX11/Tensor"
......@@ -173,7 +173,6 @@ class CUDADeviceContext : public DeviceContext {
PADDLE_ENFORCE(cudaEventRecord(ev, stream_));
}
#ifndef _WIN32
template <typename Callback>
void AddStreamCallback(Callback&& callback) const {
std::lock_guard<std::mutex> guard(callback_mtx_);
......@@ -184,16 +183,6 @@ class CUDADeviceContext : public DeviceContext {
std::lock_guard<std::mutex> guard(callback_mtx_);
callback_manager_->Wait();
}
#else
template <typename Callback>
void AddStreamCallback(Callback&& callback) const {
// ugly empty functor.
}
void WaitStreamCallback() const {
// ugly empty functor.
}
#endif
private:
CUDAPlace place_;
......@@ -212,12 +201,10 @@ class CUDADeviceContext : public DeviceContext {
mutable std::mutex mtx_;
#ifndef _WIN32
// This lock is only used by callback
// If we use mtx_ for StreamCallbackManager, deadlock may occur sometimes
mutable std::mutex callback_mtx_;
std::unique_ptr<StreamCallbackManager> callback_manager_;
#endif
};
template <>
......
......@@ -127,7 +127,7 @@ struct EOFException : public std::exception {
#define UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)
#else
// there is no equivalent intrinsics in msvc.
#define UNLIKELY(condition) ((condition) == 0)
#define UNLIKELY(condition) (condition == 0)
#endif
#if !defined(_WIN32)
......
......@@ -167,9 +167,7 @@ void InitGLOG(const std::string &prog_name) {
// glog will not hold the ARGV[0] inside.
// Use strdup to alloc a new string.
google::InitGoogleLogging(strdup(prog_name.c_str()));
#if !defined(_WIN32)
google::InstallFailureSignalHandler();
#endif
}
} // namespace framework
......
......@@ -28,16 +28,3 @@ limitations under the License. */
#if defined(__FLT_MAX__)
#define FLT_MAX __FLT_MAX__
#endif // __FLT_MAX__
#ifdef _WIN32
#if defined(PADDLE_COMPILE)
// by default, msvc has predefined macro _LIB for static library
// only shared library need to export and import symbols
// static library export all symbols by default.
#define PADDLE_DLL __declspec(dllexport)
#else
#define PADDLE_DLL __declspec(dllimport)
#endif
#else
#define PADDLE_DLL
#endif
......@@ -15,13 +15,12 @@
#pragma once
#include <cstdio>
#include <memory>
#include <memory> // NOLINT
#include <stdexcept>
#include <memory>
#include <string>
#define GLOG_NO_ABBREVIATED_SEVERITIES // msvc conflict logging with windows.h
#define GOOGLE_GLOG_DLL_DECL
#include "glog/logging.h"
#if !defined(_WIN32)
......@@ -62,6 +61,7 @@ static void *dlopen(const char *filename, int flag) {
}
return reinterpret_cast<void *>(hModule);
}
#endif // !_WIN32
static void ExecShellCommand(const std::string &cmd, std::string *message) {
......
......@@ -27,6 +27,7 @@ void BindConstValue(pybind11::module* m) {
m->def("kZeroVarSuffix", [] { return framework::kZeroVarSuffix; });
m->def("kControlDepVarName",
[] { return framework::ir::Node::kControlDepVarName; });
m->def("kNewGradSuffix", [] { return framework::kNewGradSuffix; });
auto op_proto_and_checker_maker =
m->def_submodule("op_proto_and_checker_maker");
......
......@@ -367,7 +367,12 @@ function run_test() {
Running unit tests ...
========================================
EOF
ctest --output-on-failure
if [ ${TESTING_DEBUG_MODE:-OFF} == "ON" ] ; then
ctest -V
else
ctest --output-on-failure
fi
# make install should also be test when unittest
make install -j `nproc`
pip install ${INSTALL_PREFIX:-/paddle/build}/opt/paddle/share/wheels/*.whl
......
