提交 823b6352 编写于 作者: D dangqingqing

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into convert

......@@ -68,7 +68,7 @@ class TestMatrix(unittest.TestCase):
def test_numpyCpu(self):
numpy_mat = np.matrix([[1, 2], [3, 4], [5, 6]], dtype="float32")
m = swig_paddle.Matrix.createCpuDenseFromNumpy(numpy_mat, copy=False)
m = swig_paddle.Matrix.createCpuDenseFromNumpy(numpy_mat, False)
self.assertEqual((int(m.getHeight()), int(m.getWidth())),
numpy_mat.shape)
......
......@@ -43,7 +43,7 @@ class TestIVector(unittest.TestCase):
def test_cpu_numpy(self):
vec = np.array([1, 3, 4, 65, 78, 1, 4], dtype="int32")
iv = swig_paddle.IVector.createCpuVectorFromNumpy(vec, copy=False)
iv = swig_paddle.IVector.createCpuVectorFromNumpy(vec, False)
self.assertEqual(vec.shape[0], int(iv.__len__()))
vec[4] = 832
for i in xrange(len(iv)):
......@@ -106,7 +106,7 @@ class TestVector(unittest.TestCase):
def testCpuNumpy(self):
numpy_arr = np.array([1.2, 2.3, 3.4, 4.5], dtype="float32")
vec = swig_paddle.Vector.createCpuVectorFromNumpy(numpy_arr, copy=False)
vec = swig_paddle.Vector.createCpuVectorFromNumpy(numpy_arr, False)
assert isinstance(vec, swig_paddle.Vector)
numpy_arr[0] = 0.1
for n, v in zip(numpy_arr, vec):
......
......@@ -69,19 +69,6 @@ extern void hl_sequence_softmax_forward(real* A_d,
const int* index,
int numSequence);
/**
* @brief Matrix classification error.
*
* @param[in] A_d input matrix (M x N).
* @param[in] B_d input vector (M x 1).
* @param[out] C_d output vector (M x 1).
* @param[in] dimM matrix height.
* @param[in] dimN matrix width.
*
*/
extern void hl_matrix_classification_error(
real* A_d, int* B_d, real* C_d, int dimM, int dimN);
/**
* @brief Matrix cross entropy.
*
......
......@@ -58,4 +58,30 @@ extern void hl_sparse_matrix_top_k(real* topVal,
int beamSize,
int numSamples);
#endif /* HL_TOP_K_H_ */
/**
* @brief Matrix classification error.
*
* @param[out] topVal top k element.
* @param[in] ldv leading dimension of topVal.
* @param[out] topIds top k index.
* @param[in] src input value.
* @param[in] lds leading dimension of src.
* @param[in] dim width of input value.
* @param[in] topkSize size of top k element.
* @param[in] numSamples height of input value.
* @param[in] label ground truth label.
* @param[out] recResult top-k classification error.
*
*/
extern void hl_matrix_classification_error(real* topVal,
int ldv,
int* topIds,
real* src,
int lds,
int dim,
int topkSize,
int numSamples,
int* label,
real* recResult);
#endif // HL_TOP_K_H_
......@@ -35,8 +35,16 @@ inline void hl_sequence_softmax_forward(real* A_d,
inline void hl_matrix_softmax_derivative(
real* grad_d, real* output_d, real* sftmaxSum_d, int dimM, int dimN) {}
inline void hl_matrix_classification_error(
real* A_d, int* B_d, real* C_d, int dimM, int dimN) {}
inline void hl_matrix_classification_error(real* topVal,
int ldv,
int* topIds,
real* src,
int lds,
int dim,
int topkSize,
int numSamples,
int* label,
real* recResult) {}
inline void hl_matrix_cross_entropy(
real* A_d, real* C_d, int* label_d, int dimM, int dimN) {}
......
