Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
7daae985
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7daae985
编写于
7月 20, 2022
作者:
Y
yaozhixin
提交者:
GitHub
7月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[IPU] Add more Ops (#44414)
* [IPU] Add more Ops * update boost API
上级
1047cb17
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
696 addition
and
170 deletion
+696
-170
paddle/fluid/platform/device/ipu/popart_canonicalization/detection_ops.cc
...tform/device/ipu/popart_canonicalization/detection_ops.cc
+444
-0
paddle/fluid/platform/device/ipu/popart_canonicalization/nn_ops.cc
...uid/platform/device/ipu/popart_canonicalization/nn_ops.cc
+8
-24
paddle/fluid/platform/device/ipu/popart_canonicalization/op_builder.cc
...platform/device/ipu/popart_canonicalization/op_builder.cc
+63
-0
paddle/fluid/platform/device/ipu/popart_canonicalization/op_builder.h
.../platform/device/ipu/popart_canonicalization/op_builder.h
+16
-0
paddle/fluid/platform/device/ipu/popart_canonicalization/tensor_ops.cc
...platform/device/ipu/popart_canonicalization/tensor_ops.cc
+165
-146
未找到文件。
paddle/fluid/platform/device/ipu/popart_canonicalization/detection_ops.cc
0 → 100644
浏览文件 @
7daae985
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/platform/device/ipu/popart_canonicalization/canonicalization_utils.h"
#include "paddle/fluid/platform/device/ipu/popart_canonicalization/op_builder.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
platform
{
namespace
ipu
{
namespace
{
Node
*
yolo_box_handler
(
Graph
*
graph
,
Node
*
node
)
{
auto
*
op
=
node
->
Op
();
auto
clip_bbox
=
PADDLE_GET_CONST
(
bool
,
op
->
GetAttr
(
"clip_bbox"
));
auto
iou_aware
=
PADDLE_GET_CONST
(
bool
,
op
->
GetAttr
(
"iou_aware"
));
auto
conf_thresh
=
PADDLE_GET_CONST
(
float
,
op
->
GetAttr
(
"conf_thresh"
));
auto
iou_aware_factor
=
PADDLE_GET_CONST
(
float
,
op
->
GetAttr
(
"iou_aware_factor"
));
auto
class_num
=
PADDLE_GET_CONST
(
int
,
op
->
GetAttr
(
"class_num"
));
auto
downsample_ratio
=
PADDLE_GET_CONST
(
int
,
op
->
GetAttr
(
"downsample_ratio"
));
auto
scale_x_y
=
PADDLE_GET_CONST
(
float
,
op
->
GetAttr
(
"scale_x_y"
));
auto
anchors
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
op
->
GetAttr
(
"anchors"
));
// For Slice Op, while value is very large, it equals to the ends.
int
max_int
=
INT_MAX
;
int
anchor_num
=
anchors
.
size
()
/
2
;
// FP32 or FP16
auto
target_dtype
=
GetInputVarNode
(
"X"
,
node
)
->
Var
()
->
GetDataType
();
Node
*
input_x
=
GetInputVarNode
(
"X"
,
node
);
if
(
iou_aware
)
{
input_x
=
CreateSlice
(
graph
,
node
,
{
input_x
},
{},
std
::
vector
<
int
>
{
0
,
0
,
0
,
0
},
std
::
vector
<
int
>
{
max_int
,
anchor_num
,
max_int
,
max_int
},
std
::
vector
<
int
>
{
0
,
1
,
2
,
3
},
std
::
vector
<
int
>
{
1
,
1
,
1
,
1
})
->
outputs
[
0
];
}
auto
nchw
=
GetInputVarNode
(
"X"
,
node
)
->
Var
()
->
GetShape
();
// Channel `C` = anchor_num * (5 + class_num)
auto
*
reshaped_x
=
CreateReshape
(
graph
,
node
,
{
input_x
},
{},
std
::
vector
<
int64_t
>
{
nchw
[
0
],
anchor_num
,
-
1
,
nchw
[
2
],
nchw
[
3
]})
->
outputs
[
0
];
auto
*
transposed_x
=
CreateBaseOp
(
graph
,
node
,
"popart_transpose"
,
{
reshaped_x
},
{},
{{
"perm"
,
std
::
vector
<
int64_t
>
{
0
,
1
,
3
,
4
,
2
}}})
->
outputs
[
0
];
// Build the grid
// grid_x_0 shape is [w]
std
::
vector
<
float
>
grid_x_0
(
nchw
[
3
]);
std
::
iota
(
grid_x_0
.
begin
(),
grid_x_0
.
end
(),
0.0
f
);
// grid_y_0 shape is [h]
std
::
vector
<
float
>
grid_y_0
(
nchw
[
2
]);
std
::
iota
(
grid_y_0
.
begin
(),
grid_y_0
.
end
(),
0.0
f
);
// grid_x_1 shape is [w * h]
std
::
vector
<
float
>
grid_x_1
;
for
(
int
i
=
0
;
i
<
nchw
[
2
];
i
++
)
{
grid_x_1
.
insert
(
grid_x_1
.
end
(),
grid_x_0
.
begin
(),
grid_x_0
.
end
());
}
auto
*
grid_x_1_node
=
CreateConst
(
graph
,
node
,
grid_x_1
,
{
int64_t
(
grid_x_1
.
size
())},
VarType2OnnxDType
(
target_dtype
))
->
outputs
[
0
];
// grid_y_1 shape is [h * w]
std
::
vector
<
float
>
grid_y_1
;
for
(
int
i
=
0
;
i
<
nchw
[
3
];
i
++
)
{
grid_y_1
.
insert
(
grid_y_1
.
end
(),
grid_y_0
.
begin
(),
grid_y_0
.
end
());
}
auto
*
grid_y_1_node
=
CreateConst
(
graph
,
node
,
grid_y_1
,
{
int64_t
(
grid_y_1
.
