未验证 提交 82e41ce3 编写于 作者: 武毅 提交者: GitHub

Merge pull request #7947 from typhoonzero/rename_rpc_ops

Rename rpc ops
...@@ -122,9 +122,11 @@ if(WITH_DISTRIBUTE) ...@@ -122,9 +122,11 @@ if(WITH_DISTRIBUTE)
set_source_files_properties(send_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) set_source_files_properties(send_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
op_library(recv_op DEPS ${DISTRIBUTE_DEPS}) op_library(recv_op DEPS ${DISTRIBUTE_DEPS})
set_source_files_properties(recv_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) set_source_files_properties(recv_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
cc_test(test_send_recv SRCS send_recv_op_test.cc DEPS send_op recv_op sum_op executor) op_library(listen_and_serv_op DEPS ${DISTRIBUTE_DEPS})
set_source_files_properties(listen_and_serv_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
cc_test(test_send_recv SRCS send_recv_op_test.cc DEPS send_op listen_and_serv_op sum_op executor)
else() else()
set(DEPS_OPS ${DEPS_OPS} send_op recv_op) set(DEPS_OPS ${DEPS_OPS} send_op recv_op listen_and_serv_op)
endif() endif()
op_library(cond_op DEPS framework_proto tensor net_op) op_library(cond_op DEPS framework_proto tensor net_op)
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <stdint.h>
#include <sys/stat.h>
#include <ostream>
#include <thread>
#include <unistd.h>
#include "paddle/framework/executor.h"
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/proto_desc.h"
#include "paddle/operators/detail/grpc_server.h"
#include "paddle/operators/detail/sendrecvop_utils.h"
#include "paddle/operators/detail/simple_block_queue.h"
#include "paddle/string/printf.h"
namespace paddle {
namespace operators {
constexpr char kOptimizeBlock[] = "OptimizeBlock";
void RunServer(std::shared_ptr<detail::AsyncGRPCServer> service) {
service->RunSyncUpdate();
VLOG(4) << "RunServer thread end";
}
static void CreateTensorFromMessageType(framework::Variable *var,
sendrecv::VarType var_type) {
if (var_type == sendrecv::VarType::LOD_TENSOR) {
var->GetMutable<framework::LoDTensor>();
} else if (var_type == sendrecv::VarType::SELECTED_ROWS) {
var->GetMutable<framework::SelectedRows>();
} else {
PADDLE_THROW(
"VariableMessage type %d is not in "
"[LoDTensor, SelectedRows]",
var_type);
}
}
class ListenAndServOp : public framework::OperatorBase {
public:
ListenAndServOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {
if (!rpc_service_) {
std::string endpoint = Attr<std::string>("endpoint");
rpc_service_.reset(new detail::AsyncGRPCServer(endpoint));
server_thread_.reset(new std::thread(RunServer, rpc_service_));
}
}
void Stop() override {
detail::MessageWithName term_msg;
term_msg.first = LISTEN_TERMINATE_MESSAGE;
rpc_service_->Push(term_msg);
rpc_service_->ShutDown();
server_thread_->join();
}
std::string GetGradVarNameForTrainer(const std::string &varname) const {
if (grads_counter_.find(varname) == grads_counter_.end()) {
grads_counter_[varname] = 0;
}
return string::Sprintf("%s.trainer_%d", varname, grads_counter_[varname]++);
}
void Run(const framework::Scope &scope,
const platform::Place &dev_place) const override {
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(dev_place);
framework::Scope &recv_scope = scope.NewScope();
// FIXME(Yancey1989): initialize rpc server with lazy mode.
rpc_service_->SetScope(&recv_scope);
rpc_service_->SetDevCtx(&dev_ctx);
auto param_list = Attr<std::vector<std::string>>("ParamList");
auto grad_list = Attr<std::vector<std::string>>("GradList");
auto fan_in = Attr<int>("Fanin");
auto *block = Attr<framework::BlockDesc *>(kOptimizeBlock);
auto *program = block->Program();
framework::Executor executor(dev_place);
// TODO(typhoonzero): change this to a while_op for every cluster-batch.
bool exit_flag = false;
while (!exit_flag) {
// Get from multiple trainers, we don't care about the order in which
// the gradients arrives, just add suffix 0~n and merge the gradient.