......@@ -265,59 +265,6 @@ void hl_matrix_softmax_derivative(real *grad_d,
CHECK_SYNC("hl_matrix_softmax_derivative failed");
}
template<int blockSize>
__global__ void KeMatrixClassificationError(real* in_A,
int* in_B,
real* out_C,
int dimN) {
__shared__ real max_s[blockSize];
__shared__ int max_l[blockSize];
const int tid = threadIdx.x;
const int rowId = blockIdx.x;
max_s[tid] = -1e30f;
in_A += rowId * dimN;
real tmp;
for (int colId = tid; colId < dimN; colId += blockSize) {
tmp = in_A[colId];
if (max_s[tid] < tmp) {
max_s[tid] = tmp;
max_l[tid] = colId;
}
}
__syncthreads();
for (int stride = blockSize/2; stride > 0; stride = stride/2) {
if (tid < stride) {
if (max_s[tid] < max_s[tid + stride]) {
max_s[tid] = max_s[tid + stride];
max_l[tid] = max_l[tid + stride];
}
}
__syncthreads();
}
__syncthreads();
if (tid == 0) {
out_C[rowId] = (max_l[0] == in_B[rowId] ? 0 : 1.0f);
}
}
void hl_matrix_classification_error(real* A_d,
int* B_d,
real* C_d,
int dimM,
int dimN) {
CHECK_NOTNULL(A_d);
CHECK_NOTNULL(B_d);
CHECK_NOTNULL(C_d);
// each sample is calculated by one block
KeMatrixClassificationError<1024><<< dimM, 1024, 0, STREAM_DEFAULT >>>
(A_d, B_d, C_d, dimN);
CHECK_SYNC("hl_matrix_classification_error");
}
__global__ void KeMatrixMultiBinaryCrossEntropy(real* output,
real* entropy,
int* row,
......
......@@ -384,3 +384,81 @@ void hl_sparse_matrix_top_k(real* topVal, int ldv,
CHECK_SYNC("hl_sparse_matrix_top_k failed");
}
/**
* Each block compute one sample.
* In a block:
* 1. every thread get top maxLength value;
* 2. merge to shTopK, block reduce and get max value;
* 3. go to the second setp, until one thread's topK value is null;
* 4. go to the first setp, until get the topK value.
*/
template<int maxLength, int blockSize>
__global__ void KeMatrixTopKClassificationError(real* topVal, int ldv,
int * topIds,
real* src, int lds,
int dim,
int beamSize,
int* label,
real* recResult) {
__shared__ Pair shTopK[blockSize];
__shared__ int maxId[blockSize / 2];
const int tid = threadIdx.x;
const int warp = threadIdx.x / 32;
src += blockIdx.x * lds;
topVal += blockIdx.x * ldv;
topIds += blockIdx.x * beamSize;
Pair topK[maxLength]; // NOLINT
int beam = maxLength;
Pair max;
bool isEmpty = false;
bool firstStep = true;
int topkSize = beamSize;
for (int k = 0; k < maxLength; k++) {
topK[k].set(-HL_FLOAT_MAX, -1);
}
while (beamSize) {
threadGetTopK<maxLength, blockSize>
(topK, beam, beamSize, src, firstStep, isEmpty, max, dim, tid);
shTopK[tid] = topK[0];
blockReduce<maxLength, blockSize>
(shTopK, maxId, topK, &topVal, &topIds, beam, beamSize, tid, warp);
}
__syncthreads();
if (tid == 0) {
for (int i = 0; i < topkSize; i++) {
if (*--topIds == label[blockIdx.x]) {
recResult[blockIdx.x] = 0;
break;
}
recResult[blockIdx.x] = 1.0f;
}
}
}
void hl_matrix_classification_error(real* topVal, int ldv,
int* topIds,
real* src, int lds,
int dim,
int topkSize,
int numSamples,
int* label,
real* recResult) {
CHECK_NOTNULL(topVal);
CHECK_NOTNULL(topIds);
CHECK_NOTNULL(src);
if (topkSize > dim) topkSize = dim;
dim3 threads(256, 1);
dim3 grid(numSamples, 1);
KeMatrixTopKClassificationError<5, 256>
<<< grid, threads, 0, STREAM_DEFAULT >>>
(topVal, ldv, topIds, src, lds, dim, topkSize, label, recResult);
CHECK_SYNC("hl_matrix_top_k classification error failed");
}
......@@ -39,6 +39,14 @@ void Evaluator::eval(const NeuralNetwork& nn) {
*/
class ClassificationErrorEvaluator : public Evaluator {
public:
/*
ClassificationErrorEvaluator() : totalScore2_(0) {}
virtual void start() {
Evaluator::start();
totalScore2_ = 0;
} */
virtual void updateSamplesNum(const std::vector<Argument>& arguments) {
if (3 == arguments.size()) {
numSamples_ += arguments[2].value->getSum();
......@@ -76,9 +84,11 @@ public:
1,
/* trans= */ false,
useGpu(arguments[0].deviceId));
errorMat->zeroMem();
if (label != nullptr) {
errorMat->classificationError(*output, *label);
errorMat->classificationError(*output, *label, config_.top_k());
} else if (dynamic_cast<CpuSparseMatrix*>(multiBinaryLabel.get()) ||
dynamic_cast<GpuSparseMatrix*>(multiBinaryLabel.get())) {
errorMat->classificationErrorMulti(
......@@ -94,6 +104,16 @@ public:
return errorMat;
}
void printStats(std::ostream& os) const {
if (config_.top_k() == 1) {
os << config_.name() << "="
<< (numSamples_ ? totalScore_ / numSamples_ : 0);
} else {
os << " top_" << config_.top_k()
<< "_error=" << (numSamples_ ? totalScore_ / numSamples_ : 0);
}
}
virtual real evalImp(std::vector<Argument>& arguments) {
MatrixPtr errorMat = calcError(arguments);
return errorMat->getSum();
......
