Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
7a57b3b7
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7a57b3b7
编写于
11月 17, 2017
作者:
G
Guo Sheng
提交者:
GitHub
11月 17, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #5623 from guoshengCS/fix-H0-GRUOp
Fix data order of H0 in GRU Operator
上级
093c526d
aa83e19e
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
49 addition
and
19 deletion
+49
-19
paddle/operators/gru_op.h
paddle/operators/gru_op.h
+40
-12
python/paddle/v2/fluid/tests/test_gru_op.py
python/paddle/v2/fluid/tests/test_gru_op.py
+9
-7
未找到文件。
paddle/operators/gru_op.h
浏览文件 @
7a57b3b7
...
@@ -24,8 +24,17 @@
...
@@ -24,8 +24,17 @@
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
Tensor
=
framework
::
Tensor
;
template
<
typename
Place
,
typename
T
>
inline
void
ReorderInitState
(
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
src
,
const
size_t
*
index
,
framework
::
Tensor
*
dst
,
bool
indexed_src
)
{
math
::
CopyMatrixRowsFunctor
<
Place
,
T
>
row_shuffle
;
dst
->
mutable_data
<
T
>
(
src
.
dims
(),
ctx
.
GetPlace
());
row_shuffle
(
ctx
,
src
,
index
,
*
dst
,
indexed_src
);
}
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
>
class
GRUKernel
:
public
framework
::
OpKernel
<
T
>
{
class
GRUKernel
:
public
framework
::
OpKernel
<
T
>
{
...
@@ -33,7 +42,6 @@ class GRUKernel : public framework::OpKernel<T> {
...
@@ -33,7 +42,6 @@ class GRUKernel : public framework::OpKernel<T> {
void
BatchCompute
(
const
framework
::
ExecutionContext
&
context
)
const
{
void
BatchCompute
(
const
framework
::
ExecutionContext
&
context
)
const
{
auto
*
input
=
context
.
Input
<
LoDTensor
>
(
"Input"
);
auto
*
input
=
context
.
Input
<
LoDTensor
>
(
"Input"
);
auto
*
h0
=
context
.
Input
<
Tensor
>
(
"H0"
);
auto
*
h0
=
context
.
Input
<
Tensor
>
(
"H0"
);
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
nullptr
;
auto
*
weight
=
context
.
Input
<
Tensor
>
(
"Weight"
);
auto
*
weight
=
context
.
Input
<
Tensor
>
(
"Weight"
);
const
T
*
weight_data
=
weight
->
data
<
T
>
();
const
T
*
weight_data
=
weight
->
data
<
T
>
();
auto
*
bias
=
context
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
bias
=
context
.
Input
<
Tensor
>
(
"Bias"
);
...
@@ -66,7 +74,18 @@ class GRUKernel : public framework::OpKernel<T> {
...
@@ -66,7 +74,18 @@ class GRUKernel : public framework::OpKernel<T> {
gru_value
.
gateWeight
=
const_cast
<
T
*>
(
weight_data
);
gru_value
.
gateWeight
=
const_cast
<
T
*>
(
weight_data
);
gru_value
.
stateWeight
=
gru_value
.
stateWeight
=
const_cast
<
T
*>
(
weight_data
+
2
*
frame_size
*
frame_size
);
const_cast
<
T
*>
(
weight_data
+
2
*
frame_size
*
frame_size
);
gru_value
.
prevOutValue
=
const_cast
<
T
*>
(
h0_data
);
Tensor
ordered_h0
;
const
size_t
*
order
=
batch_gate
->
lod
()[
2
].
data
();
if
(
h0
)
{
// Since the batch computing for GRU reorders the input sequences
// according to their length. The initialized cell state also needs
// to reorder.
ReorderInitState
<
Place
,
T
>
(
context
.
device_context
(),
*
h0
,
order
,
&
ordered_h0
,
true
);
gru_value
.
prevOutValue
=
ordered_h0
.
data
<
T
>
();
}
else
{
gru_value
.
prevOutValue
=
nullptr
;
}
auto
batch_starts
=
batch_gate
->
lod
()[
0
];
auto
batch_starts
=
batch_gate
->
lod
()[
0
];
size_t
num_batch
=
batch_starts
.
size
()
-
1
;
size_t
num_batch
=
batch_starts
.
size
()
-
1
;
for
(
size_t
n
=
0
;
n
<
num_batch
;
n
++
)
{
for
(
size_t
n
=
0
;
n
<
num_batch
;
n
++
)
{
...
@@ -102,7 +121,6 @@ class GRUGradKernel : public framework::OpKernel<T> {
...
@@ -102,7 +121,6 @@ class GRUGradKernel : public framework::OpKernel<T> {
public:
public:
void
BatchCompute
(
const
framework
::
ExecutionContext
&
context
)
const
{
void
BatchCompute
(
const
framework
::
ExecutionContext
&
context
)
const
{
auto
*
h0
=
context
.
Input
<
Tensor
>
(
"H0"
);
auto
*
h0
=
context
.
