Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
86919910
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
86919910
编写于
3月 18, 2022
作者:
W
Wilber
提交者:
GitHub
3月 18, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Trt engine (#40649)
上级
e3b2a035
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
550 addition
and
65 deletion
+550
-65
paddle/infrt/backends/tensorrt/test_trt_engine.cc
paddle/infrt/backends/tensorrt/test_trt_engine.cc
+167
-0
paddle/infrt/dialect/infrt/ir/infrt_dialect.cc
paddle/infrt/dialect/infrt/ir/infrt_dialect.cc
+1
-3
paddle/infrt/dialect/tensorrt/trt_ops.td
paddle/infrt/dialect/tensorrt/trt_ops.td
+33
-0
paddle/infrt/host_context/mlir_to_runtime_translate.cc
paddle/infrt/host_context/mlir_to_runtime_translate.cc
+11
-4
paddle/infrt/kernel/tensor_kernels.cc
paddle/infrt/kernel/tensor_kernels.cc
+2
-2
paddle/infrt/kernel/tensorrt/trt_helper.h
paddle/infrt/kernel/tensorrt/trt_helper.h
+66
-0
paddle/infrt/kernel/tensorrt/trt_kernels.cc
paddle/infrt/kernel/tensorrt/trt_kernels.cc
+66
-56
paddle/infrt/kernel/tensorrt/trt_layers.h
paddle/infrt/kernel/tensorrt/trt_layers.h
+104
-0
paddle/infrt/tests/dialect/tensorrt/disabled_trt.mlir
paddle/infrt/tests/dialect/tensorrt/disabled_trt.mlir
+0
-0
paddle/infrt/tests/dialect/tensorrt/disabled_trt_conv.mlir
paddle/infrt/tests/dialect/tensorrt/disabled_trt_conv.mlir
+54
-0
paddle/infrt/tests/dialect/tensorrt/disabled_trt_fc.mlir
paddle/infrt/tests/dialect/tensorrt/disabled_trt_fc.mlir
+46
-0
未找到文件。
paddle/infrt/backends/tensorrt/test_trt_engine.cc
浏览文件 @
86919910
...
@@ -82,9 +82,176 @@ TrtUniquePtr<nvinfer1::INetworkDefinition> ConstructNetwork(
...
@@ -82,9 +82,176 @@ TrtUniquePtr<nvinfer1::INetworkDefinition> ConstructNetwork(
return
network
;
return
network
;
}
}
TrtUniquePtr
<
nvinfer1
::
INetworkDefinition
>
ConstructFCNetwork
(
nvinfer1
::
IBuilder
*
builder
,
nvinfer1
::
Dims
dims
,
bool
is_static_shape
)
{
TrtUniquePtr
<
nvinfer1
::
INetworkDefinition
>
network
;
if
(
is_static_shape
)
{
network
.
reset
(
builder
->
createNetworkV2
(
0U
));
}
else
{
auto
networkFlags
=
1U
<<
static_cast
<
uint32_t
>
(
nvinfer1
::
NetworkDefinitionCreationFlag
::
kEXPLICIT_BATCH
);
network
.
reset
(
builder
->
createNetworkV2
(
networkFlags
));
}
ITensor
*
data
=
network
->
addInput
(
model_input
,
nvinfer1
::
DataType
::
kFLOAT
,
dims
);
CHECK_NOTNULL
(
data
);
nvinfer1
::
Weights
kernel_weights
;
kernel_weights
.
type
=
nvinfer1
::
DataType
::
kFLOAT
;
kernel_weights
.
count
=
7840
;
std
::
vector
<
float
>
weight_data
(
kernel_weights
.
count
);
for
(
size_t
i
=
0
;
i
<
weight_data
.
size
();
++
i
)
{
weight_data
[
i
]
=
i
%
255
*
0.02
f
;
}
kernel_weights
.
values
=
weight_data
.
data
();
auto
*
layer
=
network
->
addFullyConnected
(
*
data
,
10
,
kernel_weights
,
nvinfer1
::
Weights
{});
CHECK_NOTNULL
(
layer
);
auto
*
out
=
layer
->
getOutput
(
0
);
out
->
setName
(
model_output
);
network
->
markOutput
(
*
out
);
return
network
;
}
TrtUniquePtr
<
nvinfer1
::
INetworkDefinition
>
ConstructConvNetwork
(
nvinfer1
::
IBuilder
*
builder
,
nvinfer1
::
Dims
dims
,
bool
is_static_shape
)
{
TrtUniquePtr
<
nvinfer1
::
INetworkDefinition
>
network
;
if
(
is_static_shape
)
{
network
.
reset
(
builder
->
createNetworkV2
(
0U
));
}
else
{
auto
networkFlags
=
1U
<<
static_cast
<
uint32_t
>
(
nvinfer1
::
NetworkDefinitionCreationFlag
::
kEXPLICIT_BATCH
);
network
.
reset
(
builder
->
createNetworkV2
(
networkFlags
));
}
ITensor
*
data
=
network
->
addInput
(
model_input
,
nvinfer1
::
DataType
::
kFLOAT
,
dims
);
CHECK_NOTNULL
(
data
);
nvinfer1
::
Weights
kernel_weights
,
bias_weights
;
kernel_weights
.
type
=
nvinfer1
::
DataType
::
kFLOAT
;
bias_weights
.
type
=
nvinfer1
::
DataType
::
kFLOAT
;
kernel_weights
.
count
=
81
;
bias_weights
.
count
=
3
;
std
::
vector
<
float
>
weight_data
(
kernel_weights
.
count
);
for
(
size_t
i
=
0
;
i
<
weight_data
.
size
();
++
i
)
{
weight_data
[
i
]
=
i
*
0.02
f
;
}
std
::
vector
<
float
>
bias_data
(
bias_weights
.