......@@ -311,6 +311,7 @@ public:
return *output->second;
} else {
LOG(FATAL) << "No specific output " << str;
return *((Argument*)nullptr);
}
}
}
......
......@@ -129,6 +129,7 @@ void testEvaluatorAll(TestConfig testConf,
TEST(Evaluator, classification_error) {
TestConfig config;
config.evaluatorConfig.set_type("classification_error");
config.evaluatorConfig.set_top_k(5);
config.inputDefs.push_back({INPUT_DATA, "output", 50});
config.inputDefs.push_back({INPUT_LABEL, "label", 50});
......
......@@ -732,6 +732,7 @@ void GpuMatrix::rowMax(IVector& maxIds, Matrix& maxVal) {
size_t beam = maxVal.getWidth();
CHECK_EQ(maxIds.getSize(), numSamples * beam);
CHECK_EQ(maxVal.getHeight(), numSamples);
CHECK_EQ(maxVal.getWidth(), beam);
hl_matrix_top_k(maxVal.getData(),
maxVal.getStride(),
......@@ -792,19 +793,32 @@ void GpuMatrix::maxoutBackward(Matrix& a,
}
/*calulate the error of classification */
void GpuMatrix::classificationError(Matrix& output, IVector& label) {
auto output_ptr = dynamic_cast<const GpuMatrix*>(&output);
auto label_ptr = dynamic_cast<const GpuIVector*>(&label);
CHECK(output_ptr && label_ptr) << "Invalid argument pointer";
CHECK(height_ == output_ptr->height_ && width_ == 1)
void GpuMatrix::classificationError(Matrix& output,
IVector& label,
size_t topkSize) {
auto gpuOutput = dynamic_cast<GpuMatrix*>(&output);
auto gpuLabel = dynamic_cast<GpuIVector*>(&label);
size_t numSamples = this->getHeight();
GpuMatrixPtr gpuTopVal = std::make_shared<GpuMatrix>(numSamples, topkSize);
GpuIVectorPtr gpuTopIds = std::make_shared<GpuIVector>(numSamples * topkSize);
CHECK(gpuOutput && gpuLabel) << "Invalid argument pointer";
CHECK(gpuTopVal && gpuTopIds) << "Allocate GPU memory failed";
CHECK(gpuLabel->getSize() == numSamples) << "Vector size is not equal";
CHECK(numSamples == gpuOutput->getHeight() && this->getWidth() == 1)
<< "Matrix dimensions are not equal";
hl_matrix_classification_error((real*)output_ptr->data_,
(int*)label_ptr->getData(),
data_,
height_,
output_ptr->width_);
size_t dim = gpuOutput->getWidth();
hl_matrix_classification_error(gpuTopVal->getData(),
gpuTopVal->getStride(),
gpuTopIds->getData(),
gpuOutput->getData(),
gpuOutput->getStride(),
dim,
topkSize,
numSamples,
gpuLabel->getData(),
this->getData());
}
/* copy -log(output[i * width + label]) to this->data[i] */
......@@ -3039,7 +3053,7 @@ void CpuMatrix::rowMax(Matrix& max) {
max.maxRows(*this);
}
/* get beam size of max ids and values */
/* Get the top k elements of each row of this matrix */
void CpuMatrix::rowMax(IVector& maxIds, Matrix& maxVal) {
CHECK(isContiguous());
CHECK(!maxIds.useGpu() && !maxVal.useGpu()) << "Matrix type are not equal";
......@@ -3047,6 +3061,7 @@ void CpuMatrix::rowMax(IVector& maxIds, Matrix& maxVal) {
size_t beam = maxVal.getWidth();
CHECK_EQ(maxIds.getSize(), numSamples * beam);
CHECK_EQ(maxVal.getHeight(), numSamples);