......@@ -61,14 +61,25 @@ def append_regularization_ops(parameters_and_grads, regularization=None):
params_and_grads.append((param, grad))
continue
assert grad.shape == regularization_term.shape
new_grad = grad
if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
# FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
# the grad's type and name will be changed. But the gradient's name
# is used in ParallelExecutor Reduce mode, so I add a flag for
# the new_grad here.
new_grad = grad.block.create_var(
name=grad.name + core.kNewGradSuffix(),
dtype=param.dtype,
shape=param.shape,
lod_level=param.lod_level,
type=core.VarDesc.VarType.LOD_TENSOR)
grad.block.append_op(
type='elementwise_add',
inputs={"X": grad,
"Y": regularization_term},
outputs={"Out": grad})
params_and_grads.append((param, grad))
type='sum',
inputs={"X": [grad, regularization_term]},
outputs={"Out": new_grad})
params_and_grads.append((param, new_grad))
return params_and_grads
......@@ -142,26 +153,7 @@ class L2DecayRegularizer(WeightDecayRegularizer):
assert isinstance(block, framework.Block)
decay = block.create_var(
dtype="float32", shape=param.shape, lod_level=param.lod_level)
if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
idx = block.create_var(
dtype="int64",
shape=param.shape,
type=core.VarDesc.VarType.LOD_TENSOR)
decay = block.create_var(
dtype="float32",
shape=param.shape,
type=core.VarDesc.VarType.LOD_TENSOR)
block.append_op(
type='extract_rows', inputs={'X': grad}, outputs={'Out': idx})
block.append_op(
type='lookup_table',
inputs={'W': param,
'Ids': idx},
outputs={'Out': decay},
attrs={'is_sparse': True})
param = decay
dtype=param.dtype, shape=param.shape, lod_level=param.lod_level)
# Append Op to calculate decay
block.append_op(
......@@ -218,27 +210,9 @@ class L1DecayRegularizer(WeightDecayRegularizer):
"""
assert isinstance(param, framework.Parameter)
assert isinstance(block, framework.Block)
decay = block.create_var(
dtype="float32", shape=param.shape, lod_level=param.lod_level)
if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
idx = block.create_var(
dtype="int64",
shape=param.shape,
type=core.VarDesc.VarType.LOD_TENSOR)
decay = block.create_var(
dtype="float32",
shape=param.shape,
type=core.VarDesc.VarType.LOD_TENSOR)
block.append_op(
type='extract_rows', inputs={'X': grad}, outputs={'Out': idx})
block.append_op(
type='lookup_table',
inputs={'W': param,
'Ids': idx},
outputs={'Out': decay},
attrs={'is_sparse': True})
param = decay
dtype=param.dtype, shape=param.shape, lod_level=param.lod_level)
# Append sign op
block.append_op(
......
......@@ -225,29 +225,29 @@ class TestWithInput1x1Filter1x1(TestConv2dOp):
#----------------Conv2dCUDNN----------------
def create_test_cudnn_class(parent, cls_name):
def create_test_cudnn_class(parent):
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNCase(parent):
def init_kernel_type(self):
self.use_cudnn = True
cls_name = "{0}".format(cls_name)
cls_name = "{0}_{1}".format(parent.__name__, "CUDNN")
TestCUDNNCase.__name__ = cls_name
globals()[cls_name] = TestCUDNNCase
create_test_cudnn_class(TestConv2dOp, "TestPool2DCUDNNOp")
create_test_cudnn_class(TestWithPad, "TestPool2DCUDNNOpCase1")
create_test_cudnn_class(TestWithStride, "TestPool2DCUDNNOpCase2")
create_test_cudnn_class(TestWithGroup, "TestPool2DCUDNNOpCase3")
create_test_cudnn_class(TestWith1x1, "TestPool2DCUDNNOpCase4")
create_test_cudnn_class(TestWithInput1x1Filter1x1, "TestPool2DCUDNNOpCase4")
create_test_cudnn_class(TestConv2dOp)
create_test_cudnn_class(TestWithPad)
create_test_cudnn_class(TestWithStride)
create_test_cudnn_class(TestWithGroup)
create_test_cudnn_class(TestWith1x1)
create_test_cudnn_class(TestWithInput1x1Filter1x1)
#----------------Conv2dCUDNN----------------
def create_test_cudnn_fp16_class(parent, cls_name, grad_check=True):
def create_test_cudnn_fp16_class(parent, grad_check=True):
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestConv2DCUDNNFp16(parent):
......@@ -279,23 +279,17 @@ def create_test_cudnn_fp16_class(parent, cls_name, grad_check=True):
max_relative_error=0.02,
no_grad_set=set(['Input']))
cls_name = "{0}".format(cls_name)
cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16")
TestConv2DCUDNNFp16.__name__ = cls_name
globals()[cls_name] = TestConv2DCUDNNFp16
create_test_cudnn_fp16_class(
TestConv2dOp, "TestPool2DCUDNNFp16Op", grad_check=False)
create_test_cudnn_fp16_class(
TestWithPad, "TestPool2DCUDNNFp16OpCase1", grad_check=False)
create_test_cudnn_fp16_class(
TestWithStride, "TestPool2DCUDNNFp16OpCase2", grad_check=False)
create_test_cudnn_fp16_class(
TestWithGroup, "TestPool2DCUDNNFp16OpCase3", grad_check=False)
create_test_cudnn_fp16_class(
TestWith1x1, "TestPool2DCUDNNFp16OpCase4", grad_check=False)
create_test_cudnn_fp16_class(
TestWithInput1x1Filter1x1, "TestPool2DCUDNNFp16OpCase4", grad_check=False)
create_test_cudnn_fp16_class(TestConv2dOp, grad_check=False)
create_test_cudnn_fp16_class(TestWithPad, grad_check=False)
create_test_cudnn_fp16_class(TestWithStride, grad_check=False)
create_test_cudnn_fp16_class(TestWithGroup, grad_check=False)
create_test_cudnn_fp16_class(TestWith1x1, grad_check=False)
create_test_cudnn_fp16_class(TestWithInput1x1Filter1x1, grad_check=False)
# -------TestDepthwiseConv
......