count
);
for
(
size_t
i
=
0
;
i
<
bias_data
.
size
();
++
i
)
{
bias_data
[
i
]
=
i
*
0.5
f
;
}
kernel_weights
.
values
=
weight_data
.
data
();
bias_weights
.
values
=
bias_data
.
data
();
nvinfer1
::
Dims
ksize
;
ksize
.
nbDims
=
2
;
ksize
.
d
[
0
]
=
3
;
ksize
.
d
[
1
]
=
3
;
auto
*
layer
=
network
->
addConvolutionNd
(
*
data
,
3
,
ksize
,
kernel_weights
,
bias_weights
);
CHECK_NOTNULL
(
layer
);
auto
*
out
=
layer
->
getOutput
(
0
);
out
->
setName
(
model_output
);
network
->
markOutput
(
*
out
);
return
network
;
}
// sigmoid(x) = 1 / (1 + exp(-x))
// sigmoid(x) = 1 / (1 + exp(-x))
inline
float
sigmoid
(
float
x
)
{
return
1.
f
/
(
1.
f
+
exp
(
-
1
*
x
));
}
inline
float
sigmoid
(
float
x
)
{
return
1.
f
/
(
1.
f
+
exp
(
-
1
*
x
));
}
TEST
(
trt
,
run_fc_static
)
{
TrtEngine
engine
(
0
);
auto
net
=
ConstructFCNetwork
(
engine
.
GetTrtBuilder
(),
nvinfer1
::
Dims3
{
1
,
28
,
28
},
true
);
BuildOptions
build_options
;
build_options
.
max_batch
=
4
;
build_options
.
workspace
=
1024
;
engine
.
Build
(
std
::
move
(
net
),
build_options
);
InferenceOptions
inference_options
;
inference_options
.
batch
=
1
;
phi
::
GPUPlace
place
;
phi
::
GPUContext
context
;
context
.
PartialInitWithoutAllocator
();
context
.
SetAllocator
(
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
place
,
context
.
stream
())
.
get
());
context
.
PartialInitWithAllocator
();
phi
::
DenseTensorMeta
meta
(
phi
::
DataType
::
FLOAT32
,
phi
::
make_ddim
({
inference_options
.
batch
,
1
,
28
,
28
}));
phi
::
DenseTensor
input
;
input
.
set_meta
(
meta
);
context
.
Alloc
<
float
>
(
&
input
,
input
.
numel
()
*
sizeof
(
float
));
std
::
vector
<
float
>
host_data
(
inference_options
.
batch
*
1
*
28
*
28
,
0
);
for
(
size_t
i
=
0
;
i
<
host_data
.
size
();
++
i
)
{
host_data
[
i
]
=
i
%
100
*
0.016
f
;
}
paddle
::
memory
::
Copy
(
place
,
input
.
data
<
float
>
(),
phi
::
CPUPlace
(),
host_data
.
data
(),
sizeof
(
float
)
*
host_data
.
size
(),
context
.
stream
());
std
::
unordered_map
<
std
::
string
,
phi
::
DenseTensor
*>
inputs
;
inputs
.
emplace
(
std
::
make_pair
(
model_input
,
&
input
));
engine
.
PrepareOutputHandle
(
"output_0"
);
engine
.
SetUpInference
(
inference_options
,
inputs
);
engine
.
GetEngineInfo
();
engine
.
Run
(
context
);
cudaStreamSynchronize
(
context
.
stream
());
}
TEST
(
trt
,
run_conv_static
)
{
TrtEngine
engine
(
0
);
auto
net
=
ConstructConvNetwork
(
engine
.
GetTrtBuilder
(),
nvinfer1
::
Dims3
{
3
,
28
,
28
},
true
);
BuildOptions
build_options
;
build_options
.
max_batch
=
4
;
build_options
.
workspace
=
1024
;
engine
.
Build
(
std
::
move
(
net
),
build_options
);
InferenceOptions
inference_options
;
inference_options
.
batch
=
1
;
phi
::
GPUPlace
place
;
phi
::
GPUContext
context
;
context
.
PartialInitWithoutAllocator
();
context
.
SetAllocator
(
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
place
,
context
.
stream
())
.
get
());
context
.
PartialInitWithAllocator
();
phi
::
DenseTensorMeta
meta
(
phi
::
DataType
::
FLOAT32
,
phi
::
make_ddim
({
inference_options
.
batch
,
3
,
28
,
28
}));
phi
::
DenseTensor
input
;
input
.
set_meta
(
meta
);
context
.
Alloc
<
float
>
(
&
input
,
input
.
numel
()
*
sizeof
(
float
));
std
::
vector
<
float
>
host_data
(
inference_options
.
batch
*
3
*
28
*
28
,
0
);
for
(
size_t
i
=
0
;
i
<
host_data
.
size
();
++
i
)
{
host_data
[
i
]
=
i
%
100
*
0.016
f
;
}
paddle
::
memory
::
Copy
(
place
,
input
.
data
<
float
>
(),
phi
::
CPUPlace
(),
host_data
.
data
(),
sizeof
(
float
)
*
host_data
.
size
(),
context
.
stream
());
std
::
unordered_map
<
std
::
string
,
phi
::
DenseTensor
*>
inputs
;
inputs
.
emplace
(
std
::
make_pair
(
model_input
,
&
input
));
engine
.
PrepareOutputHandle
(
"output_0"
);
engine
.
SetUpInference
(
inference_options
,
inputs
);
engine
.
GetEngineInfo
();
engine
.
Run
(
context
);
cudaStreamSynchronize
(
context
.
stream
());
}
TEST
(
trt
,
run_static
)
{
TEST
(
trt
,
run_static
)
{
TrtEngine
static_trt_engine
(
0
);
TrtEngine
static_trt_engine
(
0
);
auto
net
=
ConstructNetwork
(
auto
net
=
ConstructNetwork
(
...
