Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
85471533
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
85471533
编写于
12月 27, 2018
作者:
T
Tao Luo
提交者:
GitHub
12月 27, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15079 from luotao1/analysis_test
simplify analysis tests
上级
719ebe37
ecae157e
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
58 addition
and
121 deletion
+58
-121
paddle/fluid/inference/api/helper.h
paddle/fluid/inference/api/helper.h
+10
-0
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
+1
-3
paddle/fluid/inference/tests/api/analyzer_mm_dnn_tester.cc
paddle/fluid/inference/tests/api/analyzer_mm_dnn_tester.cc
+9
-30
paddle/fluid/inference/tests/api/analyzer_ner_tester.cc
paddle/fluid/inference/tests/api/analyzer_ner_tester.cc
+11
-27
paddle/fluid/inference/tests/api/analyzer_seq_conv1_tester.cc
...le/fluid/inference/tests/api/analyzer_seq_conv1_tester.cc
+15
-61
paddle/fluid/inference/tests/api/tester_helper.h
paddle/fluid/inference/tests/api/tester_helper.h
+12
-0
未找到文件。
paddle/fluid/inference/api/helper.h
浏览文件 @
85471533
...
...
@@ -113,6 +113,16 @@ static void TensorAssignData(PaddleTensor *tensor,
}
}
template
<
typename
T
>
static
void
TensorAssignData
(
PaddleTensor
*
tensor
,
const
std
::
vector
<
std
::
vector
<
T
>>
&
data
,
const
std
::
vector
<
size_t
>
&
lod
)
{
int
size
=
lod
[
lod
.
size
()
-
1
];
tensor
->
shape
.
assign
({
size
,
1
});
tensor
->
lod
.
assign
({
lod
});
TensorAssignData
(
tensor
,
data
);
}
template
<
typename
T
>
static
int
ZeroCopyTensorAssignData
(
ZeroCopyTensor
*
tensor
,
const
std
::
vector
<
std
::
vector
<
T
>>
&
data
)
{
...
...
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
浏览文件 @
85471533
...
...
@@ -98,10 +98,8 @@ void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
auto
one_batch
=
data
->
NextBatch
();
PaddleTensor
input_tensor
;
input_tensor
.
name
=
"word"
;
input_tensor
.
shape
.
assign
({
static_cast
<
int
>
(
one_batch
.
data
.
size
()),
1
});
input_tensor
.
lod
.
assign
({
one_batch
.
lod
});
input_tensor
.
dtype
=
PaddleDType
::
INT64
;
TensorAssignData
<
int64_t
>
(
&
input_tensor
,
{
one_batch
.
data
});
TensorAssignData
<
int64_t
>
(
&
input_tensor
,
{
one_batch
.
data
}
,
one_batch
.
lod
);
PADDLE_ENFORCE_EQ
(
batch_size
,
static_cast
<
int
>
(
one_batch
.
lod
.
size
()
-
1
));
input_slots
->
assign
({
input_tensor
});
}
...
...
paddle/fluid/inference/tests/api/analyzer_mm_dnn_tester.cc
浏览文件 @
85471533
...
...
@@ -19,11 +19,9 @@ namespace inference {
using
contrib
::
AnalysisConfig
;
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
int64_t
>>
query
_data_all
,
title_data_all
;
std
::
vector
<
std
::
vector
<
int64_t
>>
query
,
title
;
std
::
vector
<
size_t
>
lod1
,
lod2
;
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
size_t
num_samples
;
// total number of samples
size_t
batch_iter
{
0
},
batch_size
{
1
},
num_samples
;
// total number of samples
DataRecord
()
=
default
;
explicit
DataRecord
(
const
std
::
string
&
path
,
int
batch_size
=
1
)
:
batch_size
(
batch_size
)
{
...
...
