提交 85a41df3 编写于 作者: Y yuyang18

Init commit

上级 56744092
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/random_crop_op.h"
#include <vector>
namespace paddle {
namespace operators {
class RandomCropOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "");
AddOutput("Y", "");
AddInput("Seed", "");
AddOutput("SeedOut", "").AsDispensable();
AddAttr<std::vector<int>>("shape", "");
}
};
class RandomCropOpInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext* context) const override {
auto shape = context->Attrs().Get<std::vector<int>>("shape");
auto x_dim = context->GetInputDim("X");
PADDLE_ENFORCE_EQ(x_dim.size(), static_cast<int64_t>(shape.size()));
for (size_t i = 0; i < shape.size(); ++i) {
if (shape[i] == -1) {
shape[i] = static_cast<int>(x_dim[i]);
} else {
PADDLE_ENFORCE_GE(x_dim[i], shape[i]);
}
}
context->SetOutputDim("Y", framework::make_ddim(shape));
context->SetOutputDim("SeedOut", framework::make_ddim({1}));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace f = paddle::framework;
REGISTER_OPERATOR(random_crop, f::OperatorWithKernel, ops::RandomCropOpMaker,
ops::RandomCropOpInferShape);
template <typename T>
using Kernel = ops::RandomCropKernel<paddle::platform::CPUDeviceContext, T>;
REGISTER_OP_CPU_KERNEL(random_crop, Kernel<float>, Kernel<int>, Kernel<double>,
Kernel<uint8_t>, Kernel<int16_t>);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/for_range.h"
#include "thrust/random.h"
namespace paddle {
namespace operators {
template <typename DeviceContext>
struct Random;
template <>
struct Random<platform::CPUDeviceContext> {
using Engine = std::minstd_rand;
template <typename T>
using UniformIntDist = std::uniform_int_distribution<T>;
};
template <>
struct Random<platform::CUDADeviceContext> {
using Engine = thrust::minstd_rand;
template <typename T>
using UniformIntDist = thrust::uniform_int_distribution<T>;
};
template <typename T>
HOSTDEVICE inline void RandomCropImpl(const T* x, size_t* x_dim, T* out,
size_t* out_dim, int i, int rank,
int64_t prod_x_remain,
int64_t prod_out_remain, size_t* offset) {
size_t x_length = x_dim[rank];
size_t out_length = out_dim[rank];
int64_t x_stride = prod_x_remain / x_length;
int64_t out_stride = prod_out_remain / out_length;
size_t offset_i = offset[i];
if (x_stride == 1 && out_stride == 1) {
// In the final stage, copy from offset.
x += offset_i;
for (size_t i = 0; i < out_length; ++i) {
*out++ = *x++;
}
} else {
x += offset_i * x_stride;
for (size_t i = 0; i < out_length; ++i) {
RandomCropImpl<T>(x, x_dim, out, out_dim, i + 1, rank, x_stride,
out_stride, offset);
x += x_stride;
out += out_stride;
}
}
}
template <typename DeviceContext, typename T>
struct RandomCropFunctor {
const T* x_;
T* out_;
size_t x_dim_[9];
size_t out_dim_[9];
size_t prod_same_dim_;
size_t prod_x_dim_;
size_t prod_out_dim_;
int num_same_dim_;
int rank_;
int64_t seed_;
RandomCropFunctor(const T* x, T* out, int64_t seed)
: x_(x),
out_(out),
prod_same_dim_(1),
prod_x_dim_(1),
prod_out_dim_(1),
seed_(seed) {
std::fill(x_dim_, x_dim_ + sizeof(x_dim_) / sizeof(size_t), 0);
std::fill(out_dim_, out_dim_ + sizeof(out_dim_) / sizeof(size_t), 0);
}
HOSTDEVICE void operator()(size_t i) {
typename Random<DeviceContext>::Engine engine(seed_);
engine.discard(i * (rank_ - num_same_dim_));
int64_t prod_x_unsame = (prod_x_dim_ / prod_same_dim_);
int64_t prod_out_unsame = (prod_out_dim_ / prod_same_dim_);
const T* x = x_ + i * prod_x_unsame;
T* out = out_ + i * prod_out_unsame;
size_t offset[9];
for (int i = num_same_dim_; i < rank_; ++i) {
typename Random<DeviceContext>::template UniformIntDist<size_t> dist(
0, x_dim_[i] - out_dim_[i]);
offset[i] = dist(engine);
}
RandomCropImpl<T>(x, x_dim_, out, out_dim_, num_same_dim_, rank_,
prod_x_unsame, prod_out_unsame, offset);
}
};
template <typename DeviceContext, typename T>
class RandomCropKernel : public framework::OpKernel<T> {
public:
virtual void Compute(const framework::ExecutionContext& context) const {
int64_t seed =
*context.Input<framework::LoDTensor>("Seed")->data<int64_t>();
auto& x = detail::Ref(context.Input<framework::LoDTensor>("X"));
auto& out = detail::Ref(context.Output<framework::LoDTensor>("Out"));
RandomCropFunctor<DeviceContext, T> functor{
x.data<T>(), out.mutable_data<T>(context.GetPlace()), seed};
auto& out_dim = out.dims();
auto& x_dim = x.dims();
auto rank = x_dim.size();
while (rank-- > 0) {
functor.x_dim_[rank] = x_dim[rank];
functor.out_dim_[rank] = out_dim[rank];
functor.prod_x_dim_ *= x_dim[rank];
functor.prod_out_dim_ *= out_dim[rank];
if (x_dim[rank] != out_dim[rank]) {
PADDLE_ENFORCE_EQ(functor.prod_same_dim_, 1);
functor.num_same_dim_ = rank;
} else {
functor.prod_same_dim_ *= out_dim[rank];
}
}
functor.rank_ = x_dim.size();
platform::ForRange<DeviceContext> for_range(
context.template device_context<DeviceContext>(),
functor.prod_same_dim_);
for_range(functor);
Random<platform::CPUDeviceContext>::Engine engine(seed);
engine.discard(functor.prod_same_dim_ *
(functor.rank_ - functor.num_same_dim_));
*context.Output<framework::LoDTensor>("SeedOut")->mutable_data<int64_t>(
platform::CPUPlace()) = engine();
}
};
} // namespace operators
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册