...
paddle/infrt/dialect/infrt/ir/infrt_dialect.cc
浏览文件 @
86919910
...
@@ -142,9 +142,6 @@ mlir::Type InfrtDialect::parseType(::mlir::DialectAsmParser &parser) const {
...
@@ -142,9 +142,6 @@ mlir::Type InfrtDialect::parseType(::mlir::DialectAsmParser &parser) const {
return
infrt
::
DenseTensorListType
::
get
(
parser
.
getContext
());
return
infrt
::
DenseTensorListType
::
get
(
parser
.
getContext
());
}
}
if
(
keyword
==
"dense_tensor_map"
)
{
return
DenseTensorMapType
::
get
(
parser
.
getContext
());
}
// Todo: parse other type
// Todo: parse other type
return
mlir
::
Type
();
return
mlir
::
Type
();
}
}
...
@@ -181,6 +178,7 @@ void InfrtDialect::printType(::mlir::Type type,
...
@@ -181,6 +178,7 @@ void InfrtDialect::printType(::mlir::Type type,
if
(
type
.
isa
<
infrt
::
DenseTensorListType
>
())
{
if
(
type
.
isa
<
infrt
::
DenseTensorListType
>
())
{
os
<<
"tensor_list"
;
os
<<
"tensor_list"
;
return
;
}
}
// print DenseTensorType, for example: !infrt.dense_tensor<CPU, FP32, NCHW>
// print DenseTensorType, for example: !infrt.dense_tensor<CPU, FP32, NCHW>
if
(
type
.
isa
<
DenseTensorMapType
>
())
{
if
(
type
.
isa
<
DenseTensorMapType
>
())
{
...
...
paddle/infrt/dialect/tensorrt/trt_ops.td
浏览文件 @
86919910
...
@@ -60,6 +60,39 @@ def TRT_ActivationOp : TRT_Op<"Activation", [NoSideEffect]> {
...
@@ -60,6 +60,39 @@ def TRT_ActivationOp : TRT_Op<"Activation", [NoSideEffect]> {
let results = (outs DenseTensor:$output);
let results = (outs DenseTensor:$output);
}
}
def TRT_FullyConnectedOp : TRT_Op<"FullyConnected", [NoSideEffect]> {
let summary = "TensorRT IFullyConnectedLayer";
let description = [{
TensorRT IFullyConnectedLayer
}];
let arguments = (ins
DenseTensor:$input_tensor,
DenseTensor:$kernel_weights,
DenseTensor:$bias_weights,
SI32Attr:$out_channel_num
);
let results = (outs
DenseTensor:$output_tensor
);
}
def TRT_ConvolutionOp : TRT_Op<"Convolution", [NoSideEffect]> {
let summary = "TensorRT IConvolutionLayer";
let description = [{
TensorRT IConvolutionLayer
}];
let arguments = (ins
DenseTensor:$input_tensor,
DenseTensor:$kernel_weights,
DenseTensor:$bias_weights,
SI32Attr:$out_channel_num,
I32ArrayAttr:$kernel_size
);
let results = (outs
DenseTensor:$output_tensor
);
}
def TRT_ElementWiseOp : TRT_Op<"ElementWise", [NoSideEffect]> {
def TRT_ElementWiseOp : TRT_Op<"ElementWise", [NoSideEffect]> {
let summary = "TensorRT IElementWiseLayer";
let summary = "TensorRT IElementWiseLayer";
let description = [{
let description = [{
...
...
paddle/infrt/host_context/mlir_to_runtime_translate.cc
浏览文件 @
86919910
...
@@ -298,14 +298,21 @@ bool MlirToRuntimeTranslator::EmitGeneralOp(
...
@@ -298,14 +298,21 @@ bool MlirToRuntimeTranslator::EmitGeneralOp(
// add a naive implement.
// add a naive implement.
for
(
int
i
=
0
,
e
=
op
->
getNumOperands
();
i
<
e
;
++
i
)
{
for
(
int
i
=
0
,
e
=
op
->
getNumOperands
();
i
<
e
;
++
i
)
{
auto
operand
=
op
->
getOperand
(
i
);
auto
operand
=
op
->
getOperand
(
i
);
Value
*
arg_value
{
nullptr
};
if
(
operand
.
isa
<
mlir
::
BlockArgument
>
())
{
if
(
operand
.
isa
<
mlir
::
BlockArgument
>
())
{
mlir
::
BlockArgument
arg
=
operand
.
dyn_cast
<
mlir
::
BlockArgument
>
();
mlir
::
BlockArgument
arg
=
operand
.
dyn_cast
<
mlir
::
BlockArgument
>
();
Value
*
arg_value
=
GetValue
(
arg
);
arg_value
=
GetValue
(
arg
);
if
(
arg_value
->
is_type
<
phi
::
DenseTensor
>
())
{
}
else
{
impl_
->
runtime
->
FeedInArgs
(
arg_value
=
GetValue
(
operand
);
std
::
make_pair
(
std
::
to_string
(
i
),
ValueRef
(
arg_value
)));
if
(
!
arg_value
)
{
auto
upstream_op
=
operand
.
getDefiningOp
();
arg_value
=
GetOpResult
(
upstream_op
);
}
}
}
}
if
(
arg_value
->
is_type
<
phi
::
DenseTensor
>
())
{
impl_
->
runtime
->
FeedInArgs
(
std
::
make_pair
(
std
::
to_string
(
i
),
ValueRef
(
arg_value
)));
}
}
}
#else
#else
CHECK
(
false
)
<<
"should not reach here"
;
CHECK
(
false
)
<<
"should not reach here"
;
...
...
paddle/infrt/kernel/tensor_kernels.cc
浏览文件 @
86919910
...