@@ -33,22 +31,9 @@ struct DataRecord {
DataRecord
data
;
size_t
batch_end
=
batch_iter
+
batch_size
;
// NOTE skip the final batch, if no enough data is provided.
if
(
batch_end
<=
query_data_all
.
size
())
{
data
.
query_data_all
.
assign
(
query_data_all
.
begin
()
+
batch_iter
,
query_data_all
.
begin
()
+
batch_end
);
data
.
title_data_all
.
assign
(
title_data_all
.
begin
()
+
batch_iter
,
title_data_all
.
begin
()
+
batch_end
);
// Prepare LoDs
data
.
lod1
.
push_back
(
0
);
data
.
lod2
.
push_back
(
0
);
CHECK
(
!
data
.
query_data_all
.
empty
());
CHECK
(
!
data
.
title_data_all
.
empty
());
CHECK_EQ
(
data
.
query_data_all
.
size
(),
data
.
title_data_all
.
size
());
for
(
size_t
j
=
0
;
j
<
data
.
query_data_all
.
size
();
j
++
)
{
// calculate lod
data
.
lod1
.
push_back
(
data
.
lod1
.
back
()
+
data
.
query_data_all
[
j
].
size
());
data
.
lod2
.
push_back
(
data
.
lod2
.
back
()
+
data
.
title_data_all
[
j
].
size
());
}
if
(
batch_end
<=
query
.
size
())
{
GetInputPerBatch
(
query
,
&
data
.
query
,
&
data
.
lod1
,
batch_iter
,
batch_end
);
GetInputPerBatch
(
title
,
&
data
.
title
,
&
data
.
lod2
,
batch_iter
,
batch_end
);
}
batch_iter
+=
batch_size
;
return
data
;
...
...
@@ -67,8 +52,8 @@ struct DataRecord {
// load title data
std
::
vector
<
int64_t
>
title_data
;
split_to_int64
(
data
[
1
],
' '
,
&
title_data
);
query
_data_all
.
push_back
(
std
::
move
(
query_data
));
title
_data_all
.
push_back
(
std
::
move
(
title_data
));
query
.
push_back
(
std
::
move
(
query_data
));
title
.
push_back
(
std
::
move
(
title_data
));
}
num_samples
=
num_lines
;
}
...
...
@@ -80,15 +65,9 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
lod_query_tensor
.
name
=
"left"
;
lod_title_tensor
.
name
=
"right"
;
auto
one_batch
=
data
->
NextBatch
();
int
size1
=
one_batch
.
lod1
[
one_batch
.
lod1
.
size
()
-
1
];
// token batch size
int
size2
=
one_batch
.
lod2
[
one_batch
.
lod2
.
size
()
-
1
];
// token batch size
lod_query_tensor
.
shape
.
assign
({
size1
,
1
});
lod_query_tensor
.
lod
.
assign
({
one_batch
.
lod1
});
lod_title_tensor
.
shape
.
assign
({
size2
,
1
});
lod_title_tensor
.
lod
.
assign
({
one_batch
.
lod2
});
// assign data
TensorAssignData
<
int64_t
>
(
&
lod_query_tensor
,
one_batch
.
query
_data_all
);
TensorAssignData
<
int64_t
>
(
&
lod_title_tensor
,
one_batch
.
title
_data_all
);
TensorAssignData
<
int64_t
>
(
&
lod_query_tensor
,
one_batch
.
query
,
one_batch
.
lod1
);
TensorAssignData
<
int64_t
>
(
&
lod_title_tensor
,
one_batch
.
title
,
one_batch
.
lod2
);
// Set inputs.
input_slots
->
assign
({
lod_query_tensor
,
lod_title_tensor
});
for
(
auto
&
tensor
:
*
input_slots
)
{
...
...
paddle/fluid/inference/tests/api/analyzer_ner_tester.cc
浏览文件 @
85471533
...
...
@@ -19,11 +19,9 @@ namespace inference {
using
contrib
::
AnalysisConfig
;
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
int64_t
>>
word
_data_all
,
mention_data_all
;
std
::
vector
<
std
::
vector
<
int64_t
>>
word
,
mention
;
std
::
vector
<
size_t
>
lod
;
// two inputs have the same lod info.
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
size_t
num_samples
;
// total number of samples
size_t
batch_iter
{
0
},
batch_size
{
1
},
num_samples
;
// total number of samples
DataRecord
()
=
default
;
explicit
DataRecord
(
const
std
::
string
&
path
,
int
batch_size
=
1
)
:
batch_size
(
batch_size
)
{
...