......@@ -373,9 +373,8 @@ class TestL2Decay(TranspilerTest):
self.assertEqual(len(pserver.blocks), 3)
self.assertEqual([op.type for op in pserver.blocks[1].ops],
["sum", "scale", "clip", "sgd"])
self.assertEqual(
[op.type for op in pserver.blocks[2].ops],
["sum", "scale", "clip", "scale", "elementwise_add", "sgd"])
self.assertEqual([op.type for op in pserver.blocks[2].ops],
["sum", "scale", "clip", "scale", "sum", "sgd"])
# TODO(typhoonzero): test clipping and L2Decay ops are removed from trainer
......@@ -416,12 +415,10 @@ class TestL2DecayWithPiecewise(TranspilerTest):
"logical_and", "conditional_block", "fill_constant",
"conditional_block"
])
self.assertEqual(
[op.type for op in pserver.blocks[7].ops],
["sum", "scale", "scale", "elementwise_add", "momentum"])
self.assertEqual(
[op.type for op in pserver.blocks[8].ops],
["sum", "scale", "scale", "elementwise_add", "momentum"])
self.assertEqual([op.type for op in pserver.blocks[7].ops],
["sum", "scale", "scale", "sum", "momentum"])
self.assertEqual([op.type for op in pserver.blocks[8].ops],
["sum", "scale", "scale", "sum", "momentum"])
class TestEmptyPserverOptimizeBlocks(TranspilerTest):
......
......@@ -117,56 +117,5 @@ class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
}
class TestElementWiseMulSelectedRows(OpTest):
def setUp(self):
self.rows = [0, 1, 2, 3, 4, 5, 6]
self.feature = 12
self.height = 100
self.input_shape = (len(self.rows), self.feature)
def prepare_input(self, scope, place):
self.input = {
"X": np.random.random(self.input_shape).astype("float32"),
"Y": np.random.random(self.input_shape).astype("float32")
}
def init_input(in_name):
x_selected_rows = scope.var(in_name).get_selected_rows()
x_selected_rows.set_height(self.height)
x_selected_rows.set_rows(self.rows)
x_array = self.input[in_name]
x_tensor = x_selected_rows.get_tensor()
x_tensor.set(x_array, place)
init_input("X")
init_input("Y")
def create_out_selected_row(self, scope):
return scope.var('Out').get_selected_rows()
def check_result(self, out_selected_rows):
assert out_selected_rows.height() == self.height
assert out_selected_rows.rows() == self.rows
out_tensor = np.array(out_selected_rows.get_tensor())
assert out_tensor.shape == self.input_shape
def check_with_place(self, place):
scope = core.Scope()
self.prepare_input(scope, place)
out_selected_rows = self.create_out_selected_row(scope)
out_selected_rows.set_height(0)
out_selected_rows.set_rows([])
elementwise_mul = Operator("elementwise_mul", X='X', Y='Y', Out='Out')
elementwise_mul.run(scope, place)
self.check_result(out_selected_rows)
def test_elewisemul_with_selected_rows_input(self):
places = [core.CPUPlace()]
for place in places:
self.check_with_place(place)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from op_test import OpTest
class TestExtractRows(OpTest):
def check_with_place(self, place):
scope = core.Scope()
# create and initialize Variable
feature_len = 12
rows = [0, 4, 4, 7]
np_array = np.ones((len(rows), feature_len)).astype("float32")
in_x = scope.var('X').get_selected_rows()
in_x.set_height(len(rows))
in_x.set_rows(rows)
in_x_tensor = in_x.get_tensor()
in_x_tensor.set(np_array, place)
# create Out Variable
out_tensor = scope.var('Out').get_tensor()
# create and run lookup_table operator
extract_rows_op = Operator("extract_rows", X='X', Out='Out')
extract_rows_op.run(scope, place)
# get result from Out
result_array = np.array(out_tensor)
result_array = [ele[0] for ele in result_array]
assert result_array == rows
def test_concat_rows(self):
places = [core.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(core.CUDAPlace(0))
for place in places:
self.check_with_place(place)
if __name__ == '__main__':
unittest.main()
......@@ -55,7 +55,7 @@ class TestL2DecayRegularizer(unittest.TestCase):
