提交 8503f028 编写于 作者: T Travis CI

Deploy to GitHub Pages: 4537b7bc

上级 6708c2cb
...@@ -1086,6 +1086,11 @@ step.</p> ...@@ -1086,6 +1086,11 @@ step.</p>
</div> </div>
<p>If you do not want to specify the name, you can equivalently use set_input() <p>If you do not want to specify the name, you can equivalently use set_input()
to specify the layer needs to be remembered as the following:</p> to specify the layer needs to be remembered as the following:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">mem</span> <span class="o">=</span> <span class="n">memory</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">)</span>
<span class="n">state</span> <span class="o">=</span> <span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">mem</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">)</span>
<span class="n">mem</span><span class="o">.</span><span class="n">set_input</span><span class="p">(</span><span class="n">mem</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none"> <table class="docutils field-list" frame="void" rules="none">
<col class="field-name" /> <col class="field-name" />
<col class="field-body" /> <col class="field-body" />
...@@ -1147,7 +1152,7 @@ Neural Turning Machine like models.</p> ...@@ -1147,7 +1152,7 @@ Neural Turning Machine like models.</p>
<col class="field-name" /> <col class="field-name" />
<col class="field-body" /> <col class="field-body" />
<tbody valign="top"> <tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>step</strong> (<em>callable</em>) &#8211; <p>recurrent one time step function.The input of this function is <li><strong>step</strong> (<em>callable</em>) &#8211; <p>recurrent one time step function.The input of this function is
input of the group. The return of this function will be input of the group. The return of this function will be
recurrent group&#8217;s return value.</p> recurrent group&#8217;s return value.</p>
...@@ -1172,22 +1177,17 @@ layer that share info(the number of sentences and the number ...@@ -1172,22 +1177,17 @@ layer that share info(the number of sentences and the number
of words in each sentence) with all layer group&#8217;s outputs. of words in each sentence) with all layer group&#8217;s outputs.
targetInlink should be one of the layer group&#8217;s input.</p> targetInlink should be one of the layer group&#8217;s input.</p>
</li> </li>
<li><strong>is_generating</strong> &#8211; If is generating, none of input type should be paddle.v2.config_base.Layer; <li><strong>is_generating</strong> (<em>bool</em>) &#8211; If is generating, none of input type should be paddle.v2.config_base.Layer;
else, for training or testing, one of the input type must else, for training or testing, one of the input type must
be paddle.v2.config_base.Layer.</li> be paddle.v2.config_base.Layer.</li>
</ul> </ul>
</td> </td>
</tr> </tr>
</tbody> <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</table> </td>
<p>: type is_generating: bool</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">paddle.v2.config_base.Layer object.</td>
</tr> </tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">paddle.v2.config_base.Layer</td> <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr> </tr>
</tbody> </tbody>
</table> </table>
...@@ -2992,51 +2992,32 @@ entire list of get gradient.</li> ...@@ -2992,51 +2992,32 @@ entire list of get gradient.</li>
<dl class="class"> <dl class="class">
<dt> <dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">mse_cost</code></dt> <em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">mse_cost</code></dt>
<dd><blockquote> <dd><p>mean squared error cost:</p>
<div><p>mean squared error cost:</p>
<div class="math"> <div class="math">
\[\]</div> \[\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2\]</div>
</div></blockquote> <table class="docutils field-list" frame="void" rules="none">
<p>rac{1}{N}sum_{i=1}^N(t_i-y_i)^2</p>
<blockquote>
<div><table class="docutils field-list" frame="void" rules="none">
<col class="field-name" /> <col class="field-name" />
<col class="field-body" /> <col class="field-body" />
<tbody valign="top"> <tbody valign="top">
<tr class="field-odd field"><th class="field-name">param name:</th><td class="field-body">layer name.</td> <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
</tr> <li><strong>name</strong> (<em>basestring</em>) &#8211; layer name.</li>
<tr class="field-even field"><th class="field-name">type name:</th><td class="field-body">basestring</td> <li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Network prediction.</li>
</tr> <li><strong>label</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Data label.</li>
<tr class="field-odd field"><th class="field-name">param input:</th><td class="field-body">Network prediction.</td> <li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The weight affects the cost, namely the scale of cost.