...
@@ -33,20 +31,10 @@ struct DataRecord {
DataRecord
data
;
size_t
batch_end
=
batch_iter
+
batch_size
;
// NOTE skip the final batch, if no enough data is provided.
if
(
batch_end
<=
word_data_all
.
size
())
{
data
.
word_data_all
.
assign
(
word_data_all
.
begin
()
+
batch_iter
,
word_data_all
.
begin
()
+
batch_end
);
data
.
mention_data_all
.
assign
(
mention_data_all
.
begin
()
+
batch_iter
,
mention_data_all
.
begin
()
+
batch_end
);
// Prepare LoDs
data
.
lod
.
push_back
(
0
);
CHECK
(
!
data
.
word_data_all
.
empty
());
CHECK
(
!
data
.
mention_data_all
.
empty
());
CHECK_EQ
(
data
.
word_data_all
.
size
(),
data
.
mention_data_all
.
size
());
for
(
size_t
j
=
0
;
j
<
data
.
word_data_all
.
size
();
j
++
)
{
// calculate lod
data
.
lod
.
push_back
(
data
.
lod
.
back
()
+
data
.
word_data_all
[
j
].
size
());
}
if
(
batch_end
<=
word
.
size
())
{
GetInputPerBatch
(
word
,
&
data
.
word
,
&
data
.
lod
,
batch_iter
,
batch_end
);
GetInputPerBatch
(
mention
,
&
data
.
mention
,
&
data
.
lod
,
batch_iter
,
batch_end
);
}
batch_iter
+=
batch_size
;
return
data
;
...
...
@@ -65,8 +53,8 @@ struct DataRecord {
// load mention data
std
::
vector
<
int64_t
>
mention_data
;
split_to_int64
(
data
[
3
],
' '
,
&
mention_data
);
word
_data_all
.
push_back
(
std
::
move
(
word_data
));
mention
_data_all
.
push_back
(
std
::
move
(
mention_data
));
word
.
push_back
(
std
::
move
(
word_data
));
mention
.
push_back
(
std
::
move
(
mention_data
));
}
num_samples
=
num_lines
;
}
...
...
@@ -78,14 +66,10 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
lod_word_tensor
.
name
=
"word"
;
lod_mention_tensor
.
name
=
"mention"
;
auto
one_batch
=
data
->
NextBatch
();
int
size
=
one_batch
.
lod
[
one_batch
.
lod
.
size
()
-
1
];
// token batch size
lod_word_tensor
.
shape
.
assign
({
size
,
1
});
lod_word_tensor
.
lod
.
assign
({
one_batch
.
lod
});
lod_mention_tensor
.
shape
.
assign
({
size
,
1
});
lod_mention_tensor
.
lod
.
assign
({
one_batch
.
lod
});
// assign data
TensorAssignData
<
int64_t
>
(
&
lod_word_tensor
,
one_batch
.
word_data_all
);
TensorAssignData
<
int64_t
>
(
&
lod_mention_tensor
,
one_batch
.
mention_data_all
);
TensorAssignData
<
int64_t
>
(
&
lod_word_tensor
,
one_batch
.
word
,
one_batch
.
lod
);
TensorAssignData
<
int64_t
>
(
&
lod_mention_tensor
,
one_batch
.
mention
,
one_batch
.
lod
);
// Set inputs.
input_slots
->
assign
({
lod_word_tensor
,
lod_mention_tensor
});
for
(
auto
&
tensor
:
*
input_slots
)
{
...
...
paddle/fluid/inference/tests/api/analyzer_seq_conv1_tester.cc
浏览文件 @
85471533
...
...