CHECK_EQ(maxVal.getWidth(), beam);
real* a = getData();
int* s = maxIds.getData();
......@@ -3198,32 +3213,39 @@ void CpuMatrix::rowNormalizeL1(Matrix& out) {
}
/* calulate classification error */
void CpuMatrix::classificationError(Matrix& output, IVector& label) {
CHECK(dynamic_cast<const CpuMatrix*>(&output));
CHECK(dynamic_cast<const CpuIVector*>(&label));
void CpuMatrix::classificationError(Matrix& output,
IVector& label,
size_t topkSize) {
size_t numSamples = this->getHeight();
auto cpuOutput = dynamic_cast<CpuMatrix*>(&output);
auto cpuLabel = dynamic_cast<CpuIVector*>(&label);
IVectorPtr cpuTopIds = std::make_shared<CpuIVector>(numSamples * topkSize);
MatrixPtr cpuTopVal = std::make_shared<CpuMatrix>(numSamples, topkSize);
CHECK(cpuOutput && cpuLabel) << "Invalid argument pointer";
CHECK(cpuTopIds && cpuTopVal) << "Allocate cpu memory failed";
CHECK(cpuLabel->getSize() == numSamples) << "Vector size is not equal";
CHECK(cpuOutput->getHeight() == numSamples && this->getWidth() == 1)
<< "Matrix dimensions are not equal";
CHECK_EQ(getWidth(), (size_t)1);
size_t numSamples = getHeight();
CHECK_EQ(label.getSize(), numSamples);
CHECK_EQ(output.getHeight(), numSamples);
// top k matrix classification
cpuOutput->rowMax(*cpuTopIds, *cpuTopVal);
size_t dim = output.getWidth();
real* out = output.getData();
int* lbl = label.getData();
real maxData = 0.0;
int maxIndex = -1;
size_t dim = cpuOutput->getWidth();
real* result = this->getData();
int* ids = cpuTopIds->getData();
int* lbl = cpuLabel->getData();
for (size_t i = 0; i < numSamples; ++i) {
CHECK_GE(lbl[i], 0);
CHECK_LT((size_t)lbl[i], dim);
maxData = out[i * dim];
maxIndex = 0;
for (size_t j = 0; j < dim; ++j) {
if (maxData < out[i * dim + j]) {
maxIndex = j;
maxData = out[i * dim + j];
for (size_t j = 0; j < topkSize; ++j) {
if (ids[j + i * topkSize] == lbl[i]) {
result[i] = 0;
break;
}
result[i] = 1.0f;
}
getData()[i] = (maxIndex != lbl[i]);
}
}
......
......@@ -836,8 +836,11 @@ public:
* output[i] = 1 if row i is an error.
*
* output[i] = 0 if row i is correct.
*
*/
virtual void classificationError(Matrix& output, IVector& label) {
virtual void classificationError(Matrix& output,
IVector& label,
size_t topkSize = 1) {
LOG(FATAL) << "Not implemented";
}
......@@ -1314,7 +1317,7 @@ public:
void check(std::ostream& os, Matrix& refMat, bool printDiff = true);
void randomizeUniform();
void classificationError(Matrix& output, IVector& label);
void classificationError(Matrix& output, IVector& label, size_t topkSize = 1);
void convExpand(Matrix& feature,
int feaImgHeight,
......@@ -1739,7 +1742,7 @@ public:
void randomizeUniform();
void classificationError(Matrix& output, IVector& label);
void classificationError(Matrix& output, IVector& label, size_t topkSize = 1);
void addByBitCode(size_t numClasses, const IVector& codes, const Matrix& vec);
......