Input
<
Tensor
>
(
"H0"
);
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
nullptr
;
auto
*
weight
=
context
.
Input
<
Tensor
>
(
"Weight"
);
auto
*
weight
=
context
.
Input
<
Tensor
>
(
"Weight"
);
const
T
*
weight_data
=
weight
->
data
<
T
>
();
const
T
*
weight_data
=
weight
->
data
<
T
>
();
auto
*
batch_gate
=
context
.
Input
<
LoDTensor
>
(
"BatchGate"
);
auto
*
batch_gate
=
context
.
Input
<
LoDTensor
>
(
"BatchGate"
);
...
@@ -135,6 +153,17 @@ class GRUGradKernel : public framework::OpKernel<T> {
...
@@ -135,6 +153,17 @@ class GRUGradKernel : public framework::OpKernel<T> {
zero
(
dev_ctx
,
&
batch_gate_grad
,
static_cast
<
T
>
(
0.0
));
zero
(
dev_ctx
,
&
batch_gate_grad
,
static_cast
<
T
>
(
0.0
));
zero
(
dev_ctx
,
&
batch_reset_hidden_prev_grad
,
static_cast
<
T
>
(
0.0
));
zero
(
dev_ctx
,
&
batch_reset_hidden_prev_grad
,
static_cast
<
T
>
(
0.0
));
Tensor
ordered_h0
,
ordered_h0_grad
;
const
size_t
*
order
=
batch_gate
->
lod
()[
2
].
data
();
if
(
h0
)
{
ReorderInitState
<
Place
,
T
>
(
context
.
device_context
(),
*
h0
,
order
,
&
ordered_h0
,
true
);
}
if
(
h0_grad
)
{
ordered_h0_grad
.
mutable_data
<
T
>
(
h0_grad
->
dims
(),
context
.
GetPlace
());
zero
(
context
.
device_context
(),
&
ordered_h0_grad
,
static_cast
<
T
>
(
0.0
));
}
bool
is_reverse
=
context
.
Attr
<
bool
>
(
"is_reverse"
);
bool
is_reverse
=
context
.
Attr
<
bool
>
(
"is_reverse"
);
batch_hidden_grad
.
set_lod
(
batch_hidden
->
lod
());
batch_hidden_grad
.
set_lod
(
batch_hidden
->
lod
());
to_batch
(
dev_ctx
,
*
hidden_grad
,
batch_hidden_grad
,
false
,
is_reverse
);
to_batch
(
dev_ctx
,
*
hidden_grad
,
batch_hidden_grad
,
false
,
is_reverse
);
...
@@ -176,14 +205,9 @@ class GRUGradKernel : public framework::OpKernel<T> {
...
@@ -176,14 +205,9 @@ class GRUGradKernel : public framework::OpKernel<T> {
batch_reset_hidden_prev_grad
.
Slice
(
bstart
,
bend
);
batch_reset_hidden_prev_grad
.
Slice
(
bstart
,
bend
);
gru_grad
.
resetOutputGrad
=
reset_hidden_prev_grad_t
.
data
<
T
>
();
gru_grad
.
resetOutputGrad
=
reset_hidden_prev_grad_t
.
data
<
T
>
();
if
(
n
==
0
)
{
if
(
n
==
0
)
{
gru_value
.
prevOutValue
=
const_cast
<
T
*>
(
h0_data
);
gru_value
.
prevOutValue
=
h0
?
ordered_h0
.
data
<
T
>
()
:
nullptr
;
if
(
h0_grad
)
{
gru_grad
.
prevOutGrad
=
T
*
h0_grad_data
=
h0_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
h0
&&
h0_grad
?
ordered_h0_grad
.
data
<
T
>
()
:
nullptr
;
zero
(
dev_ctx
,
h0_grad
,
static_cast
<
T
>
(
0.0
));
gru_grad
.
prevOutGrad
=
h0_grad_data
;
}
else
{
gru_grad
.
prevOutGrad
=
nullptr
;
}
}
else
{
}
else
{
int
bstart_pre
=
static_cast
<
int
>
(
batch_starts
[
n
-
1
]);
int
bstart_pre
=
static_cast
<
int
>
(
batch_starts
[
n
-
1
]);
Tensor
hidden_prev_t
=
batch_hidden
->
Slice
(
bstart_pre
,
bstart
);
Tensor
hidden_prev_t
=
batch_hidden
->
Slice
(
bstart_pre
,
bstart
);
...
@@ -208,6 +232,10 @@ class GRUGradKernel : public framework::OpKernel<T> {
...
@@ -208,6 +232,10 @@ class GRUGradKernel : public framework::OpKernel<T> {
math
::
ColwiseSum
<
Place
,
T
>
col_sum
;
math
::
ColwiseSum
<
Place
,
T
>
col_sum
;
col_sum
(
dev_ctx
,
batch_gate_grad
,
bias_grad
);
col_sum
(
dev_ctx
,
batch_gate_grad
,
bias_grad
);
}
}
if
(
h0
&&
h0_grad
)
{
ReorderInitState
<
Place
,
T
>
(
context
.
device_context
(),
ordered_h0_grad
,
order
,
h0_grad
,
false
);
}
}
}
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
...