</tr> It is an optional argument.</li>
<tr class="field-even field"><th class="field-name">type input:</th><td class="field-body">paddle.v2.config_base.Layer</td> <li><strong>coeff</strong> (<em>float</em>) &#8211; The coefficient affects the gradient in the backward.</li>
</tr> <li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; layer&#8217;s extra attribute.</li>
<tr class="field-odd field"><th class="field-name">param label:</th><td class="field-body">Data label.</td> </ul>
</tr> </td>
<tr class="field-even field"><th class="field-name">type label:</th><td class="field-body">paddle.v2.config_base.Layer</td>
</tr>
<tr class="field-odd field"><th class="field-name">param weight:</th><td class="field-body">The weight affects the cost, namely the scale of cost.
It is an optional argument.</td>
</tr>
<tr class="field-even field"><th class="field-name">type weight:</th><td class="field-body">paddle.v2.config_base.Layer</td>
</tr>
<tr class="field-odd field"><th class="field-name">param coeff:</th><td class="field-body">The coefficient affects the gradient in the backward.</td>
</tr>
<tr class="field-even field"><th class="field-name">type coeff:</th><td class="field-body">float</td>
</tr>
<tr class="field-odd field"><th class="field-name" colspan="2">param layer_attr:</th></tr>
<tr class="field-odd field"><td>&#160;</td><td class="field-body">layer&#8217;s extra attribute.</td>
</tr>
<tr class="field-even field"><th class="field-name" colspan="2">type layer_attr:</th></tr>
<tr class="field-even field"><td>&#160;</td><td class="field-body">paddle.v2.attr.ExtraAttribute</td>
</tr> </tr>
<tr class="field-odd field"><th class="field-name">return:</th><td class="field-body">paddle.v2.config_base.Layer object.</td> <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr> </tr>
<tr class="field-even field"><th class="field-name">rtype:</th><td class="field-body">paddle.v2.config_base.Layer</td> <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr> </tr>
</tbody> </tbody>
</table> </table>
</div></blockquote>
</dd></dl> </dd></dl>
</div> </div>
...@@ -3263,21 +3244,30 @@ should also be num_classes + 1.</p> ...@@ -3263,21 +3244,30 @@ should also be num_classes + 1.</p>
<dl class="class"> <dl class="class">
<dt> <dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">warp_ctc</code></dt> <em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">warp_ctc</code></dt>
<dd><p>A layer intergrating the open-source <cite>warp-ctc <dd><p>A layer intergrating the open-source <a class="reference external" href="https://github.com/baidu-research/warp-ctc">warp-ctc</a> library, which is used in
&lt;https://github.com/baidu-research/warp-ctc&gt;</cite> library, which is used in <a class="reference external" href="https://arxiv.org/pdf/1512.02595v1.pdf">Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin</a>, to compute Connectionist Temporal
<cite>Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin Classification (CTC) loss. Besides, another <a class="reference external" href="https://github.com/gangliao/warp-ctc">warp-ctc</a> repository, which is forked from
&lt;https://arxiv.org/pdf/1512.02595v1.pdf&gt;</cite>, to compute Connectionist Temporal the official one, is maintained to enable more compiling options. During the
Classification (CTC) loss.</p> building process, PaddlePaddle will clone the source codes, build and
install it to <code class="code docutils literal"><span class="pre">third_party/install/warpctc</span></code> directory.</p>
<p>To use warp_ctc layer, you need to specify the path of <code class="code docutils literal"><span class="pre">libwarpctc.so</span></code>,
using following methods:</p>
<p>1. Set it in <code class="code docutils literal"><span class="pre">paddle.init</span></code> (python api) or <code class="code docutils literal"><span class="pre">paddle_init</span></code> (c api),
such as <code class="code docutils literal"><span class="pre">paddle.init(use_gpu=True,</span>
<span class="pre">warpctc_dir=your_paddle_source_dir/third_party/install/warpctc/lib)</span></code>.</p>
<p>2. Set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH
on Mac OS. For instance, <code class="code docutils literal"><span class="pre">export</span>
<span class="pre">LD_LIBRARY_PATH=your_paddle_source_dir/third_party/install/warpctc/lib:$LD_LIBRARY_PATH</span></code>.</p>
<p>More details of CTC can be found by referring to <a class="reference external" href="http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf">Connectionist Temporal <p>More details of CTC can be found by referring to <a class="reference external" href="http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf">Connectionist Temporal
Classification: Labelling Unsegmented Sequence Data with Recurrent Classification: Labelling Unsegmented Sequence Data with Recurrent
Neural Networks</a></p> Neural Networks</a>.</p>
<div class="admonition note"> <div class="admonition note">
<p class="first admonition-title">Note</p> <p class="first admonition-title">Note</p>
<ul class="last simple"> <ul class="last simple">
<li>Let num_classes represent the category number. Considering the &#8216;blank&#8217; <li>Let num_classes represent the category number. Considering the &#8216;blank&#8217;
label needed by CTC, you need to use (num_classes + 1) as the input label needed by CTC, you need to use (num_classes + 1) as the input size.
size. Thus, the size of both warp_ctc and &#8216;input&#8217; layer should Thus, the size of both warp_ctc layer and &#8216;input&#8217; layer should be set to
be set to num_classes + 1.</li> num_classes + 1.</li>
<li>You can set &#8216;blank&#8217; to any value ranged in [0, num_classes], which <li>You can set &#8216;blank&#8217; to any value ranged in [0, num_classes], which
should be consistent as that used in your labels.</li> should be consistent as that used in your labels.</li>
<li>As a native &#8216;softmax&#8217; activation is interated to the warp-ctc library, <li>As a native &#8216;softmax&#8217; activation is interated to the warp-ctc library,
......
因为 它太大了无法显示 source diff 。你可以改为 查看blob
...@@ -1093,6 +1093,11 @@ step.</p> ...@@ -1093,6 +1093,11 @@ step.</p>
</div> </div>
<p>If you do not want to specify the name, you can equivalently use set_input() <p>If you do not want to specify the name, you can equivalently use set_input()
to specify the layer needs to be remembered as the following:</p> to specify the layer needs to be remembered as the following:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">mem</span> <span class="o">=</span> <span class="n">memory</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">)</span>
<span class="n">state</span> <span class="o">=</span> <span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">mem</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">)</span>
<span class="n">mem</span><span class="o">.</span><span class="n">set_input</span><span class="p">(</span><span class="n">mem</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none"> <table class="docutils field-list" frame="void" rules="none">
<col class="field-name" /> <col class="field-name" />
<col class="field-body" /> <col class="field-body" />
...@@ -1154,7 +1159,7 @@ Neural Turning Machine like models.</p> ...@@ -1154,7 +1159,7 @@ Neural Turning Machine like models.</p>
<col class="field-name" /> <col class="field-name" />
<col class="field-body" /> <col class="field-body" />
<tbody valign="top"> <tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple"> <tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>step</strong> (<em>callable</em>) &#8211; <p>recurrent one time step function.The input of this function is <li><strong>step</strong> (<em>callable</em>) &#8211; <p>recurrent one time step function.The input of this function is
input of the group. The return of this function will be input of the group. The return of this function will be
recurrent group&#8217;s return value.</p> recurrent group&#8217;s return value.</p>
...@@ -1179,22 +1184,17 @@ layer that share info(the number of sentences and the number ...@@ -1179,22 +1184,17 @@ layer that share info(the number of sentences and the number
of words in each sentence) with all layer group&#8217;s outputs. of words in each sentence) with all layer group&#8217;s outputs.