size
())},
VarType2OnnxDType
(
target_dtype
))
->
outputs
[
0
];
auto
*
grid_x_node
=
CreateReshape
(
graph
,
node
,
{
grid_x_1_node
},
{},
std
::
vector
<
int64_t
>
{
nchw
[
2
],
nchw
[
3
],
1
})
->
outputs
[
0
];
auto
*
grid_y_2_node
=
CreateReshape
(
graph
,
node
,
{
grid_y_1_node
},
{},
std
::
vector
<
int64_t
>
{
nchw
[
3
],
nchw
[
2
],
1
})
->
outputs
[
0
];
auto
*
grid_y_node
=
CreateBaseOp
(
graph
,
node
,
"popart_transpose"
,
{
grid_y_2_node
},
{},
{{
"perm"
,
std
::
vector
<
int64_t
>
{
1
,
0
,
2
}}})
->
outputs
[
0
];
auto
*
grid_node
=
CreateBaseOp
(
graph
,
node
,
"popart_concat"
,
{
grid_x_node
,
grid_y_node
},
{},
{{
"axis"
,
int64_t
(
2
)}})
->
outputs
[
0
];
// Generate the positions(x, y) of boxes
// pred_box[:, :, :, :, 0] = (grid_x + sigmoid(pred_box[:, :, :, :, 0]) *
// scale_x_y + bias_x_y) / w pred_box[:, :, :, :, 1] = (grid_y +
// sigmoid(pred_box[:, :, :, :, 1]) * scale_x_y + bias_x_y) / h
auto
*
pred_box_xy
=
CreateSlice
(
graph
,
node
,
{
transposed_x
},
{},
std
::
vector
<
int
>
{
0
,
0
,
0
,
0
,
0
},
std
::
vector
<
int
>
{
max_int
,
max_int
,
max_int
,
max_int
,
2
},
std
::
vector
<
int
>
{
0
,
1
,
2
,
3
,
4
},
std
::
vector
<
int
>
{
1
,
1
,
1
,
1
,
1
})
->
outputs
[
0
];
auto
*
scale_x_y_node
=
CreateConst
(
graph
,
node
,
std
::
vector
<
float
>
{
scale_x_y
},
{
int64_t
(
1
)},
VarType2OnnxDType
(
target_dtype
))
->
outputs
[
0
];
auto
*
bias_x_y_node
=
CreateConst
(
graph
,
node
,
std
::
vector
<
float
>
{(
1.0
f
-
scale_x_y
)
/
2.0
f
},
{
int64_t
(
1
)},
VarType2OnnxDType
(
target_dtype
))
->
outputs
[
0
];
auto
*
wh
=
CreateConst
(
graph
,
node
,
std
::
vector
<
float
>
{
static_cast
<
float
>
(
nchw
[
3
]),
static_cast
<
float
>
(
nchw
[
2
])},
{
int64_t
(
2
)},
VarType2OnnxDType
(
target_dtype
))
->
outputs
[
0
];
pred_box_xy
=
CreateBaseOp
(
graph
,
node
,
"popart_sigmoid"
,
{
pred_box_xy
},
{})
->
outputs
[
0
];
pred_box_xy
=
CreateBaseOp
(
graph
,
node
,
"popart_mul"
,
{
pred_box_xy
,
scale_x_y_node
},
{})
->
outputs
[
0
];
pred_box_xy
=
CreateBaseOp
(
graph
,
node
,
"popart_add"
,
{
pred_box_xy
,
bias_x_y_node
},
{})
->
outputs
[
0
];
pred_box_xy
=
CreateBaseOp
(
graph
,
node
,
"popart_add"
,
{
pred_box_xy
,
grid_node
},
{})
->
outputs
[
0
];
pred_box_xy
=
CreateBaseOp
(
graph
,
node
,
"popart_div"
,
{
pred_box_xy
,
wh
},
{})
->
outputs
[
0
];
// Generate Width and Height of boxes
// anchors = [(anchors[i], anchors[i + 1]) for i in range(0, len(anchors), 2)]
// anchors_s = np.array(
// [(an_w / input_w, an_h / input_h) for an_w, an_h in anchors])
// anchor_w = anchors_s[:, 0:1].reshape((1, an_num, 1, 1))
// anchor_h = anchors_s[:, 1:2].reshape((1, an_num, 1, 1))
auto
*
anchors_node
=
CreateConst
(
graph
,
node
,
std
::
vector
<
float
>
{
anchors
.
begin
(),
anchors
.