@@ -146,8 +146,8 @@ void RegisterTensorKernels(host_context::KernelRegistry *registry) {
...
@@ -146,8 +146,8 @@ void RegisterTensorKernels(host_context::KernelRegistry *registry) {
// TensorList related methods.
// TensorList related methods.
#ifdef INFRT_WITH_PHI
#ifdef INFRT_WITH_PHI
registry
->
AddKernel
(
"dt.tensor_list_get_tensor"
,
registry
->
AddKernel
WithAttrs
(
INFRT_KERNEL
(
TensorListGetTensor
)
);
"dt.tensor_list_get_tensor"
,
INFRT_KERNEL
(
TensorListGetTensor
),
{
"id"
}
);
registry
->
AddKernel
(
"dt.tensor_list_get_size"
,
registry
->
AddKernel
(
"dt.tensor_list_get_size"
,
INFRT_KERNEL
(
TensorListGetSize
));
INFRT_KERNEL
(
TensorListGetSize
));
#endif
#endif
...
...
paddle/infrt/kernel/tensorrt/trt_helper.h
0 → 100644
浏览文件 @
86919910
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <NvInfer.h>
#include <NvInferRuntime.h>
#include <NvInferRuntimeCommon.h>
#include "glog/logging.h"
#include "llvm/Support/ErrorHandling.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
infrt
{
namespace
kernel
{
namespace
tensorrt
{
static
nvinfer1
::
DataType
TensorTypeToWeightType
(
phi
::
DataType
tensor_type
)
{
switch
(
tensor_type
)
{
case
phi
::
DataType
::
FLOAT32
:
return
nvinfer1
::
DataType
::
kFLOAT
;
case
phi
::
DataType
::
INT32
:
return
nvinfer1
::
DataType
::
kINT32
;
case
phi
::
DataType
::
FLOAT16
:
return
nvinfer1
::
DataType
::
kHALF
;
default:
llvm_unreachable
(
"should not reach here"
);
}
}
static
nvinfer1
::
Dims
ArrayAttrToNvDims
(
const
mlir
::
ArrayAttr
&
int_array_attr
)
{
nvinfer1
::
Dims
dims
;
dims
.
nbDims
=
int_array_attr
.
size
();
CHECK
(
!
int_array_attr
.
empty
());
CHECK
(
int_array_attr
[
0
].
getType
().
isIntOrIndex
());
for
(
int
i
=
0
;
i
<
dims
.
nbDims
;
++
i
)
{
dims
.
d
[
i
]
=
int_array_attr
[
i
].
cast
<
mlir
::
IntegerAttr
>
().
getInt
();
}
return
dims
;
}
static
nvinfer1
::
Weights
TensorToWeights
(
phi
::
DenseTensor
*
tensor
)
{
CHECK_NOTNULL
(
tensor
);
nvinfer1
::
Weights
ret
;
ret
.
type
=
TensorTypeToWeightType
(
tensor
->
dtype
());
ret
.
count
=
tensor
->
numel
();
ret
.
values
=
tensor
->
data
();
return
ret
;
}
}
// namespace tensorrt
}
// namespace kernel
}
// namespace infrt
paddle/infrt/kernel/tensorrt/trt_kernels.cc
浏览文件 @
86919910
...
@@ -21,13 +21,19 @@
...
@@ -21,13 +21,19 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/raw_ostream.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/Value.h"
#include "mlir/IR/Value.h"
#include "paddle/infrt/kernel/tensorrt/trt_helper.h"
#include "paddle/infrt/kernel/tensorrt/trt_layers.h"
#include "paddle/infrt/backends/tensorrt/trt_engine.h"
#include "paddle/infrt/backends/tensorrt/trt_engine.h"
#include "paddle/infrt/backends/tensorrt/trt_options.h"
#include "paddle/infrt/backends/tensorrt/trt_options.h"
#include "paddle/infrt/dialect/tensorrt/trt_ops.h"
#include "paddle/infrt/dialect/tensorrt/trt_ops.h"
#include "paddle/infrt/host_context/symbol_table.h"
#include "paddle/infrt/host_context/symbol_table.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
infrt
{
namespace
infrt
{
...
@@ -35,8 +41,7 @@ namespace kernel {
...
@@ -35,8 +41,7 @@ namespace kernel {
namespace
tensorrt
{
namespace
tensorrt
{
::
infrt
::
backends
::
tensorrt
::
TrtEngine
CreateTrtEngine
(
::
infrt
::
backends
::
tensorrt
::
TrtEngine
CreateTrtEngine
(
MlirOperationWithInfrtSymbol
MlirOperationWithInfrtSymbol
create_engine_op
)
{
create_engine_op
/*, input_tensors, output_tensors, weights*/
)
{
// TODO(wilber): The device_id needs to get from mlir.
// TODO(wilber): The device_id needs to get from mlir.
int
device_id
=
0
;
int
device_id
=
0
;
backends
::
tensorrt
::
TrtEngine
engine
(
device_id
);
backends
::
tensorrt
::
TrtEngine
engine
(
device_id
);
...
@@ -51,6 +56,7 @@ namespace tensorrt {
...
@@ -51,6 +56,7 @@ namespace tensorrt {
// TODO(wilber): The build option shoule be fiiled from mlir info.
// TODO(wilber): The build option shoule be fiiled from mlir info.
backends
::
tensorrt
::
BuildOptions
options
;
backends
::
tensorrt
::
BuildOptions
options
;
options
.
max_batch
=
4
;
options
.
max_batch
=
4
;
options
.
workspace
=
1024
;
// Parse mlir Region which only has one block.
// Parse mlir Region which only has one block.
mlir
::
Operation
&
operation
=
*
create_engine_op
.
operation
;
mlir
::
Operation
&
operation
=
*
create_engine_op
.
operation
;
...
@@ -62,8 +68,9 @@ namespace tensorrt {
...
