Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
7f5f4cad
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7f5f4cad
编写于
9月 28, 2016
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
d130d181
上级
3efa499e
变更
4
展开全部
隐藏空白更改
内联
并排
Showing
4 changed file
with
84 addition
and
56 deletion
+84
-56
doc/searchindex.js
doc/searchindex.js
+1
-1
doc/ui/api/trainer_config_helpers/layers.html
doc/ui/api/trainer_config_helpers/layers.html
+71
-52
doc/ui/api/trainer_config_helpers/networks.html
doc/ui/api/trainer_config_helpers/networks.html
+2
-2
doc/ui/api/trainer_config_helpers/poolings.html
doc/ui/api/trainer_config_helpers/poolings.html
+10
-1
未找到文件。
doc/searchindex.js
浏览文件 @
7f5f4cad
此差异已折叠。
点击以展开。
doc/ui/api/trainer_config_helpers/layers.html
浏览文件 @
7f5f4cad
此差异已折叠。
点击以展开。
doc/ui/api/trainer_config_helpers/networks.html
浏览文件 @
7f5f4cad
...
@@ -381,7 +381,7 @@ layers.py for the maths) does. A promising benefit is that LSTM memory
...
@@ -381,7 +381,7 @@ layers.py for the maths) does. A promising benefit is that LSTM memory
cell states, or hidden states in every time step are accessible to for the
cell states, or hidden states in every time step are accessible to for the
user. This is especially useful in attention model. If you do not need to
user. This is especially useful in attention model. If you do not need to
access to the internal states of the lstm, but merely use its outputs,
access to the internal states of the lstm, but merely use its outputs,
it is recomm
a
nded to use the lstmemory, which is relatively faster than
it is recomm
e
nded to use the lstmemory, which is relatively faster than
lstmemory_group.
</p>
lstmemory_group.
</p>
<p>
NOTE: In PaddlePaddle
’
s implementation, the following input-to-hidden
<p>
NOTE: In PaddlePaddle
’
s implementation, the following input-to-hidden
multiplications:
multiplications:
...
@@ -736,7 +736,7 @@ compute attention weight.</li>
...
@@ -736,7 +736,7 @@ compute attention weight.</li>
<h2>
outputs
<a
class=
"headerlink"
href=
"#outputs"
title=
"Permalink to this headline"
>
¶
</a></h2>
<h2>
outputs
<a
class=
"headerlink"
href=
"#outputs"
title=
"Permalink to this headline"
>
¶
</a></h2>
<dl
class=
"function"
>
<dl
class=
"function"
>
<dt>
<dt>
<code
class=
"descclassname"
>
paddle.trainer_config_helpers.networks.
</code><code
class=
"descname"
>
outputs
</code><span
class=
"sig-paren"
>
(
</span><em>
layers
</em><span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.trainer_config_helpers.networks.
</code><code
class=
"descname"
>
outputs
</code><span
class=
"sig-paren"
>
(
</span><em>
layers
</em>
,
<em>
*args
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Declare the end of network. Currently it will only calculate the
<dd><p>
Declare the end of network. Currently it will only calculate the
input/output order of network. It will calculate the predict network or
input/output order of network. It will calculate the predict network or
train network
’
s output automatically.
</p>
train network
’
s output automatically.
</p>
...
...
doc/ui/api/trainer_config_helpers/poolings.html
浏览文件 @
7f5f4cad
...
@@ -92,11 +92,20 @@ Each PoolingType contains one parameter:</p>
...
@@ -92,11 +92,20 @@ Each PoolingType contains one parameter:</p>
<h1>
MaxPooling
<a
class=
"headerlink"
href=
"#maxpooling"
title=
"Permalink to this headline"
>
¶
</a></h1>
<h1>
MaxPooling
<a
class=
"headerlink"
href=
"#maxpooling"
title=
"Permalink to this headline"
>
¶
</a></h1>
<dl
class=
"class"
>
<dl
class=
"class"
>
<dt>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.trainer_config_helpers.poolings.
</code><code
class=
"descname"
>
MaxPooling
</code></dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.trainer_config_helpers.poolings.
</code><code
class=
"descname"
>
MaxPooling
</code><
span
class=
"sig-paren"
>
(
</span><em>
output_max_index=None
</em><span
class=
"sig-paren"
>
)
</span><
/dt>
<dd><p>
Max pooling.
</p>
<dd><p>
Max pooling.
</p>
<p>
Return the very large values for each dimension in sequence or time steps.
</p>
<p>
Return the very large values for each dimension in sequence or time steps.
</p>
<div
class=
"math"
>
<div
class=
"math"
>
\[max(samples\_of\_a\_sequence)\]
</div>
\[max(samples\_of\_a\_sequence)\]
</div>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Parameters:
</th><td
class=
"field-body"
><strong>
output_max_index
</strong>
(
<em>
bool|None
</em>
)
–
True if output sequence max index instead of max
value. None means use default value in proto.
</td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
</div>
</div>
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录