@@ -18,12 +18,9 @@ namespace paddle {
namespace
inference
{
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
int64_t
>>
title1_all
,
title2_all
,
title3_all
,
l1_all
;
std
::
vector
<
std
::
vector
<
int64_t
>>
title1
,
title2
,
title3
,
l1
;
std
::
vector
<
size_t
>
title1_lod
,
title2_lod
,
title3_lod
,
l1_lod
;
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
size_t
num_samples
;
// total number of samples
std
::
vector
<
size_t
>
lod1
,
lod2
,
lod3
,
l1_lod
;
size_t
batch_iter
{
0
},
batch_size
{
1
},
num_samples
;
// total number of samples
DataRecord
()
=
default
;
explicit
DataRecord
(
const
std
::
string
&
path
,
int
batch_size
=
1
)
:
batch_size
(
batch_size
)
{
...
...
@@ -33,41 +30,11 @@ struct DataRecord {
DataRecord
data
;
size_t
batch_end
=
batch_iter
+
batch_size
;
// NOTE skip the final batch, if no enough data is provided.
if
(
batch_end
<=
title1_all
.
size
())
{
data
.
title1_all
.
assign
(
title1_all
.
begin
()
+
batch_iter
,
title1_all
.
begin
()
+
batch_end
);
data
.
title2_all
.
assign
(
title2_all
.
begin
()
+
batch_iter
,
title2_all
.
begin
()
+
batch_end
);
data
.
title3_all
.
assign
(
title3_all
.
begin
()
+
batch_iter
,
title3_all
.
begin
()
+
batch_end
);
data
.
l1_all
.
assign
(
l1_all
.
begin
()
+
batch_iter
,
l1_all
.
begin
()
+
batch_end
);
// Prepare LoDs
data
.
title1_lod
.
push_back
(
0
);
data
.
title2_lod
.
push_back
(
0
);
data
.
title3_lod
.
push_back
(
0
);
data
.
l1_lod
.
push_back
(
0
);
CHECK
(
!
data
.
title1_all
.
empty
());
CHECK
(
!
data
.
title2_all
.
empty
());
CHECK
(
!
data
.
title3_all
.
empty
());
CHECK
(
!
data
.
l1_all
.
empty
());
CHECK_EQ
(
data
.
title1_all
.
size
(),
data
.
title2_all
.
size
());
CHECK_EQ
(
data
.
title1_all
.
size
(),
data
.
title3_all
.
size
());
CHECK_EQ
(
data
.
title1_all
.
size
(),
data
.
l1_all
.
size
());
for
(
size_t
j
=
0
;
j
<
data
.
title1_all
.
size
();
j
++
)
{
data
.
title1
.
push_back
(
data
.
title1_all
[
j
]);
data
.
title2
.
push_back
(
data
.
title2_all
[
j
]);
data
.
title3
.
push_back
(
data
.
title3_all
[
j
]);
data
.
l1
.
push_back
(
data
.
l1_all
[
j
]);
// calculate lod
data
.
title1_lod
.
push_back
(
data
.
title1_lod
.
back
()
+
data
.
title1_all
[
j
].
size
());
data
.
title2_lod
.
push_back
(
data
.
title2_lod
.
back
()
+
data
.
title2_all
[
j
].
size
());
data
.
title3_lod
.
push_back
(
data
.
title3_lod
.
back
()
+
data
.
title3_all
[
j
].
size
());
data
.
l1_lod
.
push_back
(
data
.
l1_lod
.
back
()
+
data
.
l1_all
[
j
].
size
());
}
if
(
batch_end
<=
title1
.
size
())
{
GetInputPerBatch
(
title1
,
&
data
.
title1
,
&
data
.
lod1
,
batch_iter
,
batch_end
);
GetInputPerBatch
(
title2
,
&
data
.
title2
,
&
data
.
lod2
,
batch_iter
,
batch_end
);
GetInputPerBatch
(
title3
,
&
data
.
title3
,
&
data
.
lod3
,
batch_iter
,
batch_end
);
GetInputPerBatch
(
l1
,
&
data
.
l1
,
&
data
.
l1_lod
,
batch_iter
,
batch_end
);
}
batch_iter
+=
batch_size
;
return
data
;
...
...