targetInlink should be one of the layer group&#8217;s input.</p> targetInlink should be one of the layer group&#8217;s input.</p>
</li> </li>
<li><strong>is_generating</strong> &#8211; If is generating, none of input type should be paddle.v2.config_base.Layer; <li><strong>is_generating</strong> (<em>bool</em>) &#8211; If is generating, none of input type should be paddle.v2.config_base.Layer;
else, for training or testing, one of the input type must else, for training or testing, one of the input type must
be paddle.v2.config_base.Layer.</li> be paddle.v2.config_base.Layer.</li>
</ul> </ul>
</td> </td>
</tr> </tr>
</tbody> <tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</table> </td>
<p>: type is_generating: bool</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">paddle.v2.config_base.Layer object.</td>
</tr> </tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">paddle.v2.config_base.Layer</td> <tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr> </tr>
</tbody> </tbody>
</table> </table>
...@@ -2999,51 +2999,32 @@ entire list of get gradient.</li> ...@@ -2999,51 +2999,32 @@ entire list of get gradient.</li>
<dl class="class"> <dl class="class">
<dt> <dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">mse_cost</code></dt> <em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">mse_cost</code></dt>
<dd><blockquote> <dd><p>mean squared error cost:</p>
<div><p>mean squared error cost:</p>
<div class="math"> <div class="math">
\[\]</div> \[\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2\]</div>
</div></blockquote> <table class="docutils field-list" frame="void" rules="none">
<p>rac{1}{N}sum_{i=1}^N(t_i-y_i)^2</p>
<blockquote>
<div><table class="docutils field-list" frame="void" rules="none">
<col class="field-name" /> <col class="field-name" />
<col class="field-body" /> <col class="field-body" />
<tbody valign="top"> <tbody valign="top">
<tr class="field-odd field"><th class="field-name">param name:</th><td class="field-body">layer name.</td> <tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
</tr> <li><strong>name</strong> (<em>basestring</em>) &#8211; layer name.</li>
<tr class="field-even field"><th class="field-name">type name:</th><td class="field-body">basestring</td> <li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Network prediction.</li>
</tr> <li><strong>label</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Data label.</li>
<tr class="field-odd field"><th class="field-name">param input:</th><td class="field-body">Network prediction.</td> <li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The weight affects the cost, namely the scale of cost.
</tr> It is an optional argument.</li>
<tr class="field-even field"><th class="field-name">type input:</th><td class="field-body">paddle.v2.config_base.Layer</td> <li><strong>coeff</strong> (<em>float</em>) &#8211; The coefficient affects the gradient in the backward.</li>
</tr> <li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; layer&#8217;s extra attribute.</li>
<tr class="field-odd field"><th class="field-name">param label:</th><td class="field-body">Data label.</td> </ul>
</tr> </td>
<tr class="field-even field"><th class="field-name">type label:</th><td class="field-body">paddle.v2.config_base.Layer</td>
</tr>
<tr class="field-odd field"><th class="field-name">param weight:</th><td class="field-body">The weight affects the cost, namely the scale of cost.
