Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
795f572f
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
795f572f
编写于
2月 28, 2018
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Rename 'seq_error' to 'instance_error'
上级
87d90d2a
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
18 addition
and
13 deletion
+18
-13
python/paddle/fluid/evaluator.py
python/paddle/fluid/evaluator.py
+18
-13
未找到文件。
python/paddle/fluid/evaluator.py
浏览文件 @
795f572f
...
...
@@ -22,6 +22,7 @@ from layer_helper import LayerHelper
__all__
=
[
'Accuracy'
,
'ChunkEvaluator'
,
'EditDistance'
,
]
...
...
@@ -211,7 +212,7 @@ class ChunkEvaluator(Evaluator):
class
EditDistance
(
Evaluator
):
"""
Accumulate edit distance sum and sequence number from mini-batches and
compute the average edit_distance of all batches.
compute the average edit_distance
and instance error
of all batches.
Args:
input: the sequences predicted by network.
...
...
@@ -228,11 +229,11 @@ class EditDistance(Evaluator):
distance_evaluator.reset(exe)
for data in batches:
loss = exe.run(fetch_list=[cost])
distance,
seque
nce_error = distance_evaluator.eval(exe)
distance,
insta
nce_error = distance_evaluator.eval(exe)
In the above example:
'distance' is the average of the edit distance rate in a pass.
'
sequence_error' is the seque
nce error rate in a pass.
'
instance_error' is the insta
nce error rate in a pass.
"""
...
...
@@ -246,8 +247,8 @@ class EditDistance(Evaluator):
dtype
=
'float32'
,
shape
=
[
1
],
suffix
=
'total_distance'
)
self
.
seq_num
=
self
.
create_state
(
dtype
=
'int64'
,
shape
=
[
1
],
suffix
=
'seq_num'
)
self
.
seq
_error
=
self
.
create_state
(
dtype
=
'int64'
,
shape
=
[
1
],
suffix
=
'
seq
_error'
)
self
.
instance
_error
=
self
.
create_state
(
dtype
=
'int64'
,
shape
=
[
1
],
suffix
=
'
instance
_error'
)
distances
,
seq_num
=
layers
.
edit_distance
(
input
=
input
,
label
=
label
,
ignored_tokens
=
ignored_tokens
)
...
...
@@ -255,15 +256,18 @@ class EditDistance(Evaluator):
compare_result
=
layers
.
equal
(
distances
,
zero
)
compare_result_int
=
layers
.
cast
(
x
=
compare_result
,
dtype
=
'int'
)
seq_right_count
=
layers
.
reduce_sum
(
compare_result_int
)
seq_error_count
=
layers
.
elementwise_sub
(
x
=
seq_num
,
y
=
seq_right_count
)
instance_error_count
=
layers
.
elementwise_sub
(
x
=
seq_num
,
y
=
seq_right_count
)
total_distance
=
layers
.
reduce_sum
(
distances
)
layers
.
sums
(
input
=
[
self
.
total_distance
,
total_distance
],
out
=
self
.
total_distance
)
layers
.
sums
(
input
=
[
self
.
seq_num
,
seq_num
],
out
=
self
.
seq_num
)
layers
.
sums
(
input
=
[
self
.
seq_error
,
seq_error_count
],
out
=
self
.
seq_error
)
layers
.
sums
(
input
=
[
self
.
instance_error
,
instance_error_count
],
out
=
self
.
instance_error
)
self
.
metrics
.
append
(
total_distance
)
self
.
metrics
.
append
(
seq
_error_count
)
self
.
metrics
.
append
(
instance
_error_count
)
def
eval
(
self
,
executor
,
eval_program
=
None
):
if
eval_program
is
None
:
...
...
@@ -272,11 +276,12 @@ class EditDistance(Evaluator):
with
program_guard
(
main_program
=
eval_program
):
total_distance
=
_clone_var_
(
block
,
self
.
total_distance
)
seq_num
=
_clone_var_
(
block
,
self
.
seq_num
)
seq_error
=
_clone_var_
(
block
,
self
.
seq
_error
)
instance_error
=
_clone_var_
(
block
,
self
.
instance
_error
)
seq_num
=
layers
.
cast
(
x
=
seq_num
,
dtype
=
'float32'
)
seq_error
=
layers
.
cast
(
x
=
seq
_error
,
dtype
=
'float32'
)
instance_error
=
layers
.
cast
(
x
=
instance
_error
,
dtype
=
'float32'
)
avg_distance
=
layers
.
elementwise_div
(
x
=
total_distance
,
y
=
seq_num
)
avg_seq_error
=
layers
.
elementwise_div
(
x
=
seq_error
,
y
=
seq_num
)
result
=
executor
.
run
(
eval_program
,
fetch_list
=
[
avg_distance
,
avg_seq_error
])
avg_instance_error
=
layers
.
elementwise_div
(
x
=
instance_error
,
y
=
seq_num
)
result
=
executor
.
run
(
eval_program
,
fetch_list
=
[
avg_distance
,
avg_instance_error
])
return
np
.
array
(
result
[
0
]),
np
.
array
(
result
[
1
])
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录