......@@ -764,7 +764,7 @@ TEST(Matrix, paramReluBackwardDiff) {
}
}
void testClassificationError(int numSamples, int dim) {
void testClassificationError(int numSamples, int dim, int topkSize) {
MatrixPtr cpuError = std::make_shared<CpuMatrix>(numSamples, 1);
MatrixPtr gpuError = std::make_shared<GpuMatrix>(numSamples, 1);
MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(numSamples, dim);
......@@ -777,17 +777,22 @@ void testClassificationError(int numSamples, int dim) {
gpuOutput->copyFrom(*cpuOutput);
gpuLabel->copyFrom(*cpuLabel);
cpuError->classificationError(*cpuOutput, *cpuLabel);
gpuError->classificationError(*gpuOutput, *gpuLabel);
cpuError->classificationError(*cpuOutput, *cpuLabel, topkSize);
gpuError->classificationError(*gpuOutput, *gpuLabel, topkSize);
TensorCheckEqual(*cpuError, *gpuError);
}
TEST(Matrix, classificationError) {
for (auto numSamples : {1, 10, 100, 1000, 70000}) {
for (auto dim : {1, 10, 100, 1000}) {
VLOG(3) << " numSamples=" << numSamples << " dim=" << dim;
testClassificationError(numSamples, dim);
for (auto numSamples : {1, 5, 31, 90, 150, 300}) {
for (auto dim :
{1, 5, 8, 10, 15, 64, 80, 120, 256, 300, 1280, 5120, 50000}) {
for (auto topkSize : {1, 5, 10, 20, 40, (int)rand() % dim + 1}) {
if (topkSize > dim) continue;
VLOG(3) << " sample= " << numSamples << " topkSize= " << topkSize
<< " dim= " << dim;
testClassificationError(numSamples, dim, topkSize);
}
}
}
}
......
......@@ -375,10 +375,6 @@ bool Parameter::load(const std::string& filename) {
std::ifstream fs(filename, std::ios_base::binary);
if (!fs) {
LOG(INFO) << "missing parameters [" << filename << "] while loading model.";
if (isStatic()) {
LOG(FATAL) << getName() << " is static but missing, not allowed.";
return false;
}
if (kMissParameterFail == FLAGS_load_missing_parameter_strategy) {
LOG(FATAL) << getName() << " missing, not allowed.";
return false;
......
......@@ -55,6 +55,9 @@ elif is_osx == True:
include_dirs = [np.get_include(), "../"] # include numpy and paddle.
os.environ["CC"] = "@CMAKE_C_COMPILER@"
os.environ["CXX"] = "@CMAKE_CXX_COMPILER@"
setup(name="py_paddle",
version="@PADDLE_VERSION@",
ext_modules=[
......
......@@ -475,6 +475,10 @@ message EvaluatorConfig {
// Used by ChunkEvaluator
// chunk of these types are not counted
repeated int32 excluded_chunk_types = 12;
// Used by ClassificationErrorEvaluator
// top # classification error
optional int32 top_k = 13 [default = 1];
}
message LinkConfig {
......
......@@ -12,18 +12,135 @@
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = ['buffered']
__all__ = ['buffered', 'compose', 'chain', 'shuffle', 'ComposeNotAligned']
from Queue import Queue
from threading import Thread
import itertools
import random
def shuffle(reader, buf_size):
"""Creates a data reader whose data output is suffled.
Output from the iterator that created by original reader will be
buffered into shuffle buffer, and then shuffled. The size of shuffle buffer
is determined by argument buf_size.
Args:
reader: the original reader whose output will be
shuffled.
buf_size: shuffle buffer size.
Returns:
the new reader whose output is shuffled.
"""
def data_reader():
buf = []
for e in reader():
buf.append(e)
if len(buf) >= buf_size:
random.shuffle(buf)
for b in buf:
yield b
buf = []
if len(buf) > 0:
random.shuffle(buf)
for b in buf:
yield b
return data_reader
def chain(*readers):
"""Creates a data reader whose output is the outputs of input data
readers chained together.
If input readers output following data entries:
[0, 0, 0]
[1, 1, 1]
[2, 2, 2]
The chained reader will output:
[0, 0, 0, 1, 1, 1, 2, 2, 2]
Args:
readers: input readers.
Returns:
the new data reader.
