提交 7eeaae16 编写于 作者: Z zchen0211

deconv

上级 c33575a5
...@@ -14,6 +14,7 @@ limitations under the License. */ ...@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once #pragma once
#include "glog/logging.h"
#include "paddle/framework/eigen.h" #include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h" #include "paddle/operators/math/im2col.h"
...@@ -117,8 +118,7 @@ class GemmDeconv2DKernel : public framework::OpKernel<T> { ...@@ -117,8 +118,7 @@ class GemmDeconv2DKernel : public framework::OpKernel<T> {
// of shape (C * K_H * K_W, H * W) // of shape (C * K_H * K_W, H * W)
math::matmul<Place, T>(context.device_context(), filter, true, math::matmul<Place, T>(context.device_context(), filter, true,
input_batch, false, T(1.0), &col_matrix, T(0.0)); input_batch, false, T(1.0), &col_matrix, T(0.0));
col2im(context.device_context(), output_batch, col, strides[0],
col2im(context.device_context(), output_batch, col_matrix, strides[0],
strides[1], 0, 0); strides[1], 0, 0);
} }
} }
...@@ -203,8 +203,8 @@ class GemmDeconvGrad2DKernel : public framework::OpKernel<T> { ...@@ -203,8 +203,8 @@ class GemmDeconvGrad2DKernel : public framework::OpKernel<T> {
input_grad->Slice<T>(i, i + 1).Resize(input_matrix_shape); input_grad->Slice<T>(i, i + 1).Resize(input_matrix_shape);
// im2col: dy from (C, O_H, O_W) -> (C * K_H * K_W, H * W) // im2col: dy from (C, O_H, O_W) -> (C * K_H * K_W, H * W)
im2col(context.device_context(), output_grad_batch, col_matrix, im2col(context.device_context(), output_grad_batch, col, strides[0],
strides[0], strides[1], paddings[0], paddings[1]); strides[1], paddings[0], paddings[1]);
// gemm: dx = filter * dy // gemm: dx = filter * dy
// (M, C * K_H * K_W) * (C * K_H * K_W, H * W) -> (M, C, H) // (M, C * K_H * K_W) * (C * K_H * K_W, H * W) -> (M, C, H)
...@@ -234,13 +234,14 @@ class GemmDeconvGrad2DKernel : public framework::OpKernel<T> { ...@@ -234,13 +234,14 @@ class GemmDeconvGrad2DKernel : public framework::OpKernel<T> {
Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_matrix_shape); Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_matrix_shape);
// im2col: (C * H * W, K_H * K_W) // im2col: (C * H * W, K_H * K_W)
im2col(context.device_context(), output_grad_batch, col_matrix_f, im2col(context.device_context(), output_grad_batch, col, strides[0],
strides[0], strides[1], paddings[0], paddings[1]); strides[1], paddings[0], paddings[1]);
// gemm: d_filter = x * y_grad^T // gemm: d_filter = x * y_grad^T
// (M, C * H * W) * (K_H * K_W, C * H * W) -> (M, C, H) // (M, C * H * W) * (K_H * K_W, C * H * W) -> (M, C, H)
math::matmul<Place, T>(context.device_context(), in_batch, false, math::matmul<Place, T>(context.device_context(), in_batch, false,
col_matrix, true, T(1.0), &filter_grad_, T(1.0)); col_matrix_f, true, T(1.0), &filter_grad_,
T(1.0));
} }
} }
} }
......
import unittest
import numpy as np
from op_test import OpTest
def deconv2d_forward_naive(input_, filter_, deconv_param):
# [2, 3, 5, 5]
in_n, in_c, in_h, in_w = input_.shape
# [3, 6, 3, 3]
f_c, out_c, f_h, f_w = filter_.shape
assert in_c == f_c
stride, pad = deconv_param['stride'], deconv_param['pad']
out_h = (in_h - 1) * stride[0] + f_h
out_w = (in_w - 1) * stride[1] + f_w
out = np.zeros((in_n, out_c, out_h, out_w))
for n in range(in_n):
for i in range(in_h):
for j in range(in_w):
input_masked = input_[n, :, i, j] # (c)
input_masked = np.reshape(input_masked, (in_c, 1, 1))
input_masked = np.tile(input_masked, (1, f_h, f_w))
for k in range(out_c):
tmp_out = np.sum(input_masked * filter_[:, k, :, :], axis=0)
i1, i2 = i * stride[0], i * stride[0] + f_h
j1, j2 = j * stride[0], j * stride[0] + f_w
out[n, k, i1:i2, j1:j2] += tmp_out
return out
class TestDeconv2dOp(OpTest):
def setUp(self):
# init as deconv
self.init_op_type()
# [2, 3, 5, 5] -> kernel [3, 6, 3, 3] -> output [2, 6, 7, 7]
self.init_test_case()
deconv2d_param = {'stride': self.stride, 'pad': self.pad}
input_ = np.random.random(self.input_size).astype("float32")
filter_ = np.random.random(self.filter_size).astype("float32")
output = deconv2d_forward_naive(input_, filter_, deconv2d_param)
# print 'deconv output py', output, output.shape
self.inputs = {'Input': input_, 'Filter': filter_}
self.attrs = {
'strides': self.stride,
'paddings': self.pad,
# 'dilations': self.dilations
}
self.outputs = {'Output': output}
def test_check_output(self):
print 'check output here'
self.check_output()
def test_check_grad(self):
self.check_grad(
set(['Input', 'Filter']), 'Output', max_relative_error=0.05)
def test_check_grad_no_filter(self):
self.check_grad(
['Input'],
'Output',
max_relative_error=0.05,
no_grad_set=set(['Filter']))
def test_check_grad_no_input(self):
self.check_grad(
['Filter'],
'Output',
max_relative_error=0.05,
no_grad_set=set(['Input']))
def init_test_case(self):
self.pad = [0, 0]
self.stride = [1, 1]
self.dilations = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3]
def init_op_type(self):
self.op_type = "deconv2d"
"""
class TestCudnn(TestConv2dOp):
def init_group(self):
self.groups = 1
def init_op_type(self):
self.op_type = "conv_cudnn"
"""
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册