@@ -62,8 +68,9 @@ namespace tensorrt {
auto
&
region
=
operation
.
getRegion
(
0
);
auto
&
region
=
operation
.
getRegion
(
0
);
auto
&
block
=
region
.
getBlocks
().
front
();
auto
&
block
=
region
.
getBlocks
().
front
();
llvm
::
DenseMap
<
mlir
::
Value
,
nvinfer1
::
ITensor
*>
map_info
;
std
::
unordered_map
<
std
::
string
,
phi
::
DenseTensor
*>
trt_bind_inputs
;
std
::
unordered_map
<
std
::
string
,
phi
::
DenseTensor
*>
trt_bind_inputs
;
ValueToITensorMap
value_to_trt_tensor_map
;
ValueToTensorMap
value_to_tensor_map
;
for
(
auto
index_operand
:
llvm
::
enumerate
(
operation
.
getOperands
()))
{
for
(
auto
index_operand
:
llvm
::
enumerate
(
operation
.
getOperands
()))
{
mlir
::
Value
operand
=
index_operand
.
value
();
mlir
::
Value
operand
=
index_operand
.
value
();
...
@@ -73,69 +80,72 @@ namespace tensorrt {
...
@@ -73,69 +80,72 @@ namespace tensorrt {
auto
*
v
=
symbol_table
->
GetValue
(
std
::
to_string
(
idx
));
auto
*
v
=
symbol_table
->
GetValue
(
std
::
to_string
(
idx
));
CHECK_NOTNULL
(
v
);
CHECK_NOTNULL
(
v
);
auto
*
t
=
&
v
->
get
<
phi
::
DenseTensor
>
();
auto
*
t
=
&
v
->
get
<
phi
::
DenseTensor
>
();
trt_bind_inputs
[
input_name
]
=
t
;
value_to_tensor_map
[
operand
]
=
t
;
// TODO(wilber): get input info from mlir.
// TODO(wilber): get input info from mlir.
// TODO(wilber): input dims, now only support static_shape, and just remove
// TODO(wilber): input dims, now only support static_shape, and just remove
// the first dimension.
// the first dimension. If the first dim is not -1, maybe we can pass the
// origin dims.
// TODO(wilber): now only suppot float input.
// TODO(wilber): now only suppot float input.
nvinfer1
::
Dims
dims
;
dims
.
nbDims
=
t
->
dims
().
size
()
-
1
;
for
(
int
i
=
0
;
i
<
dims
.
nbDims
;
++
i
)
{
dims
.
d
[
i
]
=
t
->
dims
()[
i
+
1
];
}
auto
*
in
=
network
->
addInput
(
input_name
.
c_str
(),
nvinfer1
::
DataType
::
kFLOAT
,
dims
);
map_info
[
operand
]
=
in
;
}
// TODO(wilber): Find a way to add layer.
if
(
operand
.
isa
<
mlir
::
BlockArgument
>
())
{
for
(
auto
&
inner_op
:
block
.
without_terminator
())
{
// TODO(wilber): A trick: the weights are CPU tensor and inputs are GPU
if
(
inner_op
.
getName
().
getStringRef
()
==
"trt.Activation"
)
{
// tensor, so we treat all GPU tensors as inputs to trt.
trt
::
ActivationOp
act_op
=
llvm
::
dyn_cast
<
trt
::
ActivationOp
>
(
inner_op
);
if
(
t
->
place
().
GetType
()
==
phi
::
AllocationType
::
GPU
)
{
auto
in_arg
=
act_op
.
getOperand
();
trt_bind_inputs
[
input_name
]
=
t
;
if
(
!
map_info
.
count
(
in_arg
))
{
nvinfer1
::
Dims
dims
;
CHECK
(
false
)
<<
"map_info not has in_arg."
;
dims
.
nbDims
=
t
->
dims
().
size
()
-
1
;
for
(
int
i
=
0
;
i
<
dims
.
nbDims
;
++
i
)
{
dims
.
d
[
i
]
=
t
->
dims
()[
i
+
1
];
}
auto
*
in
=
network
->
addInput
(
input_name
.
c_str
(),
nvinfer1
::
DataType
::
kFLOAT
,
dims
);
value_to_trt_tensor_map
[
operand
]
=
in
;
}
}
nvinfer1
::
ActivationType
act_type
=
}
else
{
static_cast
<
nvinfer1
::
ActivationType
>
(
act_op
.
activation_type
());
// TODO(wilber): Replace with the op name that generates the weights.
auto
*
act_layer
=
network
->
addActivation
(
*
map_info
[
in_arg
],
act_type
);
if
(
operand
.
getDefiningOp
()
->
getName
().
getStringRef
()
!=
act_layer
->
setAlpha
(
act_op
.
alpha
().
convertToFloat
());
"phi_dt.create_dense_tensor.cpu"
)
{
act_layer
->
setBeta
(
act_op
.
beta
().
convertToFloat
());
trt_bind_inputs
[
input_name
]
=
t
;
for
(
size_t
i
=
0
;
i
<
act_op
->
getNumResults
();
++
i
)
{
nvinfer1
::
Dims
dims
;
nvinfer1
::
ITensor
*
act_out_tensor
=
act_layer
->
getOutput
(
i
);
dims
.
nbDims
=
t
->
dims
().
size
()
-
1
;
mlir
::
Value
act_out
=
act_op
->
getResult
(
i
);
for
(
int
i
=
0
;
i
<
dims
.
nbDims
;
++
i
)
{
map_info
[
act_out
]
=
act_out_tensor
;
dims
.
d
[
i
]
=
t
->
dims
()[
i
+
1
];
}
auto
*
in
=
network
->
addInput
(
input_name
.