begin
()
+
anchor_num
*
2
},
{
int64_t
(
anchor_num
*
2
)},
VarType2OnnxDType
(
target_dtype
))
->
outputs
[
0
];
anchors_node
=
CreateReshape
(
graph
,
node
,
{
anchors_node
},
{},
std
::
vector
<
int64_t
>
{
anchor_num
,
2
})
->
outputs
[
0
];
auto
*
downsample_node
=
CreateConst
(
graph
,
node
,
std
::
vector
<
float
>
{
static_cast
<
float
>
(
downsample_ratio
)},
{
int64_t
(
1
)},
VarType2OnnxDType
(
target_dtype
))
->
outputs
[
0
];
auto
*
ori_wh
=
CreateBaseOp
(
graph
,
node
,
"popart_mul"
,
{
wh
,
downsample_node
},
{})
->
outputs
[
0
];
anchors_node
=
CreateBaseOp
(
graph
,
node
,
"popart_div"
,
{
anchors_node
,
ori_wh
},
{})
->
outputs
[
0
];
anchors_node
=
CreateReshape
(
graph
,
node
,
{
anchors_node
},
{},
std
::
vector
<
int64_t
>
{
1
,
anchor_num
,
1
,
1
,
2
})
->
outputs
[
0
];
auto
*
pred_box_wh
=
CreateSlice
(
graph
,
node
,
{
transposed_x
},
{},
std
::
vector
<
int
>
{
0
,
0
,
0
,
0
,
2
},
std
::
vector
<
int
>
{
max_int
,
max_int
,
max_int
,
max_int
,
4
},
std
::
vector
<
int
>
{
0
,
1
,
2
,
3
,
4
},
std
::
vector
<
int
>
{
1
,
1
,
1
,
1
,
1
})
->
outputs
[
0
];
pred_box_wh
=
CreateBaseOp
(
graph
,
node
,
"popart_exp"
,
{
pred_box_wh
},
{})
->
outputs
[
0
];
pred_box_wh
=
CreateBaseOp
(
graph
,
node
,
"popart_mul"
,
{
pred_box_wh
,
anchors_node
},
{})
->
outputs
[
0
];
// Ignore the boxes whose confidience lower than the threshold
// if iou_aware:
// pred_conf = sigmoid(x[:, :, :, :, 4:5])**(
// 1 - iou_aware_factor) * sigmoid(ioup)**iou_aware_factor
// else:
// pred_conf = sigmoid(x[:, :, :, :, 4:5])
auto
*
confidence
=
CreateSlice
(
graph
,
node
,
{
transposed_x
},
{},
std
::
vector
<
int
>
{
0
,
0
,
0
,
0
,
4
},
std
::
vector
<
int
>
{
max_int
,
max_int
,
max_int
,
max_int
,
5
},
std
::
vector
<
int
>
{
0
,
1
,
2
,
3
,
4
},
std
::
vector
<
int
>
{
1
,
1
,
1
,
1
,
1
})
->
outputs
[
0
];
auto
*
pred_conf
=
CreateBaseOp
(
graph
,
node
,
"popart_sigmoid"
,
{
confidence
},
{})
->
outputs
[
0
];
if
(
iou_aware
)
{
auto
*
ioup
=
CreateSlice
(
graph
,
node
,
{
GetInputVarNode
(
"X"
,
node
)},
{},
std
::
vector
<
int
>
{
0
,
0
,
0
,
0
},
std
::
vector
<
int
>
{
max_int
,
anchor_num
,
max_int
,
max_int
},
std
::
vector
<
int
>
{
0
,
1
,
2
,
3
},
std
::
vector
<
int
>
{
1
,
1
,
1
,
1
})
->
outputs
[
0
];
ioup
=
CreateBaseOp
(
graph
,
node
,
"popart_unsqueeze"
,
{
ioup
},
{},
{{
"axes"
,
std
::
vector
<
int64_t
>
{
4
}}})
->
outputs
[
0
];
ioup
=
CreateBaseOp
(
graph
,
node
,
"popart_sigmoid"
,
{
ioup
},
{})
->
outputs
[
0
];
auto
*
power_0
=
CreateConst
(
graph
,
node
,
std
::
vector
<
float
>
{
1.0
f
-
iou_aware_factor
},
{
int64_t
(
1
)},
VarType2OnnxDType
(
target_dtype
))
->
outputs
[
0
];
auto
*
power_1
=
CreateConst
(
graph
,
node
,
std
::
vector
<
float
>
{
iou_aware_factor
},
{
int64_t
(
1
)},
VarType2OnnxDType
(
target_dtype
))
->
outputs
[
0
];
ioup
=
CreateBaseOp
(
graph
,
node
,
"popart_pow"
,
{
ioup
,
power_1
},
{})
->
outputs
[
0
];
pred_conf
=
CreateBaseOp
(
graph
,
node
,
"popart_pow"
,
{
pred_conf
,
power_0
},
{})
->
outputs
[
0
];
pred_conf
=
CreateBaseOp
(
graph
,
node
,
"popart_mul"
,
{
pred_conf
,
ioup
},
{})
->
outputs
[
0
];
}
// pred_conf[pred_conf < conf_thresh] = 0.
// pred_score = sigmoid(x[:, :, :, :, 5:]) * pred_conf
// pred_box = pred_box * (pred_conf > 0.).astype('float32')
auto
*
value_2
=
CreateConst
(
graph
,
node
,
std
::
vector
<
float
>
{
2.0
f
},
{
int64_t
(
1
)},
VarType2OnnxDType
(
target_dtype
))
->
outputs
[
0
];
auto
*
center
=
CreateBaseOp
(
graph
,
node
,
"popart_div"
,
{
pred_box_wh
,
value_2
},
{})
->
outputs
[
0
];
auto
*
min_xy
=
CreateBaseOp
(
graph
,
node
,
"popart_sub"
,
{
pred_box_xy
,
center
},
{})
->
outputs
[
0
];
auto
*
max_xy
=
CreateBaseOp
(
graph
,
node
,
"popart_add"
,
{
pred_box_xy
,
center
},
{})
->
outputs
[
0
];
auto
*
conf_thresh_node
=
CreateConst
(
graph
,
node
,
std
::
vector
<
float
>
{
conf_thresh
},
{
int64_t
(
1
)},