rpc_service_->SetCond(0);
size_t recv_var_cnt = 0;
int batch_barrier = 0;
while (batch_barrier != fan_in) {
const detail::MessageWithName &v = rpc_service_->Get();
auto grad_var_name = v.first;
if (grad_var_name == LISTEN_TERMINATE_MESSAGE) {
LOG(INFO) << "received terminate message and exit";
exit_flag = true;
break;
} else if (grad_var_name == BATCH_BARRIER_MESSAGE) {
VLOG(3) << "recv batch barrier message";
batch_barrier++;
continue;
} else {
// receive a variable
recv_var_cnt++;
auto it =
std::find(grad_list.begin(), grad_list.end(), grad_var_name);
std::string param_var_name;
if (it != grad_list.end()) {
param_var_name = param_list[it - grad_list.begin()];
} else {
LOG(ERROR) << "grad has no paired param:" << grad_var_name;
}
VLOG(3) << "received grad: " << grad_var_name
<< " updating param: " << param_var_name;
if (fan_in > 1) {
grad_var_name = this->GetGradVarNameForTrainer(grad_var_name);
}
auto *var = recv_scope.FindVar(grad_var_name);
if (var == nullptr) {
LOG(ERROR) << "Can not find server side var: " << grad_var_name;
PADDLE_THROW("Can not find server side var");
}
detail::DeserializeFromMessage(v.second, dev_ctx, var);
}
}
VLOG(3) << "recv " << recv_var_cnt << " parmeters for one barrier.";
// TODO(Yancey1989): merge SelectedRows variables here
if (exit_flag) {
rpc_service_->ShutDown();
}
try {
executor.Run(*program, &recv_scope, block->ID(), /*global_block*/
false /*create_local_scope*/, false /*create_vars*/);
} catch (std::exception &e) {
LOG(ERROR) << "run sub program error " << e.what();
}
rpc_service_->SetCond(1);
rpc_service_->WaitClientGet(recv_var_cnt);
grads_counter_.clear();
} // while(true)
}
protected:
std::shared_ptr<detail::AsyncGRPCServer> rpc_service_;
std::shared_ptr<std::thread> server_thread_;
mutable std::unordered_map<std::string, int> grads_counter_;
};
class ListenAndServOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ListenAndServOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddComment(R"DOC(
ListenAndServ operator
This operator will start a RPC server which can receive variables
from send_op and send back variables to recv_op.
)DOC");
AddAttr<std::string>("endpoint",
"(string, default 127.0.0.1:6164)"
"IP address to listen on.")
.SetDefault("127.0.0.1:6164")
.AddCustomChecker([](const std::string &ip) { return !ip.empty(); });
AddAttr<framework::BlockDesc *>(kOptimizeBlock,
"BlockID to run on server side.");
AddAttr<std::vector<std::string>>(
"ParamList", "type list of string",
"grad->param name mapping to find which parameters to optimize.")
.SetDefault({});
AddAttr<std::vector<std::string>>(
"GradList", "type list of string",
"grad->param name mapping to find which parameters to optimize.")