"""
def reader():
rs = []
for r in readers:
rs.append(r())
for e in itertools.chain(*rs):
yield e
return reader
class ComposeNotAligned(ValueError):
pass
def compose(*readers, **kwargs):
"""Creates a data reader whose output is the combination of input readers.
If input readers output following data entries:
(1, 2) 3 (4, 5)
The composed reader will output:
(1, 2, 3, 4, 5)
Args:
*readers: readers that will be composed together.
check_alignment: If True, will check if input readers are aligned
correctly. If False, will not check alignment and trailing outputs
will be discarded. Defaults to True.
Returns:
the new data reader.
Raises:
ComposeNotAligned: outputs of readers are not aligned.
Will not raise when check_alignment is set to False.
"""
check_alignment = kwargs.pop('check_alignment', True)
def make_tuple(x):
if isinstance(x, tuple):
return x
else:
return (x, )
def reader():
rs = []
for r in readers:
rs.append(r())
if not check_alignment:
for outputs in itertools.izip(*rs):
yield sum(map(make_tuple, outputs), ())
else:
for outputs in itertools.izip_longest(*rs):
for o in outputs:
if o is None:
# None will be not be present if compose is aligned
raise ComposeNotAligned(
"outputs of readers are not aligned.")
yield sum(map(make_tuple, outputs), ())
return reader
def buffered(reader, size):
"""Creates a buffered data reader.
The buffered data reader will read and save data entries into a buffer.
Reading from the buffered data reader will proceed as long as the buffer
is not empty.
The buffered data reader will read and save data entries into a
buffer. Reading from the buffered data reader will proceed as long
as the buffer is not empty.
Args:
reader: the data reader to read from.
......@@ -43,7 +160,7 @@ def buffered(reader, size):
q.put(d)
q.put(end)
def create_reader():
def data_reader():
r = reader()
q = Queue(maxsize=size)
t = Thread(
......@@ -57,4 +174,4 @@ def buffered(reader, size):
yield e
e = q.get()
return create_reader
return data_reader
......@@ -16,16 +16,20 @@ import paddle.reader
import time
def reader_10(dur):
for i in range(10):
time.sleep(dur)
yield i
def reader_creator_10(dur):
def reader():
for i in range(10):
# this invocation helps testing paddle.reader.buffer
time.sleep(dur)
yield i
return reader
class TestBuffered(unittest.TestCase):
def test_read(self):
for size in range(20):
b = paddle.reader.buffered(lambda: reader_10(0), size)
b = paddle.reader.buffered(reader_creator_10(0), size)
c = 0
for i in b():
self.assertEqual(i, c)
......@@ -34,7 +38,7 @@ class TestBuffered(unittest.TestCase):
def test_buffering(self):
# read have 30ms delay.
b = paddle.reader.buffered(lambda: reader_10(0.03), 10)
b = paddle.reader.buffered(reader_creator_10(0.03), 10)
last_time = time.time()
for idx, i in enumerate(b()):
elapsed_time = time.time() - last_time
......@@ -42,9 +46,63 @@ class TestBuffered(unittest.TestCase):
time.sleep(0.3)
else:
# read time should be short, meaning already buffered.
self.assertLess(elapsed_time, 0.01)
self.assertLess(elapsed_time, 0.05)
last_time = time.time()
class TestCompose(unittest.TestCase):
def test_compse(self):
reader = paddle.reader.compose(
reader_creator_10(0), reader_creator_10(0))
for idx, e in enumerate(reader()):
self.assertEqual(e, (idx, idx))
def test_compose_not_aligned(self):
total = 0
reader = paddle.reader.compose(
paddle.reader.chain(reader_creator_10(0), reader_creator_10(0)),
reader_creator_10(0))
with self.assertRaises(paddle.reader.ComposeNotAligned):
for e in reader():
total += 1
# expecting 10, not 20
self.assertEqual(total, 10)
def test_compose_not_aligned_no_check(self):
total = 0
reader = paddle.reader.compose(
paddle.reader.chain(reader_creator_10(0), reader_creator_10(0)),
reader_creator_10(0),
check_alignment=False)
for e in reader():
total += 1
# expecting 10, not 20
self.assertEqual(total, 10)
class TestChain(unittest.TestCase):
def test_chain(self):
c = paddle.reader.chain(reader_creator_10(0), reader_creator_10(0))
idx = 0
for e in c():
self.assertEqual(e, idx % 10)
idx += 1
self.assertEqual(idx, 20)
class TestShuffle(unittest.TestCase):
def test_shuffle(self):
case = [(0, True), (1, True), (10, False), (100, False)]
a = reader_creator_10(0)
for size, checkEq in case:
s = paddle.reader.shuffle(a, size)
total = 0
for idx, e in enumerate(s()):
if checkEq:
self.assertEqual(idx, e)
total += 1
self.assertEqual(total, 10)
if __name__ == '__main__':
unittest.main()
......@@ -1253,6 +1253,7 @@ def Evaluator(
dict_file=None,
result_file=None,
num_results=None,
top_k=None,
delimited=None,
excluded_chunk_types=None, ):
evaluator = g_config.model_config.evaluators.add()
......@@ -1280,6 +1281,8 @@ def Evaluator(
evaluator.result_file = result_file
if num_results is not None:
evaluator.num_results = num_results
if top_k is not None:
evaluator.top_k = top_k
if delimited is not None:
evaluator.delimited = delimited
......