...
python/paddle/v2/fluid/tests/test_gru_op.py
浏览文件 @
7a57b3b7
...
@@ -6,7 +6,8 @@ from test_lstm_op import identity, sigmoid, tanh, relu
...
@@ -6,7 +6,8 @@ from test_lstm_op import identity, sigmoid, tanh, relu
class
TestGRUOp
(
OpTest
):
class
TestGRUOp
(
OpTest
):
batch_size
=
9
lod
=
[[
0
,
2
,
6
,
9
]]
batch_size
=
lod
[
0
][
-
1
]
frame_size
=
5
frame_size
=
5
activate
=
{
activate
=
{
'identity'
:
identity
,
'identity'
:
identity
,
...
@@ -35,7 +36,7 @@ class TestGRUOp(OpTest):
...
@@ -35,7 +36,7 @@ class TestGRUOp(OpTest):
seq_starts
[
sorted_seqs
[
i
]]
+
batch_idx
)
seq_starts
[
sorted_seqs
[
i
]]
+
batch_idx
)
idx_in_seq
.
append
(
idx
)
idx_in_seq
.
append
(
idx
)
idx_in_seq_list
.
append
(
idx_in_seq
)
idx_in_seq_list
.
append
(
idx_in_seq
)
return
idx_in_seq_list
return
idx_in_seq_list
,
sorted_seqs
def
gru_step
(
self
,
x
,
h_p
,
w
,
b
):
def
gru_step
(
self
,
x
,
h_p
,
w
,
b
):
batch_size
=
x
.
shape
[
0
]
batch_size
=
x
.
shape
[
0
]
...
@@ -66,8 +67,8 @@ class TestGRUOp(OpTest):
...
@@ -66,8 +67,8 @@ class TestGRUOp(OpTest):
batch_hidden
=
self
.
outputs
[
'BatchHidden'
]
batch_hidden
=
self
.
outputs
[
'BatchHidden'
]
hidden
=
self
.
outputs
[
'Hidden'
]
hidden
=
self
.
outputs
[
'Hidden'
]
idx_in_seq_list
=
self
.
idx_in_seq_list
idx_in_seq_list
=
self
.
idx_in_seq_list
h_p
=
self
.
inputs
[
'H0'
]
if
self
.
inputs
.
has_key
(
'H0'
)
else
np
.
zeros
(
h_p
=
self
.
inputs
[
'H0'
]
[
self
.
sorted_seqs
]
if
self
.
inputs
.
has_key
(
(
len
(
idx_in_seq_list
[
0
]),
self
.
frame_size
))
'H0'
)
else
np
.
zeros
(
(
len
(
idx_in_seq_list
[
0
]),
self
.
frame_size
))
num_batch
=
len
(
idx_in_seq_list
)
num_batch
=
len
(
idx_in_seq_list
)
end_idx
=
0
end_idx
=
0
for
batch_idx
in
range
(
num_batch
):
for
batch_idx
in
range
(
num_batch
):
...
@@ -84,8 +85,9 @@ class TestGRUOp(OpTest):
...
@@ -84,8 +85,9 @@ class TestGRUOp(OpTest):
return
batch_gate
,
batch_reset_hidden_prev
,
hidden
return
batch_gate
,
batch_reset_hidden_prev
,
hidden
def
set_data
(
self
):
def
set_data
(
self
):
lod
=
[[
0
,
2
,
6
,
self
.
batch_size
]]
lod
=
self
.
lod
self
.
idx_in_seq_list
=
self
.
seq_to_batch
(
lod
,
self
.
is_reverse
)
self
.
idx_in_seq_list
,
self
.
sorted_seqs
=
self
.
seq_to_batch
(
lod
,
self
.
is_reverse
)
batch_size
=
self
.
batch_size
batch_size
=
self
.
batch_size
frame_size
=
self
.
frame_size
frame_size
=
self
.
frame_size
input
=
np
.
random
.
rand
(
batch_size
,
frame_size
*
3
).
astype
(
'float64'
)
input
=
np
.
random
.
rand
(
batch_size
,
frame_size
*
3
).
astype
(
'float64'
)
...
@@ -146,7 +148,7 @@ class TestGRUOpReverse(TestGRUOp):
...
@@ -146,7 +148,7 @@ class TestGRUOpReverse(TestGRUOp):
def
set_confs
(
self
):
def
set_confs
(
self
):
self
.
is_reverse
=
True
self
.
is_reverse
=
True
self
.
attrs
=
{
self
.
attrs
=
{
'activation'
:
'
identity
'
,
'activation'
:
'
tanh
'
,
'gate_activation'
:
'sigmoid'
,
'gate_activation'
:
'sigmoid'
,
'is_reverse'
:
self
.
is_reverse
'is_reverse'
:
self
.
is_reverse
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录