.SetDefault({});
AddAttr<int>("Fanin", "type int",
"Number of trainers in the current cluster job")
.SetDefault(1);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(listen_and_serv, ops::ListenAndServOp,
ops::ListenAndServOpMaker);
\ No newline at end of file
...@@ -12,187 +12,60 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,187 +12,60 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <stdint.h>
#include <sys/stat.h>
#include <ostream> #include <ostream>
#include <thread>
#include <unistd.h> #include "paddle/framework/data_type.h"
#include "paddle/framework/executor.h"
#include "paddle/framework/framework.pb.h" #include "paddle/framework/framework.pb.h"
#include "paddle/framework/lod_tensor.h" #include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/proto_desc.h"
#include "paddle/operators/detail/grpc_server.h" #include <future>
#include "paddle/operators/detail/sendrecvop_utils.h" #include "paddle/operators/detail/grpc_client.h"
#include "paddle/operators/detail/simple_block_queue.h"
#include "paddle/string/printf.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
constexpr char kOptimizeBlock[] = "OptimizeBlock";
void RunServer(std::shared_ptr<detail::AsyncGRPCServer> service) {
service->RunSyncUpdate();
VLOG(4) << "RunServer thread end";
}
static void CreateTensorFromMessageType(framework::Variable *var,
sendrecv::VarType var_type) {
if (var_type == sendrecv::VarType::LOD_TENSOR) {
var->GetMutable<framework::LoDTensor>();
} else if (var_type == sendrecv::VarType::SELECTED_ROWS) {
var->GetMutable<framework::SelectedRows>();
} else {
PADDLE_THROW(
"VariableMessage type %d is not in "
"[LoDTensor, SelectedRows]",
var_type);
}
}
class RecvOp : public framework::OperatorBase { class RecvOp : public framework::OperatorBase {
public: public:
RecvOp(const std::string &type, const framework::VariableNameMap &inputs, RecvOp(const std::string& type, const framework::VariableNameMap& inputs,
const framework::VariableNameMap &outputs, const framework::VariableNameMap& outputs,
const framework::AttributeMap &attrs) const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) { : OperatorBase(type, inputs, outputs, attrs) {}
if (!rpc_service_) {
std::string endpoint = Attr<std::string>("endpoint"); void Run(const framework::Scope& scope,
rpc_service_.reset(new detail::AsyncGRPCServer(endpoint)); const platform::Place& place) const override {
server_thread_.reset(new std::thread(RunServer, rpc_service_)); auto outs = Outputs("Out");
} std::vector<std::string> epmap = Attr<std::vector<std::string>>("epmap");
}
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
void Stop() override { auto& ctx = *pool.Get(place);
detail::MessageWithName term_msg;
term_msg.first = LISTEN_TERMINATE_MESSAGE; for (size_t i = 0; i < outs.size(); i++) {
rpc_service_->Push(term_msg); VLOG(3) << "getting " << outs[i];
rpc_service_->ShutDown(); client_.AsyncGetVariable(epmap[i], ctx, scope, outs[i]);
server_thread_->join();
}
std::string GetGradVarNameForTrainer(const std::string &varname) const {
if (grads_counter_.find(varname) == grads_counter_.end()) {
grads_counter_[varname] = 0;
} }
return string::Sprintf("%s.trainer_%d", varname, grads_counter_[varname]++); PADDLE_ENFORCE(client_.Wait());
} }
void Run(const framework::Scope &scope, private:
const platform::Place &dev_place) const override { mutable detail::RPCClient client_;
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(dev_place);
framework::Scope &recv_scope = scope.NewScope();
// FIXME(Yancey1989): initialize rpc server with laze mode.
rpc_service_->SetScope(&recv_scope);
rpc_service_->SetDevCtx(&dev_ctx);
auto param_list = Attr<std::vector<std::string>>("ParamList");
auto grad_list = Attr<std::vector<std::string>>("GradList");
auto fan_in = Attr<int>("Fanin");
auto *block = Attr<framework::BlockDesc *>(kOptimizeBlock);
auto *program = block->Program();
framework::Executor executor(dev_place);
// TODO(typhoonzero): change this to a while_op for every cluster-batch.
bool exit_flag = false;
while (!exit_flag) {
// Get from multiple trainers, we don't care about the order in which
// the gradients arrives, just add suffix 0~n and merge the gradient.