c_str
(),
nvinfer1
::
DataType
::
kFLOAT
,
dims
);
value_to_trt_tensor_map
[
operand
]
=
in
;
}
}
}
}
// if (inner_op.getName().getStringRef() == "trt.Constant") {
// trt::ConstantOp op = llvm::dyn_cast<trt::ConstantOp>(inner_op);
// mlir::Value op_out = op.getResult();
// std::vector<float> weight_data{1};
// auto* layer = network->addConstant(nvinfer1::Dims2(1, 1),
// nvinfer1::Weights{nvinfer1::DataType::kFLOAT, weight_data.data(), 1});
// auto* op_out_tenor = layer->getOutput(0);
// map_info[op_out] = op_out_tenor;
// }
}
}
for
(
auto
&
inner_op
:
block
.
without_terminator
())
{
for
(
mlir
::
Value
v
:
inner_op
.
getResults
())
{
// TODO(wilber): Find a way to add layer.
for
(
mlir
::
Operation
*
user
:
v
.
getUsers
())
{
for
(
auto
&
operation
:
block
.
without_terminator
())
{
if
(
user
->
getName
().
getStringRef
()
==
"infrt.return"
)
{
if
(
trt
::
ActivationOp
op
=
llvm
::
dyn_cast
<
trt
::
ActivationOp
>
(
operation
))
{
if
(
!
map_info
.
count
(
v
))
{
ActivationFunc
(
CHECK
(
false
)
<<
"map_info not has value"
;
op
,
network
.
get
(),
value_to_trt_tensor_map
,
value_to_tensor_map
);
}
}
else
if
(
trt
::
FullyConnectedOp
op
=
network
->
markOutput
(
*
map_info
[
v
]);
llvm
::
dyn_cast
<
trt
::
FullyConnectedOp
>
(
operation
))
{
}
FcFunc
(
op
,
network
.
get
(),
value_to_trt_tensor_map
,
value_to_tensor_map
);
}
}
else
if
(
trt
::
ConvolutionOp
op
=
llvm
::
dyn_cast
<
trt
::
ConvolutionOp
>
(
operation
))
{
ConvFunc
(
op
,
network
.
get
(),
value_to_trt_tensor_map
,
value_to_tensor_map
);
}
else
{
CHECK
(
false
)
<<
"not supported operation."
;
}
}
}
}
// std::unordered_map<std::string, phi::DenseTensor*> trt_bind_outputs;
mlir
::
Operation
*
ret
=
block
.
getTerminator
();
for
(
auto
index_operand
:
for
(
unsigned
int
i
=
0
;
i
<
ret
->
getNumOperands
();
++
i
)
{
llvm
::
enumerate
(
block
.
getTerminator
()
->
getOperands
()))
{
mlir
::
Value
arg
=
ret
->
getOperand
(
i
);
mlir
::
Value
arg
=
index_operand
.
value
();
CHECK
(
map_info
.
count
(
arg
));
CHECK
(
value_to_trt_tensor_map
.
count
(
arg
));
map_info
[
arg
]
->
setName
((
"output_"
+
std
::
to_string
(
i
)).
c_str
());
// TODO(wilber): A trick that we name trt output tensor's name as output_0,
// output_1, ...
value_to_trt_tensor_map
[
arg
]
->
setName
(
(
"output_"
+
std
::
to_string
(
index_operand
.
index
())).
c_str
());
network
->
markOutput
(
*
value_to_trt_tensor_map
[
arg
]);
}
}
for
(
int
i
=
0
;
i
<
network
->
getNbOutputs
();
++
i
)
{
for
(
int
i
=
0
;
i
<
network
->
getNbOutputs
();
++
i
)
{
engine
.
PrepareOutputHandle
(
network
->
getOutput
(
i
)
->
getName
());
engine
.
PrepareOutputHandle
(
network
->
getOutput
(
i
)
->
getName
());
...
...
paddle/infrt/kernel/tensorrt/trt_layers.h
0 → 100644
浏览文件 @
86919910
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <NvInfer.h>
#include <mlir/IR/Operation.h>
#include <string>
#include "paddle/infrt/dialect/tensorrt/trt_ops.h"
#include "paddle/infrt/kernel/tensorrt/trt_helper.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
infrt
{
namespace
kernel
{
namespace
tensorrt
{
using
ValueToTensorMap
=
llvm
::
DenseMap
<
mlir
::
Value
,
phi
::
DenseTensor
*>
;
using
ValueToITensorMap
=
llvm
::
DenseMap
<
mlir
::
Value
,
nvinfer1
::
ITensor
*>
;
inline
void
ActivationFunc
(
trt
::
ActivationOp
&
act_op
,
// NOLINT
nvinfer1
::
INetworkDefinition
*
network
,
ValueToITensorMap
&
value_to_trt_tensor_map
,
// NOLINT
ValueToTensorMap
&
value_to_tensor_map
)
{
// NOLINT
auto
in_arg
=
act_op
.
getOperand
();
CHECK
(
value_to_trt_tensor_map
.
count
(
in_arg
))
<<
"value_to_trt_tensor_map not has in_arg."