VarType2OnnxDType
(
target_dtype
))
->
outputs
[
0
];
auto
*
filter
=
CreateBaseOp
(
graph
,
node
,
"popart_greater"
,
{
pred_conf
,
conf_thresh_node
},
{})
->
outputs
[
0
];
filter
=
CreateCast
(
graph
,
node
,
{
filter
},
{},
target_dtype
)
->
outputs
[
0
];
pred_conf
=
CreateBaseOp
(
graph
,
node
,
"popart_mul"
,
{
pred_conf
,
filter
},
{})
->
outputs
[
0
];
auto
*
pred_score
=
CreateSlice
(
graph
,
node
,
{
transposed_x
},
{},
std
::
vector
<
int
>
{
0
,
0
,
0
,
0
,
5
},
std
::
vector
<
int
>
{
max_int
,
max_int
,
max_int
,
max_int
,
max_int
},
std
::
vector
<
int
>
{
0
,
1
,
2
,
3
,
4
},
std
::
vector
<
int
>
{
1
,
1
,
1
,
1
,
1
})
->
outputs
[
0
];
pred_score
=
CreateBaseOp
(
graph
,
node
,
"popart_sigmoid"
,
{
pred_score
},
{})
->
outputs
[
0
];
pred_score
=
CreateBaseOp
(
graph
,
node
,
"popart_mul"
,
{
pred_score
,
pred_conf
},
{})
->
outputs
[
0
];
auto
*
pred_box
=
CreateBaseOp
(
graph
,
node
,
"popart_concat"
,
{
min_xy
,
max_xy
},
{},
{{
"axis"
,
int64_t
(
4
)}})
->
outputs
[
0
];
pred_box
=
CreateBaseOp
(
graph
,
node
,
"popart_mul"
,
{
pred_box
,
filter
},
{})
->
outputs
[
0
];
pred_box
=
CreateReshape
(
graph
,
node
,
{
pred_box
},
{},
std
::
vector
<
int64_t
>
{
nchw
[
0
],
-
1
,
4
})
->
outputs
[
0
];
// Clip the boxes to img_size
auto
*
float_img_size
=
CreateCast
(
graph
,
node
,
{
GetInputVarNode
(
"ImgSize"
,
node
)},
{},
target_dtype
)
->
outputs
[
0
];
float_img_size
=
CreateBaseOp
(
graph
,
node
,
"popart_unsqueeze"
,
{
float_img_size
},
{},
{{
"axes"
,
std
::
vector
<
int64_t
>
(
1
)}})
->
outputs
[
0
];
auto
split_im_hw
=
CreateSplit
(
graph
,
node
,
{
float_img_size
},
{},
std
::
vector
<
int64_t
>
{
1
,
1
},
2
)
->
outputs
;
auto
*
im_whwh
=
CreateBaseOp
(
graph
,
node
,
"popart_concat"
,
{
split_im_hw
[
1
],
split_im_hw
[
0
],
split_im_hw
[
1
],
split_im_hw
[
0
]},
{},
{{
"axis"
,
int64_t
(
2
)}})
->
outputs
[
0
];
if
(
!
clip_bbox
)
{
auto
*
out
=
CreateBaseOp
(
graph
,
node
,
"popart_mul"
,
{
pred_box
,
im_whwh
},
{})
->
outputs
[
0
];
CreateCast
(
graph
,
node
,
{
out
},
{
GetOutputVarNode
(
"Boxes"
,
node
)},
GetOutputVarNode
(
"Boxes"
,
node
)
->
Var
()
->
GetDataType
());
}
else
{
pred_box
=
CreateBaseOp
(
graph
,
node
,
"popart_mul"
,
{
pred_box
,
im_whwh
},
{})
->
outputs
[
0
];
auto
*
im_wh
=
CreateBaseOp
(
graph
,
node
,
"popart_concat"
,
{
split_im_hw
[
1
],
split_im_hw
[
0
]},
{},
{{
"axis"
,
int64_t
(
2
)}})
->
outputs
[
0
];
auto
*
float_value_1
=
CreateConst
(
graph
,
node
,
std
::
vector
<
float
>
{
1.0
f
},
{
int64_t
(
1
)},
VarType2OnnxDType
(
target_dtype
))
->
outputs
[
0
];
im_wh
=
CreateBaseOp
(
graph
,
node
,
"popart_sub"
,
{
im_wh
,
float_value_1
},
{})
->
outputs
[
0
];
auto
pred_box_xymin_xymax
=
CreateSplit
(
graph
,
node
,
{
pred_box
},
{},
std
::
vector
<
int64_t
>
{
2
,
2
},
2
)
->
outputs
;
pred_box_xymin_xymax
[
0
]
=
CreateBaseOp
(
graph
,
node
,
"popart_relu"
,
{
pred_box_xymin_xymax
[
0
]},
{})
->
outputs
[
0
];
pred_box_xymin_xymax
[
1
]
=
CreateBaseOp
(
graph
,
node
,
"popart_min"
,
{
pred_box_xymin_xymax
[
1
],
im_wh
},
{})
->
outputs
[
0
];
auto
*
out
=
CreateBaseOp
(
graph
,
node
,
"popart_concat"
,
pred_box_xymin_xymax
,
{},
{{
"axis"
,
int64_t
(
2
)}})
->
outputs
[
0
];
CreateCast
(
graph
,
node
,
{
out
},
{
GetOutputVarNode
(
"Boxes"
,
node
)},
GetOutputVarNode
(
"Boxes"
,
node
)
->
Var
()
->
GetDataType
());
}
auto
*
score_out
=
CreateReshape
(
graph
,
node
,
{
pred_score
},
{},
std
::
vector
<
int64_t
>
{
nchw
[
0
],
-
1
,
class_num
})
->
outputs
[
0
];
return
CreateCast
(
graph
,
node
,
{
score_out
},
{
GetOutputVarNode
(
"Scores"
,
node
)},
GetOutputVarNode
(
"Scores"
,
node
)
->
Var
()
->
GetDataType
());
}
}
// namespace
}
// namespace ipu
}
// namespace platform
}
// namespace paddle
REGISTER_HANDLER
(
yolo_box
,
yolo_box_handler
);
paddle/fluid/platform/device/ipu/popart_canonicalization/nn_ops.cc
浏览文件 @
7daae985
...
...