rpc_service_->SetCond(0);
size_t recv_var_cnt = 0;
int batch_barrier = 0;
while (batch_barrier != fan_in) {
const detail::MessageWithName &v = rpc_service_->Get();
auto grad_var_name = v.first;
if (grad_var_name == LISTEN_TERMINATE_MESSAGE) {
LOG(INFO) << "received terminate message and exit";
exit_flag = true;
break;
} else if (grad_var_name == BATCH_BARRIER_MESSAGE) {
VLOG(3) << "recv batch barrier message";
batch_barrier++;
continue;
} else {
// receive a variable
recv_var_cnt++;
auto it =
std::find(grad_list.begin(), grad_list.end(), grad_var_name);
std::string param_var_name;
if (it != grad_list.end()) {
param_var_name = param_list[it - grad_list.begin()];
} else {
LOG(ERROR) << "grad has no paired param:" << grad_var_name;
}
VLOG(3) << "received grad: " << grad_var_name
<< " updating param: " << param_var_name;
if (fan_in > 1) {
grad_var_name = this->GetGradVarNameForTrainer(grad_var_name);
}
auto *var = recv_scope.FindVar(grad_var_name);
if (var == nullptr) {
LOG(ERROR) << "Can not find server side var: " << grad_var_name;
PADDLE_THROW("Can not find server side var");
}
detail::DeserializeFromMessage(v.second, dev_ctx, var);
}
}
VLOG(3) << "recv " << recv_var_cnt << " parmeters for one barrier.";
// TODO(Yancey1989): merge SelectedRows variables here
if (exit_flag) {
break;
}
try {
executor.Run(*program, &recv_scope, block->ID(), /*global_block*/
false /*create_local_scope*/, false /*create_vars*/);
} catch (std::exception &e) {
LOG(ERROR) << "run sub program error " << e.what();
}
rpc_service_->SetCond(1);
rpc_service_->WaitClientGet(recv_var_cnt);
grads_counter_.clear();
} // while(true)
}
protected:
std::shared_ptr<detail::AsyncGRPCServer> rpc_service_;
std::shared_ptr<std::thread> server_thread_;
mutable std::unordered_map<std::string, int> grads_counter_;
}; };
class RecvOpMaker : public framework::OpProtoAndCheckerMaker { class RecvOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
RecvOpMaker(OpProto *proto, OpAttrChecker *op_checker) RecvOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddOutput("Out", "(Tensor) Variables to get from server.").AsDuplicable();
AddComment(R"DOC( AddComment(R"DOC(
Recv operator Recv operator
This operator will recieve tensor from send_op This operator can get variables from server side.
)DOC"); )DOC");
AddAttr<std::string>("endpoint", AddAttr<std::vector<std::string>>("epmap",
"(string, default 127.0.0.1:6164)" "(string vector, default 127.0.0.1:6164)"
"IP address to listen on.") "Server endpoints in the order of input "
.SetDefault("127.0.0.1:6164") "variables for mapping")
.AddCustomChecker([](const std::string &ip) { return !ip.empty(); });
AddAttr<framework::BlockDesc *>(
kOptimizeBlock, "Serialized ProgramDesc string for recv to run.");
AddAttr<std::vector<std::string>>(
"ParamList", "type list of string",
"grad->param name mapping to find which parameters to optimize.")
.SetDefault({});
AddAttr<std::vector<std::string>>(
"GradList", "type list of string",
"grad->param name mapping to find which parameters to optimize.")
.SetDefault({}); .SetDefault({});
AddAttr<int>("Fanin", "type int",
"Number of trainers in the current cluster job")
.SetDefault(1);
} }
}; };
......
...@@ -62,11 +62,13 @@ class SendOp : public framework::OperatorBase { ...@@ -62,11 +62,13 @@ class SendOp : public framework::OperatorBase {
} }
PADDLE_ENFORCE(rpc_client->Wait()); PADDLE_ENFORCE(rpc_client->Wait());
for (size_t i = 0; i < outs.size(); i++) { if (outs.size() > 0) {
VLOG(3) << "getting " << outs[i] << " from " << epmap[i]; for (size_t i = 0; i < outs.size(); i++) {
rpc_client->AsyncGetVariable(epmap[i], ctx, scope, outs[i]); VLOG(3) << "getting " << outs[i] << " from " << epmap[i];
client_.AsyncGetVariable(epmap[i], ctx, scope, outs[i]);
}
PADDLE_ENFORCE(client_.Wait());
} }
PADDLE_ENFORCE(rpc_client->Wait());
} }
}; };
...@@ -85,6 +87,8 @@ Send operator ...@@ -85,6 +87,8 @@ Send operator
This operator will send tensor to recv_op at the parameter server. This operator will send tensor to recv_op at the parameter server.
)DOC"); )DOC");
// TODO(typhoonzero): remove this attr generate de-duplicated vector from
// epmap when initializing.
AddAttr<std::vector<std::string>>("endpoints", AddAttr<std::vector<std::string>>("endpoints",
"(string vector, default 127.0.0.1:6164)" "(string vector, default 127.0.0.1:6164)"
"Server endpoints to send variables to.") "Server endpoints to send variables to.")
......