;
nvinfer1
::
ActivationType
act_type
=
static_cast
<
nvinfer1
::
ActivationType
>
(
act_op
.
activation_type
());
auto
*
act_layer
=
network
->
addActivation
(
*
value_to_trt_tensor_map
[
in_arg
],
act_type
);
act_layer
->
setAlpha
(
act_op
.
alpha
().
convertToFloat
());
act_layer
->
setBeta
(
act_op
.
beta
().
convertToFloat
());
for
(
size_t
i
=
0
;
i
<
act_op
->
getNumResults
();
++
i
)
{
nvinfer1
::
ITensor
*
act_out_tensor
=
act_layer
->
getOutput
(
i
);
mlir
::
Value
act_out
=
act_op
->
getResult
(
i
);
value_to_trt_tensor_map
[
act_out
]
=
act_out_tensor
;
}
}
inline
void
ConvFunc
(
trt
::
ConvolutionOp
&
op
,
// NOLINT
nvinfer1
::
INetworkDefinition
*
network
,
ValueToITensorMap
&
value_to_trt_tensor_map
,
// NOLINT
ValueToTensorMap
&
value_to_tensor_map
)
{
// NOLINT
mlir
::
Value
input_tensor_repr
=
op
.
input_tensor
();
int
out_channel_num
=
op
.
out_channel_num
();
auto
size_attrs
=
op
.
kernel_size
();
nvinfer1
::
Dims
dims
=
ArrayAttrToNvDims
(
size_attrs
);
auto
kernel_weights
=
TensorToWeights
(
value_to_tensor_map
[
op
.
kernel_weights
()]);
auto
bias_weights
=
TensorToWeights
(
value_to_tensor_map
[
op
.
bias_weights
()]);
auto
*
layer
=
network
->
addConvolutionNd
(
*
value_to_trt_tensor_map
[
input_tensor_repr
],
out_channel_num
,
dims
,
kernel_weights
,
bias_weights
);
CHECK_NOTNULL
(
layer
);
mlir
::
Value
out_repr
=
op
.
output_tensor
();
nvinfer1
::
ITensor
*
out_tensor
=
layer
->
getOutput
(
0
);
value_to_trt_tensor_map
[
out_repr
]
=
out_tensor
;
}
inline
void
FcFunc
(
trt
::
FullyConnectedOp
&
op
,
// NOLINT
nvinfer1
::
INetworkDefinition
*
network
,
ValueToITensorMap
&
value_to_trt_tensor_map
,
// NOLINT
ValueToTensorMap
&
value_to_tensor_map
)
{
// NOLINT
mlir
::
Value
input_tensor_repr
=
op
.
input_tensor
();
CHECK
(
value_to_trt_tensor_map
.
count
(
input_tensor_repr
));
auto
kernel_weights
=
TensorToWeights
(
value_to_tensor_map
[
op
.
kernel_weights
()]);
auto
bias_weights
=
TensorToWeights
(
value_to_tensor_map
[
op
.
bias_weights
()]);
int
out_channel_num
=
op
.
out_channel_num
();
auto
*
layer
=
network
->
addFullyConnected
(
*
value_to_trt_tensor_map
[
input_tensor_repr
],
out_channel_num
,
kernel_weights
,
bias_weights
);
mlir
::
Value
out_repr
=
op
.
output_tensor
();
nvinfer1
::
ITensor
*
out_tensor
=
layer
->
getOutput
(
0
);
value_to_trt_tensor_map
[
out_repr
]
=
out_tensor
;
}
}
// namespace tensorrt
}
// namespace kernel
}
// namespace infrt
paddle/infrt/tests/dialect/disabled_trt.mlir
→
paddle/infrt/tests/dialect/
tensorrt/
disabled_trt.mlir
浏览文件 @
86919910
文件已移动
paddle/infrt/tests/dialect/tensorrt/disabled_trt_conv.mlir
0 → 100644
浏览文件 @
86919910
// RUN: infrtexec -i %s | FileCheck %s
// CHECK-LABEL: @run_trt
func @run_trt(%input_tensor : !infrt.dense_tensor<GPU, FP32, NCHW>, %kernel_weight : !infrt.dense_tensor<CPU, FP32, NCHW>, %kernel_bias : !infrt.dense_tensor<CPU, FP32, NCHW>, %gpu_ctx : !phi.context<GPU>) {
%a = "trt.create_engine"(%input_tensor, %kernel_weight, %kernel_bias) ({
%1 = "trt.Activation"(%input_tensor) {activation_type = 1 : si32, alpha = 1.0 : f32, beta = 6.0 : f32} : (!infrt.dense_tensor<GPU, FP32, NCHW>) -> !infrt.dense_tensor<GPU, FP32, NCHW>
%2 = "trt.Convolution"(%input_tensor, %kernel_weight, %kernel_bias) {out_channel_num = 3 : si32, kernel_size = [3:i32, 3:i32]} : (!infrt.dense_tensor<GPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<GPU, FP32, NCHW>
"infrt.return"(%1, %2) : (!infrt.dense_tensor<GPU, FP32, NCHW>, !infrt.dense_tensor<GPU, FP32, NCHW>) -> ()
}) : (!infrt.dense_tensor<GPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>) -> !trt.engine
"trt.inspect_engine"(%a) {} : (!trt.engine) -> ()
%res = "trt.compute"(%a, %gpu_ctx) {} : (!trt.engine, !phi.context<GPU>) -> (!infrt.tensor_list)
%size = "dt.tensor_list_get_size"(%res) {} : (!infrt.tensor_list) -> (i32)
"infrt.print.i32"(%size) {} : (i32) -> ()
%ts0 = "dt.tensor_list_get_tensor"(%res) {id = 0 : i32} : (!infrt.tensor_list) -> (!infrt.dense_tensor<GPU, FP32, NCHW>)
"phi_dt.print_tensor" (%ts0) : (!infrt.dense_tensor<GPU, FP32, NCHW>) -> ()
%ts1 = "dt.tensor_list_get_tensor"(%res) {id = 1 : i32} : (!infrt.tensor_list) -> (!infrt.dense_tensor<GPU, FP32, NCHW>)
"phi_dt.print_tensor" (%ts1) : (!infrt.dense_tensor<GPU, FP32, NCHW>) -> ()
infrt.return
}
// CHECK-LABEL: @main
func @main() {
%gpu_ctx = "phi_dt.create_context.gpu" (): () -> !phi.context<GPU>
%cpu_ctx = "phi_dt.create_context.cpu" (): () -> !phi.context<CPU>
