Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
7e95793b
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7e95793b
编写于
1月 11, 2018
作者:
R
root
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
=add bim method for generating adversarail sample
上级
e71e4a3d
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
35 addition
and
0 deletion
+35
-0
adversarial/advbox/attacks/gradientsign.py
adversarial/advbox/attacks/gradientsign.py
+35
-0
未找到文件。
adversarial/advbox/attacks/gradientsign.py
浏览文件 @
7e95793b
...
@@ -36,3 +36,38 @@ class GradientSignAttack(Attack):
...
@@ -36,3 +36,38 @@ class GradientSignAttack(Attack):
FGSM
=
GradientSignAttack
FGSM
=
GradientSignAttack
class
IteratorGradientSignAttack
(
Attack
):
"""
This attack was originally implemented by Alexey Kurakin(Google Brain).
Paper link: https://arxiv.org/pdf/1607.02533.pdf
"""
def
_apply
(
self
,
image_label
,
epsilons
=
100
,
steps
=
10
):
"""
Apply the iterative gradient sign attack.
Args:
image_label(list): The image and label tuple list of one element.
epsilons(list|tuple|int): The epsilon (input variation parameter).
steps(int): The number of iterator steps.
Return:
numpy.ndarray: The adversarail sample generated by the algorithm.
"""
assert
len
(
image_label
)
==
1
pre_label
=
np
.
argmax
(
self
.
model
.
predict
(
image_label
))
gradient
=
self
.
model
.
gradient
(
image_label
)
min_
,
max_
=
self
.
model
.
bounds
()
if
not
isinstance
(
epsilons
,
Iterable
):
epsilons
=
np
.
linspace
(
0
,
1
,
num
=
epsilons
+
1
)
for
epsilon
in
epsilons
:
adv_img
=
image_label
[
0
][
0
].
reshape
(
gradient
.
shape
)
for
_
in
range
(
steps
):
gradient
=
self
.
model
.
gradient
([(
adv_img
,
image_label
[
0
][
1
])])
gradient_sign
=
np
.
sign
(
gradient
)
*
(
max_
-
min_
)
adv_img
=
adv_img
+
epsilon
*
gradient_sign
adv_img
=
np
.
clip
(
adv_img
,
min_
,
max_
)
adv_label
=
np
.
argmax
(
self
.
model
.
predict
([(
adv_img
,
0
)]))
if
pre_label
!=
adv_label
:
return
adv_img
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录