params_grads = optimizer.append_regularization_ops(params_grads)
self.assertEqual(len(params_grads), 1)
self.assertEqual(len(block.ops), count_ops + 2)
self.assertEqual(block.ops[-1].type, 'elementwise_add')
self.assertEqual(block.ops[-1].type, 'sum')
self.assertEqual(block.ops[-2].type, 'scale')
......@@ -92,7 +92,7 @@ class TestL1DecayRegularizer(unittest.TestCase):
params_grads = optimizer.append_regularization_ops(params_grads)
self.assertEqual(len(params_grads), 1)
self.assertEqual(len(block.ops), count_ops + 3)
self.assertEqual(block.ops[-1].type, 'elementwise_add')
self.assertEqual(block.ops[-1].type, 'sum')
self.assertEqual(block.ops[-2].type, 'scale')
self.assertEqual(block.ops[-3].type, 'sign')
......
......@@ -49,11 +49,14 @@ class TestSumOp(OpTest):
class TestSelectedRowsSumOp(OpTest):
def check_with_place(self, place, inplace):
def setUp(self):
self.height = 10
self.row_numel = 12
self.rows = [0, 1, 2, 3, 4, 5, 6]
self.dtype = np.float32
self.init_kernel_type()
def check_with_place(self, place, inplace):
self.check_input_and_optput(core.Scope(), place, inplace, True, True,
True)
self.check_input_and_optput(core.Scope(), place, inplace, False, True,
......@@ -64,12 +67,12 @@ class TestSelectedRowsSumOp(OpTest):
False)
def init_kernel_type(self):
self.dtype = np.float32
pass
def _get_array(self, row_num, row_numel):
array = np.ones((row_num, row_numel)).astype(self.dtype)
for i in range(row_num):
array[i] *= i
def _get_array(self, rows, row_numel):
array = np.ones((len(rows), row_numel)).astype(self.dtype)
for i in range(len(rows)):
array[i] *= rows[i]
return array
def check_input_and_optput(self,
......@@ -105,7 +108,7 @@ class TestSelectedRowsSumOp(OpTest):
self.assertTrue(
np.array_equal(
np.array(out.get_tensor()),
self._get_array(len(self.rows), self.row_numel) *
self._get_array(self.rows, self.row_numel) *
has_data_w_num))
else:
self.assertEqual(len(out.rows()), 0)
......@@ -121,7 +124,7 @@ class TestSelectedRowsSumOp(OpTest):
w_selected_rows = var.get_selected_rows()
w_selected_rows.set_height(self.height)
w_selected_rows.set_rows(rows)
w_array = self._get_array(len(rows), self.row_numel)
w_array = self._get_array(self.rows, self.row_numel)
w_tensor = w_selected_rows.get_tensor()
w_tensor.set(w_array, place)
......@@ -136,36 +139,91 @@ class TestSelectedRowsSumOp(OpTest):
self.check_with_place(place, inplace)
class TestLoDTensorAndSelectedRowsOp(TestSelectedRowsSumOp):
def setUp(self):
self.height = 10
self.row_numel = 12
self.rows = [0, 1, 2, 2, 4, 5, 6]
def check_with_place(self, place, inplace):
scope = core.Scope()
if inplace:
self.create_lod_tensor(scope, place, "x1")
self.create_selected_rows(scope, place, "x2", True)
out = scope.var("x1").get_tensor()
out_name = "x1"
else:
self.create_selected_rows(scope, place, "x1", True)
self.create_lod_tensor(scope, place, "x2")
out = scope.var("out").get_tensor()
out_name = "out"
# create and run sum operator
sum_op = Operator("sum", X=["x1", "x2"], Out=out_name)
sum_op.run(scope, place)
result = np.ones((1, self.height)).astype(np.int32).tolist()[0]
for ele in self.rows:
result[ele] += 1
out_t = np.array(out)
self.assertEqual(out_t.shape[0], self.height)
self.assertTrue(
np.array_equal(out_t,
self._get_array([i for i in range(
self.height)], self.row_numel) * np.tile(
np.array(result).reshape(self.height, 1),
self.row_numel)))
def create_lod_tensor(self, scope, place, var_name):
var = scope.var(var_name)
w_tensor = var.get_tensor()
w_array = self._get_array([i for i in range(self.height)],
self.row_numel)
w_tensor.set(w_array, place)
return var
#----------- test fp16 -----------
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestFP16SumOp(TestSumOp):
def init_kernel_type(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=2e-2)
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=2e-2)