@@ -656,30 +656,14 @@ Node *interp_handler(Graph *graph, Node *node, const std::string &mode) {
CreateBaseOp
(
graph
,
node
,
"popart_shape"
,
{
GetInputVarNode
(
"X"
,
node
)},
{})
->
outputs
[
0
];
Node
*
start
=
CreateConst
(
graph
,
node
,
std
::
vector
<
int
>
{
0
},
std
::
vector
<
int64_t
>
{
1
},
ONNXDataType
::
INT32
)
->
outputs
[
0
];
Node
*
end
=
CreateConst
(
graph
,
node
,
std
::
vector
<
int
>
{
2
},
std
::
vector
<
int64_t
>
{
1
},
ONNXDataType
::
INT32
)
->
outputs
[
0
];
Node
*
axes
=
CreateConst
(
graph
,
node
,
std
::
vector
<
int
>
{
0
},
std
::
vector
<
int64_t
>
{
1
},
ONNXDataType
::
INT32
)
->
outputs
[
0
];
Node
*
nc
=
CreateBaseOp
(
graph
,
node
,
"popart_slice"
,
{
input_shape
,
start
,
end
,
axes
},
{},
{})
Node
*
nc
=
CreateSlice
(
graph
,
node
,
{
input_shape
},
{},
std
::
vector
<
int
>
{
0
},
std
::
vector
<
int
>
{
2
},
std
::
vector
<
int
>
{
0
},
std
::
vector
<
int
>
{
1
})
->
outputs
[
0
];
size
=
CreateBaseOp
(
graph
,
node
,
...
...
paddle/fluid/platform/device/ipu/popart_canonicalization/op_builder.cc
浏览文件 @
7daae985
...
...
@@ -256,6 +256,69 @@ Node *CreateSoftmaxOpset11(Graph *graph,
}
}
Node
*
CreateSlice
(
Graph
*
graph
,
Node
*
node
,
const
std
::
vector
<
Node
*>
&
inputs
,
const
std
::
vector
<
Node
*>
&
outputs
,
const
std
::
vector
<
int
>
&
starts
,
const
std
::
vector
<
int
>
&
ends
,
const
std
::
vector
<
int
>
&
axes
,
const
std
::
vector
<
int
>
&
strides
)
{
auto
*
starts_node
=
CreateConst
(
graph
,
node
,
starts
,
{
int64_t
(
starts
.
size
())},
ONNXDataType
::
INT32
)
->
outputs
[
0
];
auto
*
ends_node
=
CreateConst
(
graph
,
node
,
ends
,
{
int64_t
(
ends
.
size
())},
ONNXDataType
::
INT32
)
->
outputs
[
0
];
auto
*
axes_node
=
CreateConst
(
graph
,
node
,
axes
,
{
int64_t
(
axes
.
size
())},
ONNXDataType
::
INT32
)
->
outputs
[
0
];
auto
*
strides_node
=
CreateConst
(
graph
,
node
,
strides
,
{
int64_t
(
strides
.
size
())},
ONNXDataType
::
INT32
)
->
outputs
[
0
];
return
CreateBaseOp
(
graph
,
node
,
"popart_slice"
,
{
inputs
[
0
],
starts_node
,
ends_node
,
axes_node
,
strides_node
},
outputs
);
}
Node
*
CreateSplit
(
Graph
*
graph
,
Node
*
node
,
const
std
::
vector
<
Node
*>
&
inputs
,
const
std
::
vector
<
Node
*>
&
outputs
,
const
std
::
vector
<
int64_t
>
&
split
,
const
int64_t
axis
)
{
if
(
!
outputs
.
empty
())
{
return
CreateBaseOp
(
graph
,
node
,
"popart_split"
,
inputs
,
outputs
,
{{
"num_outputs"
,
int64_t
(
split
.
size
())},
{
"axis"
,
int64_t
(
axis
)},
{
"split"
,
split
}});
}
else
{
std
::
vector
<
Node
*>
splits_output_nodes
;
for
(
int
j
=
0
;
j
<
split
.
size
();
j
++
)
{
splits_output_nodes
.
push_back
(
MakeVarNode
(
graph
,
node
));
}
return
CreateBaseOp
(
graph
,
node
,
"popart_split"
,
inputs
,
{
splits_output_nodes
},
{{
"num_outputs"
,
int64_t
(
split
.
size
())},
{
"axis"
,
int64_t
(
axis
)},
{
"split"
,
split
}});
}
}
}
// namespace ipu
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device/ipu/popart_canonicalization/op_builder.h
浏览文件 @
7daae985
...
...
@@ -104,6 +104,22 @@ Node *CreateSoftmaxOpset11(Graph *graph,
const
std
::
vector
<
Node
*>
&
outputs
,
int64_t
axis
);
Node
*
CreateSlice
(
Graph
*
graph
,
Node
*
node
,
const
std
::
vector
<
Node
*>
&
inputs
,
const
std
::
vector
<
Node
*>
&
outputs
,
const
std
::
vector
<
int
>
&
starts
,
const
std
::
vector
<
int
>
&
ends
,
const
std
::
vector
<
int
>
&
axes
,
const
std
::
vector
<
int
>
&
strides
);
Node
*
CreateSplit
(
Graph
*
graph
,
Node
*
node
,
const
std
::
vector
<
Node
*>
&
inputs
,
const
std
::
vector
<
Node
*>
&
outputs
,
const
std
::
vector
<
int64_t
>
&
split
,
const
int64_t
axis
);
}
// namespace ipu
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device/ipu/popart_canonicalization/tensor_ops.cc
浏览文件 @
7daae985
...
...