......@@ -71,6 +71,7 @@ def evaluator_base(
result_file=None,
num_results=None,
delimited=None,
top_k=None,
excluded_chunk_types=None, ):
"""
Evaluator will evaluate the network status while training/testing.
......@@ -104,12 +105,15 @@ def evaluator_base(
:param weight: An input layer which is a weight for each sample.
Each evaluator may calculate differently to use this weight.
:type weight: LayerOutput.
:param top_k: number k in top-k error rate
:type top_k: int
"""
# inputs type assertions.
assert classification_threshold is None or isinstance(
classification_threshold, float)
assert positive_label is None or isinstance(positive_label, int)
assert num_results is None or isinstance(num_results, int)
assert top_k is None or isinstance(top_k, int)
if not isinstance(input, list):
input = [input]
......@@ -130,6 +134,8 @@ def evaluator_base(
dict_file=dict_file,
result_file=result_file,
delimited=delimited,
num_results=num_results,
top_k=top_k,
excluded_chunk_types=excluded_chunk_types, )
......@@ -139,6 +145,7 @@ def classification_error_evaluator(input,
label,
name=None,
weight=None,
top_k=None,
threshold=None):
"""
Classification Error Evaluator. It will print error rate for classification.
......@@ -167,6 +174,8 @@ def classification_error_evaluator(input,
then means not set weight. The larger weight it is, the more
important this sample is.
:type weight: LayerOutput
:param top_k: number k in top-k error rate
:type top_k: int
:param threshold: The classification threshold.
:type threshold: float
:return: None.
......@@ -178,6 +187,7 @@ def classification_error_evaluator(input,
input=input,
label=label,
weight=weight,
top_k=top_k,
classification_threshold=threshold, )
......
......@@ -2870,8 +2870,8 @@ def gru_step_layer(input,
:param name:
:param gate_act:
:param bias_attr:
:param param_attr: the parameter_attribute for transforming the output_mem
from previous step.
:param param_attr: the parameter_attribute for transforming the output_mem
from previous step.
:param layer_attr:
:return: LayerOutput object.
:rtype: LayerOutput
......@@ -2882,10 +2882,10 @@ def gru_step_layer(input,
Layer(
name=name,
type=LayerType.GRU_STEP_LAYER,
# The parameter here is for transforming the output_mem. The input has
# already been transformed outside this module so it does not need
# parameter associated with it.
# The parameter here is instead grouped with input is due to
# The parameter here is for transforming the output_mem. The input has
# already been transformed outside this module so it does not need
# parameter associated with it.
# The parameter here is instead grouped with input is due to
# backward model compatibility.
inputs=[Input(input.name, **param_attr.attr), output_mem.name],
bias=ParamAttr.to_bias(bias_attr),
......@@ -3536,6 +3536,7 @@ def classification_cost(input,
label,
weight=None,
name=None,
top_k=None,
evaluator=classification_error_evaluator,
layer_attr=None):
"""
......@@ -3550,6 +3551,8 @@ def classification_cost(input,
:param weight: The weight affects the cost, namely the scale of cost.
It is an optional argument.
:type weight: LayerOutput
:param top_k: number k in top-k error rate
:type top_k: int
:param evaluator: Evaluator method.
:param layer_attr: layer's extra attribute.