@@ -92,10 +59,10 @@ struct DataRecord {
// load l1 data
std
::
vector
<
int64_t
>
l1_data
;
split_to_int64
(
data
[
3
],
' '
,
&
l1_data
);
title1
_all
.
push_back
(
std
::
move
(
title1_data
));
title2
_all
.
push_back
(
std
::
move
(
title2_data
));
title3
_all
.
push_back
(
std
::
move
(
title3_data
));
l1
_all
.
push_back
(
std
::
move
(
l1_data
));
title1
.
push_back
(
std
::
move
(
title1_data
));
title2
.
push_back
(
std
::
move
(
title2_data
));
title3
.
push_back
(
std
::
move
(
title3_data
));
l1
.
push_back
(
std
::
move
(
l1_data
));
}
num_samples
=
num_lines
;
}
...
...
@@ -109,24 +76,11 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
title3_tensor
.
name
=
"title3"
;
l1_tensor
.
name
=
"l1"
;
auto
one_batch
=
data
->
NextBatch
();
int
title1_size
=
one_batch
.
title1_lod
[
one_batch
.
title1_lod
.
size
()
-
1
];
title1_tensor
.
shape
.
assign
({
title1_size
,
1
});
title1_tensor
.
lod
.
assign
({
one_batch
.
title1_lod
});
int
title2_size
=
one_batch
.
title2_lod
[
one_batch
.
title2_lod
.
size
()
-
1
];
title2_tensor
.
shape
.
assign
({
title2_size
,
1
});
title2_tensor
.
lod
.
assign
({
one_batch
.
title2_lod
});
int
title3_size
=
one_batch
.
title3_lod
[
one_batch
.
title3_lod
.
size
()
-
1
];
title3_tensor
.
shape
.
assign
({
title3_size
,
1
});
title3_tensor
.
lod
.
assign
({
one_batch
.
title3_lod
});
int
l1_size
=
one_batch
.
l1_lod
[
one_batch
.
l1_lod
.
size
()
-
1
];
l1_tensor
.
shape
.
assign
({
l1_size
,
1
});
l1_tensor
.
lod
.
assign
({
one_batch
.
l1_lod
});
// assign data
TensorAssignData
<
int64_t
>
(
&
title1_tensor
,
one_batch
.
title1
);
TensorAssignData
<
int64_t
>
(
&
title2_tensor
,
one_batch
.
title2
);
TensorAssignData
<
int64_t
>
(
&
title3_tensor
,
one_batch
.
title3
);
TensorAssignData
<
int64_t
>
(
&
l1_tensor
,
one_batch
.
l1
);
TensorAssignData
<
int64_t
>
(
&
title1_tensor
,
one_batch
.
title1
,
one_batch
.
lod1
);
TensorAssignData
<
int64_t
>
(
&
title2_tensor
,
one_batch
.
title2
,
one_batch
.
lod2
);
TensorAssignData
<
int64_t
>
(
&
title3_tensor
,
one_batch
.
title3
,
one_batch
.
lod3
);
TensorAssignData
<
int64_t
>
(
&
l1_tensor
,
one_batch
.
l1
,
one_batch
.
l1_lod
);
// Set inputs.
input_slots
->
assign
({
title1_tensor
,
title2_tensor
,
title3_tensor
,
l1_tensor
});
for
(
auto
&
tensor
:
*
input_slots
)
{
...
...
paddle/fluid/inference/tests/api/tester_helper.h
浏览文件 @
85471533
...
...
@@ -176,6 +176,18 @@ void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
(
*
inputs
).
emplace_back
(
input_slots
);
}
void
GetInputPerBatch
(
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
in
,
std
::
vector
<
std
::
vector
<
int64_t
>>
*
out
,
std
::
vector
<
size_t
>
*
lod
,
size_t
batch_iter
,
size_t
batch_end
)
{
lod
->
clear
();
lod
->
push_back
(
0
);
for
(
auto
it
=
in
.
begin
()
+
batch_iter
;
it
<
in
.
begin
()
+
batch_end
;
it
++
)
{
out
->
push_back
(
*
it
);
lod
->
push_back
(
lod
->
back
()
+
(
*
it
).
size
());
// calculate lod
}
}
void
TestOneThreadPrediction
(
const
PaddlePredictor
::
Config
*
config
,
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
&
inputs
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录