...@@ -25,7 +25,7 @@ limitations under the License. */ ...@@ -25,7 +25,7 @@ limitations under the License. */
#include "paddle/string/printf.h" #include "paddle/string/printf.h"
USE_NO_KERNEL_OP(send); USE_NO_KERNEL_OP(send);
USE_NO_KERNEL_OP(recv); USE_NO_KERNEL_OP(listen_and_serv);
USE_OP(sum); USE_OP(sum);
namespace f = paddle::framework; namespace f = paddle::framework;
...@@ -33,7 +33,7 @@ namespace p = paddle::platform; ...@@ -33,7 +33,7 @@ namespace p = paddle::platform;
namespace m = paddle::operators::math; namespace m = paddle::operators::math;
// global for simplicity. // global for simplicity.
std::unique_ptr<f::OperatorBase> recv_op; std::unique_ptr<f::OperatorBase> listen_and_serv_op;
void InitTensorsInScope(f::Scope &scope, p::CPUPlace &place) { void InitTensorsInScope(f::Scope &scope, p::CPUPlace &place) {
p::CPUDeviceContext ctx(place); p::CPUDeviceContext ctx(place);
...@@ -120,7 +120,7 @@ void StartServerNet(bool is_sparse) { ...@@ -120,7 +120,7 @@ void StartServerNet(bool is_sparse) {
InitTensorsInScope(scope, place); InitTensorsInScope(scope, place);
} }
// sub program run in recv_op, for simple test we use sum // sub program run in listen_and_serv_op, for simple test we use sum
f::ProgramDesc program; f::ProgramDesc program;
f::BlockDesc *block = program.MutableBlock(0); f::BlockDesc *block = program.MutableBlock(0);
// X for server side tensors, RX for received tensers, must be of same shape. // X for server side tensors, RX for received tensers, must be of same shape.
...@@ -131,8 +131,9 @@ void StartServerNet(bool is_sparse) { ...@@ -131,8 +131,9 @@ void StartServerNet(bool is_sparse) {
attrs.insert({"ParamList", std::vector<std::string>({"Out"})}); attrs.insert({"ParamList", std::vector<std::string>({"Out"})});
attrs.insert({"GradList", std::vector<std::string>({"x1"})}); attrs.insert({"GradList", std::vector<std::string>({"x1"})});
attrs.insert({"OptimizeBlock", block}); attrs.insert({"OptimizeBlock", block});
recv_op = f::OpRegistry::CreateOp("recv", {{"RX", {"x1"}}}, {}, attrs); listen_and_serv_op =
recv_op->Run(scope, place); f::OpRegistry::CreateOp("listen_and_serv", {}, {}, attrs);
listen_and_serv_op->Run(scope, place);
} }
TEST(SendRecvOp, CPUDense) { TEST(SendRecvOp, CPUDense) {
...@@ -161,9 +162,9 @@ TEST(SendRecvOp, CPUDense) { ...@@ -161,9 +162,9 @@ TEST(SendRecvOp, CPUDense) {
for (int64_t i = 0; i < target->numel(); ++i) { for (int64_t i = 0; i < target->numel(); ++i) {
EXPECT_EQ(expected[i] * 2, actual[i]); EXPECT_EQ(expected[i] * 2, actual[i]);
} }
recv_op->Stop(); listen_and_serv_op->Stop();
server_thread.join(); server_thread.join();
recv_op.reset(nullptr); listen_and_serv_op.reset(nullptr);
} }
TEST(SendRecvOp, CPUSparse) { TEST(SendRecvOp, CPUSparse) {
...@@ -200,7 +201,7 @@ TEST(SendRecvOp, CPUSparse) { ...@@ -200,7 +201,7 @@ TEST(SendRecvOp, CPUSparse) {
EXPECT_EQ(expect_value->mutable_data<float>(place)[i], EXPECT_EQ(expect_value->mutable_data<float>(place)[i],
actual->mutable_data<float>(place)[i]); actual->mutable_data<float>(place)[i]);
} }
recv_op->Stop(); listen_and_serv_op->Stop();
server_thread.join(); server_thread.join();
recv_op.reset(); listen_and_serv_op.reset();
} }
...@@ -478,9 +478,9 @@ class DistributeTranspiler: ...@@ -478,9 +478,9 @@ class DistributeTranspiler:
else: else:
self._append_pserver_non_opt_ops(optimize_sub_program, self._append_pserver_non_opt_ops(optimize_sub_program,
pserver_program, opt_op) pserver_program, opt_op)
# Append the recv op # Append the listen_and_serv op
pserver_program.global_block().append_op( pserver_program.global_block().append_op(
type="recv", type="listen_and_serv",
inputs={}, inputs={},
outputs={}, outputs={},
attrs={ attrs={
......
