Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
83fb834f
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
83fb834f
编写于
5月 30, 2018
作者:
K
Kexin Zhao
提交者:
GitHub
5月 30, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Modify RNN encoder decoder example using new LoDTensor API (#11021)
* initial commit * modify rnn_encoder_docoder example
上级
21e794cf
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
25 addition
and
36 deletion
+25
-36
python/paddle/fluid/tests/book/test_rnn_encoder_decoder.py
python/paddle/fluid/tests/book/test_rnn_encoder_decoder.py
+25
-36
未找到文件。
python/paddle/fluid/tests/book/
no
test_rnn_encoder_decoder.py
→
python/paddle/fluid/tests/book/test_rnn_encoder_decoder.py
浏览文件 @
83fb834f
...
...
@@ -152,29 +152,6 @@ def seq_to_seq_net():
return
avg_cost
,
prediction
def
to_lodtensor
(
data
,
place
):
seq_lens
=
[
len
(
seq
)
for
seq
in
data
]
cur_len
=
0
lod
=
[
cur_len
]
for
l
in
seq_lens
:
cur_len
+=
l
lod
.
append
(
cur_len
)
flattened_data
=
np
.
concatenate
(
data
,
axis
=
0
).
astype
(
"int64"
)
flattened_data
=
flattened_data
.
reshape
([
len
(
flattened_data
),
1
])
res
=
core
.
LoDTensor
()
res
.
set
(
flattened_data
,
place
)
res
.
set_lod
([
lod
])
return
res
def
create_random_lodtensor
(
lod
,
place
,
low
,
high
):
data
=
np
.
random
.
random_integers
(
low
,
high
,
[
lod
[
-
1
],
1
]).
astype
(
"int64"
)
res
=
fluid
.
LoDTensor
()
res
.
set
(
data
,
place
)
res
.
set_lod
([
lod
])
return
res
def
train
(
use_cuda
,
save_dirname
=
None
):
[
avg_cost
,
prediction
]
=
seq_to_seq_net
()
...
...
@@ -188,22 +165,20 @@ def train(use_cuda, save_dirname=None):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
framework
.
default_startup_program
())
feed_order
=
[
'source_sequence'
,
'target_sequence'
,
'label_sequence'
]
feed_list
=
[
framework
.
default_main_program
().
global_block
().
var
(
var_name
)
for
var_name
in
feed_order
]
feeder
=
fluid
.
DataFeeder
(
feed_list
,
place
)
batch_id
=
0
for
pass_id
in
xrange
(
2
):
for
data
in
train_data
():
word_data
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
trg_word
=
to_lodtensor
(
map
(
lambda
x
:
x
[
1
],
data
),
place
)
trg_word_next
=
to_lodtensor
(
map
(
lambda
x
:
x
[
2
],
data
),
place
)
outs
=
exe
.
run
(
framework
.
default_main_program
(),
feed
=
{
'source_sequence'
:
word_data
,
'target_sequence'
:
trg_word
,
'label_sequence'
:
trg_word_next
},
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
])
avg_cost_val
=
np
.
array
(
outs
[
0
])
...
...
@@ -237,9 +212,23 @@ def infer(use_cuda, save_dirname=None):
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
lod
=
[
0
,
4
,
10
]
word_data
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
trg_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
# Setup input by creating LoDTensor to represent sequence of words.
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the length_based level of detail (lod) info is set to [[4, 6]],
# which has only one lod level. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for two sentences of
# length 4 and 6, respectively.
# Note that lod info should be a list of lists.
lod
=
[[
4
,
6
]]
base_shape
=
[
1
]
# The range of random integers is [low, high]
word_data
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
1
)
trg_word
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
1
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录