@@ -249,94 +249,57 @@ Node *lookup_table_op_handler(Graph *graph,
{{
"value"
,
const_value_
},
{
"dims"
,
const_shape_
},
{
"dtype"
,
GetOutputVarDType
(
node
)}});
auto
axes
=
CreateConst
(
graph
,
node
,
{},
{},
{{
"value"
,
std
::
vector
<
int64_t
>
{
0
}},
{
"dims"
,
std
::
vector
<
int64_t
>
{
1
}},
{
"dtype"
,
ONNXDataType
::
INT64
}});
auto
step
=
CreateConst
(
graph
,
node
,
{},
{},
{{
"value"
,
std
::
vector
<
int64_t
>
{
1
}},
{
"dims"
,
std
::
vector
<
int64_t
>
{
1
}},
{
"dtype"
,
ONNXDataType
::
INT64
}});
auto
left_start
=
CreateConst
(
graph
,
node
,
{},
{},
{{
"value"
,
std
::
vector
<
int64_t
>
{
0
}},
{
"dims"
,
std
::
vector
<
int64_t
>
{
1
}},
{
"dtype"
,
ONNXDataType
::
INT64
}});
auto
left_end
=
CreateConst
(
graph
,
node
,
{},
{},
{{
"value"
,
std
::
vector
<
int64_t
>
{
padding_idx_
}},
{
"dims"
,
std
::
vector
<
int64_t
>
{
1
}},
{
"dtype"
,
ONNXDataType
::
INT64
}});
auto
right_start
=
CreateConst
(
graph
,
node
,
{},
{},
{{
"value"
,
std
::
vector
<
int64_t
>
{
padding_idx_
+
1
}},
{
"dims"
,
std
::
vector
<
int64_t
>
{
1
}},
{
"dtype"
,
ONNXDataType
::
INT64
}});
auto
right_end
=
CreateConst
(
graph
,
node
,
{},
{},
{{
"value"
,
std
::
vector
<
int64_t
>
{
table_size_
}},
{
"dims"
,
std
::
vector
<
int64_t
>
{
1
}},
{
"dtype"
,
ONNXDataType
::
INT64
}});
auto
left_slice
=
CreateBaseOp
(
graph
,
node
,
"popart_slice"
,
{
GetInputVarNode
(
"W"
,
node
),
left_start
->
outputs
[
0
],
left_end
->
outputs
[
0
],
axes
->
outputs
[
0
],
step
->
outputs
[
0
]},
{},
{});
auto
right_slice
=
CreateBaseOp
(
graph
,
node
,
"popart_slice"
,
{
GetInputVarNode
(
"W"
,
node
),
right_start
->
outputs
[
0
],
right_end
->
outputs
[
0
],
axes
->
outputs
[
0
],
step
->
outputs
[
0
]},
{},
{});
if
(
padding_idx_
==
0
)
{
auto
right_slice
=
CreateSlice
(
graph
,
node
,
{
GetInputVarNode
(
"W"
,
node
)},
{},
std
::
vector
<
int
>
{
static_cast
<
int
>
(
padding_idx_
)
+
1
},
std
::
vector
<
int
>
{
static_cast
<
int
>
(
table_size_
)},
std
::
vector
<
int
>
{
0
},
std
::
vector
<
int
>
{
1
});
w_node
=
CreateBaseOp
(
graph
,
node
,
"popart_concat"
,
{
concat_const
->
outputs
[
0
],
right_slice
->
outputs
[
0
]},
{},
{{
"axis"
,
int64_t
(
0
)}});
ClearNode
(
left_start
);
ClearNode
(
left_end
);
ClearNode
(
left_slice
);
}
else
if
(
padding_idx_
==
table_size_
-
1
)
{
auto
left_slice
=
CreateSlice
(
graph
,
node
,
{
GetInputVarNode
(
"W"
,
node
)},
{},
std
::
vector
<
int
>
{
0
},
std
::
vector
<
int
>
{
static_cast
<
int
>
(
padding_idx_
)},
std
::
vector
<
int
>
{
0
},
std
::
vector
<
int
>
{
1
});
w_node
=
CreateBaseOp
(
graph
,
node
,
"popart_concat"
,
{
left_slice
->
outputs
[
0
],
concat_const
->
outputs
[
0
]},
{},
{{
"axis"
,
int64_t
{
0
}}});
ClearNode
(
right_start
);
ClearNode
(
right_end
);
ClearNode
(
right_slice
);
}
else
{
auto
left_slice
=
CreateSlice
(
graph
,
node
,
{
GetInputVarNode
(
"W"
,
node
)},
{},
std
::
vector
<
int
>
{
0
},
std
::
vector
<
int
>
{
static_cast
<
int
>
(
padding_idx_
)},
std
::
vector
<
int
>
{
0
},
std
::
vector
<
int
>
{
1
});
auto
right_slice
=
CreateSlice
(
graph
,
node
,
{
GetInputVarNode
(
"W"
,
node
)},
{},
std
::
vector
<
int
>
{
static_cast
<
int
>
(
padding_idx_
)
+
1
},
std
::
vector
<
int
>
{
static_cast
<
int
>
(
table_size_
)},
std
::
vector
<
int
>
{
0
},
std
::
vector
<
int
>
{
1
});
w_node
=
CreateBaseOp
(
graph
,
node
,
"popart_concat"
,
...
...
@@ -441,72 +404,69 @@ Node *shape_handler(Graph *graph, Node *node) {
Node
*
slice_handler
(
Graph
*
graph
,
Node
*
node
)
{
auto
*
op
=
node
->
Op
();
Node
*
starts
=
nullptr
;
if
(
!
op
->
HasAttr
(
"starts"
))
{
starts
=
GetInputVarNode
(
"StartsTensor"
,
node
);
}
else
{
auto
starts_
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
op
->
GetAttr
(
"starts"
));
auto
dim
=
int64_t
(
starts_
.
size
());
starts
=
CreateConst
(
graph
,
node
,
std
::
vector
<
int
>
{
starts_
},
{
dim
},
ONNXDataType
::
INT32
);
starts
=
starts
->
outputs
[
0
];
}
Node
*
ends
=
nullptr
;
if
(
!
op
->
HasAttr
(
"ends"
))
{
ends
=
GetInputVarNode
(
"EndsTensor"
,
node
);
}
else
{
auto
ends_
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
op
->
GetAttr
(
"ends"
));
auto
dim
=
int64_t
(
ends_
.
size
());
ends
=
CreateConst
(
graph
,
node
,
std
::
vector
<
int
>
{
ends_
},
{
dim
},
ONNXDataType
::
INT32
);
ends
=
ends
->
outputs
[
0
];
}
Node
*
axes
=
nullptr
;
{
auto
axes_
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
op
->
GetAttr
(
"axes"
));
auto
dim
=
int64_t
(
axes_
.