# FIXME: Because of the precision fp16, max_relative_error
# should be 0.15 here.
def test_check_grad(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_grad(['x0'], 'Out', max_relative_error=0.15)
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_grad(['x0'], 'Out', max_relative_error=0.15)
class TestFP16SelectedRowsSumOp(TestSelectedRowsSumOp):
def init_kernel_type(self):
self.dtype = np.float16
def create_test_sum_fp16_class(parent):
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSumFp16Case(parent):
def init_kernel_type(self):
self.dtype = np.float16
def test_w_is_selected_rows(self):
if core.is_compiled_with_cuda():
def test_w_is_selected_rows(self):
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
for inplace in [True, False]:
self.check_with_place(place, inplace)
cls_name = "{0}_{1}".format(parent.__name__, "SumFp16Test")
TestSumFp16Case.__name__ = cls_name
globals()[cls_name] = TestSumFp16Case
create_test_sum_fp16_class(TestSelectedRowsSumOp)
create_test_sum_fp16_class(TestLoDTensorAndSelectedRowsOp)
if __name__ == "__main__":
unittest.main()
......@@ -1706,13 +1706,27 @@ to transpile() call.")
outputs=outputs,
attrs=opt_op.all_attrs())
def _is_splited_grad_var(self, var, var_dict):
def _get_pserver_grad_param_var(self, var, var_dict):
"""
Return pserver side grad/param variable, return None
if the variable is not grad/param, e.g.
a@GRAD -> a@GRAD.block0
a@GRAD -> a@GRAD (a is not splited)
fc_0.w_0 -> fc_0.w_0.block_0
fc_0.w_0 -> fc_0.w_0 (weight is not splited)
_generated_var_123 -> None
"""
grad_block = None
for _, g in six.iteritems(var_dict):
if self._orig_varname(g.name) == self._orig_varname(var.name):
# skip per trainer vars
if g.name.find(".trainer_") == -1:
grad_block = g
break
# only param or grads have splited blocks
if self._orig_varname(g.name) in self.grad_name_to_param_name or\
self._orig_varname(g.name) in self.param_name_to_grad_name:
grad_block = g
break
return grad_block
def _clone_lr_op(self, program, block, op):
......@@ -1745,32 +1759,38 @@ to transpile() call.")
for key, varlist in six.iteritems(inputs):
if not isinstance(varlist, list):
varlist = [varlist]
for var in varlist:
# for ops like clipping and weight decay, get the splited var
for i in range(len(varlist)):
var = varlist[i]
# for ops like clipping and weight decay, get the splited var (xxx.block0)
# for inputs/outputs
grad_block = self._is_splited_grad_var(
grad_block = self._get_pserver_grad_param_var(
var, program.global_block().vars)
if grad_block:
inputs[key] = grad_block
varlist[i] = grad_block
elif var.name not in program.global_block().vars:
program.global_block().create_var(
name=var.name,
persistable=var.persistable,
dtype=var.dtype,
shape=var.shape)
tmpvar = program.global_block()._clone_variable(var)
varlist[i] = tmpvar
else:
varlist[i] = program.global_block().vars[var.name]
inputs[key] = varlist
outputs = self._get_output_map_from_op(
self.origin_program.global_block().vars, opt_op)
for key, varlist in six.iteritems(outputs):
if not isinstance(varlist, list):
varlist = [varlist]
for var in varlist:
grad_block = self._is_splited_grad_var(
for i in range(len(varlist)):
var = varlist[i]
grad_block = self._get_pserver_grad_param_var(
var, program.global_block().vars)
if grad_block:
outputs[key] = grad_block
varlist[i] = grad_block
elif var.name not in program.global_block().vars:
program.global_block()._clone_variable(var)
tmpvar = program.global_block()._clone_variable(var)
varlist[i] = tmpvar
else:
varlist[i] = program.global_block().vars[var.name]
outputs[key] = varlist
return optimize_block.append_op(
type=opt_op.type,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册