It is an optional argument.</td>
</tr>
<tr class="field-even field"><th class="field-name">type weight:</th><td class="field-body">paddle.v2.config_base.Layer</td>
</tr>
<tr class="field-odd field"><th class="field-name">param coeff:</th><td class="field-body">The coefficient affects the gradient in the backward.</td>
</tr>
<tr class="field-even field"><th class="field-name">type coeff:</th><td class="field-body">float</td>
</tr>
<tr class="field-odd field"><th class="field-name" colspan="2">param layer_attr:</th></tr>
<tr class="field-odd field"><td>&#160;</td><td class="field-body">layer&#8217;s extra attribute.</td>
</tr>
<tr class="field-even field"><th class="field-name" colspan="2">type layer_attr:</th></tr>
<tr class="field-even field"><td>&#160;</td><td class="field-body">paddle.v2.attr.ExtraAttribute</td>
</tr> </tr>
<tr class="field-odd field"><th class="field-name">return:</th><td class="field-body">paddle.v2.config_base.Layer object.</td> <tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr> </tr>
<tr class="field-even field"><th class="field-name">rtype:</th><td class="field-body">paddle.v2.config_base.Layer</td> <tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr> </tr>
</tbody> </tbody>
</table> </table>
</div></blockquote>
</dd></dl> </dd></dl>
</div> </div>
...@@ -3270,21 +3251,30 @@ should also be num_classes + 1.</p> ...@@ -3270,21 +3251,30 @@ should also be num_classes + 1.</p>
<dl class="class"> <dl class="class">
<dt> <dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">warp_ctc</code></dt> <em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">warp_ctc</code></dt>
<dd><p>A layer intergrating the open-source <cite>warp-ctc <dd><p>A layer intergrating the open-source <a class="reference external" href="https://github.com/baidu-research/warp-ctc">warp-ctc</a> library, which is used in
&lt;https://github.com/baidu-research/warp-ctc&gt;</cite> library, which is used in <a class="reference external" href="https://arxiv.org/pdf/1512.02595v1.pdf">Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin</a>, to compute Connectionist Temporal
<cite>Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin Classification (CTC) loss. Besides, another <a class="reference external" href="https://github.com/gangliao/warp-ctc">warp-ctc</a> repository, which is forked from
&lt;https://arxiv.org/pdf/1512.02595v1.pdf&gt;</cite>, to compute Connectionist Temporal the official one, is maintained to enable more compiling options. During the
Classification (CTC) loss.</p> building process, PaddlePaddle will clone the source codes, build and
install it to <code class="code docutils literal"><span class="pre">third_party/install/warpctc</span></code> directory.</p>
<p>To use warp_ctc layer, you need to specify the path of <code class="code docutils literal"><span class="pre">libwarpctc.so</span></code>,
using following methods:</p>
<p>1. Set it in <code class="code docutils literal"><span class="pre">paddle.init</span></code> (python api) or <code class="code docutils literal"><span class="pre">paddle_init</span></code> (c api),
such as <code class="code docutils literal"><span class="pre">paddle.init(use_gpu=True,</span>
<span class="pre">warpctc_dir=your_paddle_source_dir/third_party/install/warpctc/lib)</span></code>.</p>
<p>2. Set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH
on Mac OS. For instance, <code class="code docutils literal"><span class="pre">export</span>
<span class="pre">LD_LIBRARY_PATH=your_paddle_source_dir/third_party/install/warpctc/lib:$LD_LIBRARY_PATH</span></code>.</p>
<p>More details of CTC can be found by referring to <a class="reference external" href="http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf">Connectionist Temporal <p>More details of CTC can be found by referring to <a class="reference external" href="http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf">Connectionist Temporal
Classification: Labelling Unsegmented Sequence Data with Recurrent Classification: Labelling Unsegmented Sequence Data with Recurrent
Neural Networks</a></p> Neural Networks</a>.</p>
<div class="admonition note"> <div class="admonition note">
<p class="first admonition-title">注解</p> <p class="first admonition-title">注解</p>
<ul class="last simple"> <ul class="last simple">
<li>Let num_classes represent the category number. Considering the &#8216;blank&#8217; <li>Let num_classes represent the category number. Considering the &#8216;blank&#8217;
label needed by CTC, you need to use (num_classes + 1) as the input label needed by CTC, you need to use (num_classes + 1) as the input size.
size. Thus, the size of both warp_ctc and &#8216;input&#8217; layer should Thus, the size of both warp_ctc layer and &#8216;input&#8217; layer should be set to
be set to num_classes + 1.</li> num_classes + 1.</li>
<li>You can set &#8216;blank&#8217; to any value ranged in [0, num_classes], which <li>You can set &#8216;blank&#8217; to any value ranged in [0, num_classes], which
should be consistent as that used in your labels.</li> should be consistent as that used in your labels.</li>
<li>As a native &#8216;softmax&#8217; activation is interated to the warp-ctc library, <li>As a native &#8216;softmax&#8217; activation is interated to the warp-ctc library,
......
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册