:type layer_attr: ExtraLayerAttribute
......@@ -3577,7 +3580,7 @@ def classification_cost(input,
assert isinstance(e.for_classification, bool)
assert e.for_classification
e(name=e.__name__, input=input, label=label, weight=weight)
e(name=e.__name__, input=input, label=label, weight=weight, top_k=top_k)
if not isinstance(evaluator, collections.Sequence):
evaluator = [evaluator]
......
......@@ -77,7 +77,9 @@ import data_type
__all__ = [
'parse_network', 'data', 'fc', 'max_id', 'classification_cost',
'cross_entropy_cost'
'cross_entropy_cost', 'cross_entropy_with_selfnorm_cost', 'regression_cost',
'multi_binary_label_cross_entropy_cost', 'rank_cost', 'lambda_cost',
'sum_cost', 'huber_cost'
]
......@@ -137,7 +139,8 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
parent_layers = dict()
other_kwargs = dict()
for pname in parent_names:
parent_layers[pname] = kwargs[pname]
if kwargs.has_key(pname):
parent_layers[pname] = kwargs[pname]
for key in kwargs.keys():
if key not in parent_names:
......@@ -189,27 +192,61 @@ class DataLayerV2(Layer):
data = DataLayerV2
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__(
'maxid_layer', name_prefix='maxid_layer', parent_names=['input'])
'maxid_layer', name_prefix='maxid', parent_names=['input'])
classification_cost = __convert_to_v2__(
'classification_cost',
name_prefix='classification_cost',
parent_names=['input', 'label'])
parent_names=['input', 'label', 'weight'])
regression_cost = __convert_to_v2__(
'regression_cost',
name_prefix='regression_cost',
parent_names=['input', 'label', 'weight'])
cross_entropy_cost = __convert_to_v2__(
'cross_entropy',
name_prefix='cross_entropy',
parent_names=['input', 'label'])
cross_entropy_with_selfnorm_cost = __convert_to_v2__(
'cross_entropy_with_selfnorm',
name_prefix='cross_entropy_with_selfnorm',
parent_names=['input', 'label'])
multi_binary_label_cross_entropy_cost = __convert_to_v2__(
'multi_binary_label_cross_entropy',
name_prefix='multi_binary_label_cross_entropy',
parent_names=['input', 'label'])
rank_cost = __convert_to_v2__(
'rank_cost',
name_prefix='rank_cost',
parent_names=['left', 'right', 'label', 'weight'])
lambda_cost = __convert_to_v2__(
'lambda_cost', name_prefix='lambda_cost', parent_names=['input', 'score'])
sum_cost = __convert_to_v2__(
'sum_cost', name_prefix='sum_cost', parent_names=['input'])
huber_cost = __convert_to_v2__(
'huber_cost', name_prefix='huber_cost', parent_names=['input', 'label'])
if __name__ == '__main__':
pixel = data(name='pixel', type=data_type.dense_vector(784))
label = data(name='label', type=data_type.integer_value(10))
weight = data(name='weight', type=data_type.dense_vector(10))
score = data(name='score', type=data_type.dense_vector(1))
hidden = fc(input=pixel, size=100, act=conf_helps.SigmoidActivation())
inference = fc(input=hidden, size=10, act=conf_helps.SoftmaxActivation())
maxid = max_id(input=inference)
cost1 = classification_cost(input=inference, label=label)
cost2 = cross_entropy_cost(input=inference, label=label)
cost2 = classification_cost(input=inference, label=label, weight=weight)
cost3 = cross_entropy_cost(input=inference, label=label)
cost4 = cross_entropy_with_selfnorm_cost(input=inference, label=label)
cost5 = regression_cost(input=inference, label=label)
cost6 = regression_cost(input=inference, label=label, weight=weight)
cost7 = multi_binary_label_cross_entropy_cost(input=inference, label=label)
cost8 = rank_cost(left=score, right=score, label=score)
cost9 = lambda_cost(input=inference, score=score)
cost10 = sum_cost(input=inference)
cost11 = huber_cost(input=score, label=label)
print parse_network(cost1)
print parse_network(cost2)
print parse_network(cost1, cost2)
print parse_network(cost2)
print parse_network(cost3, cost4)
print parse_network(cost5, cost6)
print parse_network(cost7, cost8, cost9, cost10, cost11)
print parse_network(inference, maxid)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册