size
());
axes
=
CreateConst
(
graph
,
node
,
std
::
vector
<
int
>
{
axes_
},
{
dim
},
ONNXDataType
::
INT32
);
auto
inputs
=
op
->
Inputs
();
auto
axes_value
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
op
->
GetAttr
(
"axes"
));
std
::
vector
<
std
::
vector
<
int
>>
slice_values
(
3
);
std
::
vector
<
std
::
string
>
tensor_names
{
"Starts"
,
"Ends"
,
"Strides"
};
std
::
vector
<
std
::
string
>
attr_names
{
"starts"
,
"ends"
,
"strides"
};
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
// Starts and Ends are default keys in inputs, but Strides.
bool
is_tensor
=
(
inputs
.
find
(
tensor_names
[
i
]
+
"TensorList"
)
!=
inputs
.
end
()
&&
!
inputs
.
at
(
tensor_names
[
i
]
+
"TensorList"
).
empty
())
||
(
inputs
.
find
(
tensor_names
[
i
]
+
"Tensor"
)
!=
inputs
.
end
()
&&
!
inputs
.
at
(
tensor_names
[
i
]
+
"Tensor"
).
empty
());
if
(
is_tensor
)
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Do not support starts, ends and strides as tensors."
));
}
else
{
if
(
i
==
2
&&
!
op
->
HasAttr
(
"strides"
))
{
slice_values
[
i
]
=
std
::
vector
<
int
>
(
axes_value
.
size
(),
1
);
}
else
{
slice_values
[
i
]
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
op
->
GetAttr
(
attr_names
[
i
]));
}
}
}
auto
decrease_axis_
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
op
->
GetAttr
(
"decrease_axis"
));
auto
input_shape_
=
GetInputVarNode
(
"Input"
,
node
)
->
Var
()
->
GetShape
();
auto
output_shape_
=
GetOutputVarNode
(
"Out"
,
node
)
->
Var
()
->
GetShape
();
if
(
decrease_axis_
.
size
()
==
0
)
{
return
CreateBaseOp
(
graph
,
node
,
"popart_slice"
,
{
GetInputVarNode
(
"Input"
,
node
),
starts
,
ends
,
axes
->
outputs
[
0
]},
node
->
outputs
);
}
else
if
(
output_shape_
==
std
::
vector
<
int64_t
>
{
0
}
||
input_shape_
.
size
()
>
output_shape_
.
size
())
{
auto
slice
=
CreateBaseOp
(
graph
,
node
,
"popart_slice"
,
{
GetInputVarNode
(
"Input"
,
node
),
starts
,
ends
,
axes
->
outputs
[
0
]},
{},
{});
return
CreateSlice
(
graph
,
node
,
{
GetInputVarNode
(
"Input"
,
node
)},
{
GetOutputVarNode
(
"Out"
,
node
)},
slice_values
[
0
],
slice_values
[
1
],
axes_value
,
slice_values
[
2
]);
}
else
{
auto
*
slice
=
CreateSlice
(
graph
,
node
,
{
GetInputVarNode
(
"Input"
,
node
)},
{},
slice_values
[
0
],
slice_values
[
1
],
axes_value
,
slice_values
[
2
])
->
outputs
[
0
];
return
CreateBaseOp
(
graph
,
node
,
"popart_squeeze"
,
{
slice
->
outputs
[
0
]
},
{
slice
},
{
GetOutputVarNode
(
"Out"
,
node
)},
{{
"axes"
,
std
::
vector
<
int64_t
>
{
decrease_axis_
.
begin
(),
decrease_axis_
.
end
()}}});
}
else
{
return
CreateBaseOp
(
graph
,
node
,
"popart_slice"
,
{
GetInputVarNode
(
"Input"
,
node
),
starts
,
ends
,
axes
->
outputs
[
0
]},
node
->
outputs
);
}
}
Node
*
strided_slice_handler
(
Graph
*
graph
,
Node
*
node
)
{
return
slice_handler
(
graph
,
node
);
}
Node
*
expand_handler
(
Graph
*
graph
,
Node
*
node
)
{
auto
*
op
=
node
->
Op
();
if
(
!
op
->
Input
(
"expand_times_tensor"
).
empty
())
{
...
...
@@ -552,6 +512,10 @@ Node *assign_handler(Graph *graph, Node *node) {
{});
}
Node
*
share_data_handler
(
Graph
*
graph
,
Node
*
node
)
{
return
assign_handler
(
graph
,
node
);
}
Node
*
assign_value_handler
(
Graph
*
graph
,
Node
*
node
)
{
auto
*
op
=
node
->
Op
();
auto
dtype_
=
PADDLE_GET_CONST
(
int
,
op
->
GetAttr
(
"dtype"
));
...
...
@@ -731,15 +695,12 @@ Node *split_handler(Graph *graph, Node *node) {
auto
*
op
=
node
->
Op
();
auto
axis
=
PADDLE_GET_CONST
(
int
,
op
->
GetAttr
(
"axis"
));
auto
sections
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
op
->
GetAttr
(
"sections"
));
return
CreateBaseOp
(
graph
,
node
,
"popart_split"
,
{
GetInputVarNode
(
"X"
,
node
)},
node
->
outputs
,
{{
"num_outputs"
,
int64_t
(
sections
.
size
())},
{
"axis"
,
int64_t
(
axis
)},
{
"split"
,
std
::
vector
<
int64_t
>
{
sections
.
begin
(),
sections
.
end
()}}});
return
CreateSplit
(
graph
,
node
,
{
GetInputVarNode
(
"X"
,
node
)},
node
->
outputs
,
std
::
vector
<
int64_t
>
{
sections
.
begin
(),
sections
.
end
()},
axis
);
}
Node
*
dot_handler
(
Graph
*
graph
,
Node
*
node
)
{
...
