Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
7a867063
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7a867063
编写于
9月 02, 2019
作者:
X
xiaoting
提交者:
lvmengsi
9月 02, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modified multiclass_nms example (#19553)
test=develop, test=document_preview
上级
57f0f0f2
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
24 addition
and
2 deletion
+24
-2
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+23
-1
未找到文件。
paddle/fluid/API.spec
浏览文件 @
7a867063
...
@@ -410,7 +410,7 @@ paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varar
...
@@ -410,7 +410,7 @@ paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varar
paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gt_box', 'gt_label', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'gt_score', 'use_label_smooth', 'name'], varargs=None, keywords=None, defaults=(None, True, None)), ('document', '400403175718d5a632402cdae88b01b8'))
paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gt_box', 'gt_label', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'gt_score', 'use_label_smooth', 'name'], varargs=None, keywords=None, defaults=(None, True, None)), ('document', '400403175718d5a632402cdae88b01b8'))
paddle.fluid.layers.yolo_box (ArgSpec(args=['x', 'img_size', 'anchors', 'class_num', 'conf_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ed56ff21536ca5c8ad418d0cfaf6a7b9'))
paddle.fluid.layers.yolo_box (ArgSpec(args=['x', 'img_size', 'anchors', 'class_num', 'conf_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ed56ff21536ca5c8ad418d0cfaf6a7b9'))
paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '9ddee76cb808db83768bf68010e39b2b'))
paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '9ddee76cb808db83768bf68010e39b2b'))
paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', '
76d74056e9eedcacf013d8e3b115cbd3
'))
paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', '
51a388c4d067ea93a6a60492db40c7af
'))
paddle.fluid.layers.retinanet_detection_output (ArgSpec(args=['bboxes', 'scores', 'anchors', 'im_info', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'nms_eta'], varargs=None, keywords=None, defaults=(0.05, 1000, 100, 0.3, 1.0)), ('document', '078d28607ce261a0cba2b965a79f6bb8'))
paddle.fluid.layers.retinanet_detection_output (ArgSpec(args=['bboxes', 'scores', 'anchors', 'im_info', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'nms_eta'], varargs=None, keywords=None, defaults=(0.05, 1000, 100, 0.3, 1.0)), ('document', '078d28607ce261a0cba2b965a79f6bb8'))
paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '6c023b9401214ae387a8b2d92638e5e4'))
paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '6c023b9401214ae387a8b2d92638e5e4'))
paddle.fluid.layers.box_decoder_and_assign (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'box_score', 'box_clip', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '3619a7847709f5868f5e929065947b38'))
paddle.fluid.layers.box_decoder_and_assign (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'box_score', 'box_clip', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '3619a7847709f5868f5e929065947b38'))
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
7a867063
...
@@ -2694,6 +2694,28 @@ def multiclass_nms(bboxes,
...
@@ -2694,6 +2694,28 @@ def multiclass_nms(bboxes,
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
per image if keep_top_k is larger than -1.
See below for an example:
.. code-block:: text
if:
box1.data = (2.0, 3.0, 7.0, 5.0) format is (xmin, ymin, xmax, ymax)
box1.scores = (0.7, 0.2, 0.4) which is (label0.score=0.7, label1.score=0.2, label2.cores=0.4)
box2.data = (3.0, 4.0, 8.0, 5.0)
box2.score = (0.3, 0.3, 0.1)
nms_threshold = 0.3
background_label = 0
score_threshold = 0
Then:
iou = 4/11 > 0.3
out.data = [[1, 0.3, 3.0, 4.0, 8.0, 5.0],
[2, 0.4, 2.0, 3.0, 7.0, 5.0]]
Out format is (label, confidence, xmin, ymin, xmax, ymax)
Args:
Args:
bboxes (Variable): Two types of bboxes are supported:
bboxes (Variable): Two types of bboxes are supported:
1. (Tensor) A 3-D Tensor with shape
1. (Tensor) A 3-D Tensor with shape
...
@@ -2734,7 +2756,7 @@ def multiclass_nms(bboxes,
...
@@ -2734,7 +2756,7 @@ def multiclass_nms(bboxes,
name(str): Name of the multiclass nms op. Default: None.
name(str): Name of the multiclass nms op. Default: None.
Returns:
Returns:
Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
Out
(Variable)
: A 2-D LoDTensor with shape [No, 6] represents the detections.
Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
or A 2-D LoDTensor with shape [No, 10] represents the detections.
or A 2-D LoDTensor with shape [No, 10] represents the detections.
Each row has 10 values:
Each row has 10 values:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录