%input_tensor = "phi_dt.create_dense_tensor.gpu" (%gpu_ctx) {
precision=#infrt.precision<FP32>,
layout=#infrt.layout<NCHW>,
dims=[1:i64, 3:i64, 28:i64, 28:i64], lod=[0:i64]}: (!phi.context<GPU>) -> (!infrt.dense_tensor<GPU, FP32, NCHW>)
"phi_dt.fill_dense_tensor.f32"(%input_tensor) {value=[3.8:f32, 2.4:f32, 1.3:f32]} : (!infrt.dense_tensor<GPU, FP32, NCHW>) -> ()
// "phi_dt.print_tensor" (%input_tensor) : (!infrt.dense_tensor<GPU, FP32, NCHW>) -> ()
%kernel_weight = "phi_dt.create_dense_tensor.cpu"(%cpu_ctx) {
precision=#infrt.precision<FP32>,
layout=#infrt.layout<NCHW>,
dims=[3:i64, 3:i64, 3:i64, 3:i64], lod=[0:i64]} : (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
"phi_dt.fill_dense_tensor.f32"(%kernel_weight) {value=[1.:f32, 2.:f32, 3.:f32, 4.:f32, 5.:f32, 6.:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
// "phi_dt.print_tensor" (%kernel_weight) : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
%kernel_bias = "phi_dt.create_dense_tensor.cpu"(%cpu_ctx) {
precision=#infrt.precision<FP32>,
layout=#infrt.layout<NCHW>,
dims=[3:i64], lod=[0:i64]} : (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
"phi_dt.fill_dense_tensor.f32"(%kernel_bias) {value=[1.:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
// "phi_dt.print_tensor" (%kernel_bias) : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
infrt.call @run_trt(%input_tensor, %kernel_weight, %kernel_bias, %gpu_ctx) : (!infrt.dense_tensor<GPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !phi.context<GPU>) -> ()
infrt.return
}
paddle/infrt/tests/dialect/tensorrt/disabled_trt_fc.mlir
0 → 100644
浏览文件 @
86919910
// RUN: infrtexec -i %s | FileCheck %s
// CHECK-LABEL: @main
func @main() {
%ctx = "phi_dt.create_context.gpu" (): () -> !phi.context<GPU>
%cpu_ctx = "phi_dt.create_context.cpu" (): () -> !phi.context<CPU>
%input_tensor = "phi_dt.create_dense_tensor.gpu" (%ctx) {
precision=#infrt.precision<FP32>,
layout=#infrt.layout<NCHW>,
dims=[1:i64, 3:i64, 1:i64, 1:i64], lod=[1:i64]}: (!phi.context<GPU>) -> (!infrt.dense_tensor<GPU, FP32, NCHW>)
"phi_dt.fill_dense_tensor.f32"(%input_tensor) {value=[3.8:f32, 2.4:f32, 1.3:f32]} : (!infrt.dense_tensor<GPU, FP32, NCHW>) -> ()
//"phi_dt.print_tensor" (%input_tensor) : (!infrt.dense_tensor<GPU, FP32, NCHW>) -> ()
%kernel_weight = "phi_dt.create_dense_tensor.cpu"(%cpu_ctx) {
precision=#infrt.precision<FP32>,
layout=#infrt.layout<NCHW>,
dims=[2:i64, 3:i64], lod=[1:i64]} : (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
"phi_dt.fill_dense_tensor.f32"(%kernel_weight) {value=[1.:f32, 2.:f32, 3.:f32, 4.:f32, 5.:f32, 6.:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
//"phi_dt.print_tensor" (%kernel_weight) : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
%kernel_bias = "phi_dt.create_dense_tensor.cpu"(%cpu_ctx) {
precision=#infrt.precision<FP32>,
layout=#infrt.layout<NCHW>,
dims=[2:i64], lod=[1:i64]} : (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
"phi_dt.fill_dense_tensor.f32"(%kernel_bias) {value=[1.:f32, 2.:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
//"phi_dt.print_tensor" (%kernel_bias) : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
%engine = "trt.create_engine"(%input_tensor, %kernel_weight, %kernel_bias) ({
%1 = "trt.Activation"(%input_tensor) {activation_type = 1 : si32, alpha = 1.0 : f32, beta = 6.0 : f32} : (!infrt.dense_tensor<GPU, FP32, NCHW>) -> !infrt.dense_tensor<GPU, FP32, NCHW>
%2 = "trt.FullyConnected"(%input_tensor, %kernel_weight, %kernel_bias) {out_channel_num = 2 : si32} : (!infrt.dense_tensor<GPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<GPU, FP32, NCHW>
"infrt.return"(%1, %2) : (!infrt.dense_tensor<GPU, FP32, NCHW>, !infrt.dense_tensor<GPU, FP32, NCHW>) -> ()
}) : (!infrt.dense_tensor<GPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>) -> !trt.engine
%res = "trt.compute"(%engine, %ctx) {} : (!trt.engine, !phi.context<GPU>) -> (!infrt.tensor_list)
%size = "dt.tensor_list_get_size"(%res) {} : (!infrt.tensor_list) -> (i32)
"infrt.print.i32"(%size) {} : (i32) -> ()
%ts0 = "dt.tensor_list_get_tensor"(%res) {id = 0 : i32} : (!infrt.tensor_list) -> (!infrt.dense_tensor<GPU, FP32, NCHW>)
"phi_dt.print_tensor" (%ts0) : (!infrt.dense_tensor<GPU, FP32, NCHW>) -> ()
%ts1 = "dt.tensor_list_get_tensor"(%res) {id = 1 : i32} : (!infrt.tensor_list) -> (!infrt.dense_tensor<GPU, FP32, NCHW>)
"phi_dt.print_tensor" (%ts1) : (!infrt.dense_tensor<GPU, FP32, NCHW>) -> ()
infrt.return
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录