...@@ -489,7 +489,7 @@ class Operator(object): ...@@ -489,7 +489,7 @@ class Operator(object):
no_kernel_op_set = { no_kernel_op_set = {
'feed', 'fetch', 'save', 'load', 'recurrent', 'feed', 'fetch', 'save', 'load', 'recurrent',
'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'rnn_memory_helper_grad', 'conditional_block', 'while', 'send',
'recv', 'parallel_do' 'recv', 'listen_and_serv', 'parallel_do'
} }
if type not in no_kernel_op_set: if type not in no_kernel_op_set:
self.desc.infer_var_type(self.block.desc) self.desc.infer_var_type(self.block.desc)
......
...@@ -108,7 +108,7 @@ class ListenAndServ(object): ...@@ -108,7 +108,7 @@ class ListenAndServ(object):
""" """
def __init__(self, endpoint, fan_in=1, optimizer_mode=True): def __init__(self, endpoint, fan_in=1, optimizer_mode=True):
self.helper = LayerHelper("recv") self.helper = LayerHelper("listen_and_serv")
self.inputs = [] self.inputs = []
self.outputs = [] self.outputs = []
self.endpoint = endpoint self.endpoint = endpoint
...@@ -158,7 +158,7 @@ class ListenAndServ(object): ...@@ -158,7 +158,7 @@ class ListenAndServ(object):
param_names = [p.name for p in params] param_names = [p.name for p in params]
grad_names = [g.name for g in grads] grad_names = [g.name for g in grads]
parent_block.append_op( parent_block.append_op(
type='recv', type='listen_and_serv',
inputs={}, inputs={},
outputs={}, outputs={},
attrs={ attrs={
...@@ -196,3 +196,31 @@ def Send(endpoints, send_vars, get_vars): ...@@ -196,3 +196,31 @@ def Send(endpoints, send_vars, get_vars):
outputs={"Out": get_vars}, outputs={"Out": get_vars},
attrs={"endpoints": endpoints, attrs={"endpoints": endpoints,
"epmap": epmap}) "epmap": epmap})
def Recv(endpoints, get_vars):
"""
Recv layer
Args:
endpoints: comma seperated IP:PORT pairs in the order
of send_vars to send
send_vars: vars to send
get_vars: vars to get from server after send completes.
Send variables to the server side, and get vars from server
side when server have finished running server side program.
"""
assert (type(send_vars) == list)
assert (type(get_vars) == list)
epmap = endpoints.split(",")
endpoints = list(set(epmap))
helper = LayerHelper("Recv", **locals())
helper.append_op(
type="recv",
inputs={"X": get_vars},
outputs={"Out": get_vars},
attrs={"endpoints": endpoints,
"epmap": epmap})
...@@ -19,6 +19,7 @@ import paddle.v2.fluid.layers as layers ...@@ -19,6 +19,7 @@ import paddle.v2.fluid.layers as layers
import numpy import numpy
from multiprocessing import Process from multiprocessing import Process
import os, sys import os, sys
import time
class TestRecvOp(unittest.TestCase): class TestRecvOp(unittest.TestCase):
...@@ -28,6 +29,7 @@ class TestRecvOp(unittest.TestCase): ...@@ -28,6 +29,7 @@ class TestRecvOp(unittest.TestCase):
p = Process(target=self.init_serv, args=(place, )) p = Process(target=self.init_serv, args=(place, ))
p.daemon = True p.daemon = True
p.start() p.start()
time.sleep(1)
self.init_client(place) self.init_client(place)
# FIXME(typhoonzero): find a way to gracefully shutdown the server. # FIXME(typhoonzero): find a way to gracefully shutdown the server.
os.system("kill -9 %d" % p.pid) os.system("kill -9 %d" % p.pid)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册