...
@@ -1116,19 +1077,8 @@ Node *flip_handler(Graph *graph, Node *node) {
auto
axis
=
axes
[
i
];
std
::
vector
<
int64_t
>
split
;
split
.
resize
(
input_shape
[
axis
],
1
);
std
::
vector
<
Node
*>
splits_output_nodes
;
for
(
int
j
=
0
;
j
<
split
.
size
();
j
++
)
{
splits_output_nodes
.
push_back
(
MakeVarNode
(
graph
,
node
));
}
auto
splits_outputs
=
CreateBaseOp
(
graph
,
node
,
"popart_split"
,
{
temp_node
},
{
splits_output_nodes
},
{{
"num_outputs"
,
int64_t
(
split
.
size
())},
{
"axis"
,
int64_t
(
axis
)},
{
"split"
,
split
}})
->
outputs
;
auto
splits_outputs
=
CreateSplit
(
graph
,
node
,
{
temp_node
},
{},
split
,
axis
)
->
outputs
;
std
::
reverse
(
splits_outputs
.
begin
(),
splits_outputs
.
end
());
if
(
i
!=
axes
.
size
()
-
1
)
{
temp_node
=
CreateBaseOp
(
graph
,
...
...
@@ -1244,6 +1194,70 @@ Node *p_norm_handler(Graph *graph, Node *node) {
{
GetOutputVarNode
(
"Out"
,
node
)});
}
Node
*
tile_handler
(
Graph
*
graph
,
Node
*
node
)
{
auto
*
op
=
node
->
Op
();
auto
inputs
=
op
->
Inputs
();
bool
is_repeat_tensors
=
(
inputs
.
find
(
"RepeatTimes"
)
!=
inputs
.
end
()
&&
!
inputs
.
at
(
"RepeatTimes"
).
empty
())
||
(
inputs
.
find
(
"repeat_times_tensor"
)
!=
inputs
.
end
()
&&
!
inputs
.
at
(
"repeat_times_tensor"
).
empty
());
if
(
is_repeat_tensors
)
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Do not support repeats as tensors."
));
}
auto
repeat_times
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
op
->
GetAttr
(
"repeat_times"
));
int
nums
=
repeat_times
.
size
();
std
::
vector
<
int
>
ones
(
GetInputVarNode
(
"X"
,
node
)
->
Var
()
->
GetShape
().
size
()
-
nums
,
1
);
repeat_times
.
insert
(
repeat_times
.
begin
(),
ones
.
begin
(),
ones
.
end
());
auto
*
repeat_node
=
CreateConst
(
graph
,
node
,
std
::
vector
<
int64_t
>
{
repeat_times
.
begin
(),
repeat_times
.
end
()},
{
int64_t
(
repeat_times
.
size
())},
ONNXDataType
::
INT64
)
->
outputs
[
0
];
return
CreateBaseOp
(
graph
,
node
,
"popart_tile"
,
{
GetInputVarNode
(
"X"
,
node
),
repeat_node
},
{
GetOutputVarNode
(
"Out"
,
node
)});
}
Node
*
unstack_handler
(
Graph
*
graph
,
Node
*
node
)
{
auto
*
op
=
node
->
Op
();
auto
axis
=
PADDLE_GET_CONST
(
int
,
op
->
GetAttr
(
"axis"
));
if
(
axis
<
0
)
{
axis
+=
GetInputVarNode
(
"X"
,
node
)
->
Var
()
->
GetShape
().
size
();
}
std
::
vector
<
int64_t
>
split
(
node
->
outputs
.
size
(),
1
);
auto
split_output_nodes
=
CreateSplit
(
graph
,
node
,
{
GetInputVarNode
(
"X"
,
node
)},
{},
split
,
axis
)
->
outputs
;
Node
*
output
=
nullptr
;
for
(
int
i
=
0
;
i
<
split
.
size
();
i
++
)
{
output
=
CreateBaseOp
(
graph
,
node
,
"popart_squeeze"
,
{
split_output_nodes
[
i
]},
{
node
->
outputs
[
i
]},
{{
"axes"
,
std
::
vector
<
int64_t
>
{
axis
}}});
}
return
output
;
}
Node
*
where_handler
(
Graph
*
graph
,
Node
*
node
)
{
return
CreateBaseOp
(
graph
,
node
,
"popart_where"
,
{
GetInputVarNode
(
"Condition"
,
node
),
GetInputVarNode
(
"X"
,
node
),
GetInputVarNode
(
"Y"
,
node
)},
{
GetOutputVarNode
(
"Out"
,
node
)});
}
}
// namespace
}
// namespace ipu
}
// namespace platform
...
...
@@ -1265,6 +1279,7 @@ REGISTER_HANDLER(concat, concat_handler);
REGISTER_HANDLER
(
stack
,
stack_handler
);
REGISTER_HANDLER
(
shape
,
shape_handler
);
REGISTER_HANDLER
(
slice
,
slice_handler
);
REGISTER_HANDLER
(
strided_slice
,
strided_slice_handler
);
REGISTER_HANDLER
(
expand
,
expand_handler
);
REGISTER_HANDLER
(
expand_v2
,
expand_v2_handler
);
REGISTER_HANDLER
(
expand_as_v2
,
expand_as_v2_handler
);
...
...
@@ -1281,3 +1296,7 @@ REGISTER_HANDLER(dist, dist_handler);
REGISTER_HANDLER
(
flip
,
flip_handler
);
REGISTER_HANDLER
(
meshgrid
,
meshgrid_handler
);
REGISTER_HANDLER
(
p_norm
,
p_norm_handler
);
REGISTER_HANDLER
(
share_data
,
share_data_handler
);
REGISTER_HANDLER
(
tile
,
tile_handler
);
REGISTER_HANDLER
(
unstack
,
unstack_handler
);
REGISTER_HANDLER
(
where
,
where_handler
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录