未验证 提交 787209f7 编写于 作者: B baoachun 提交者: GitHub

add group_norm trt converter test case (#35524)

* add group_norm trt converter test case

* update group_norm trt converter test case
上级 03026cea
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
class TrtConvertGroupNormTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input(attrs: List[Dict[str, Any]], batch):
if attrs[0]['data_layout'] == 'NCHW':
return np.random.random([batch, 32, 64, 64]).astype(np.float32)
else:
return np.random.random([batch, 64, 64, 32]).astype(np.float32)
def generate_scale():
return np.random.randn(32).astype(np.float32)
def generate_bias():
return np.random.randn(32).astype(np.float32)
for batch in [1, 2, 4]:
for group in [1, 4, 32]:
for epsilon in [0.1, 0.7]:
for data_layout in ['NCHW', 'NHWC']:
for i in [0, 1]:
dics = [{
"epsilon": epsilon,
"groups": group,
"data_layout": data_layout
}, {
"groups": group,
"data_layout": data_layout
}]
ops_config = [{
"op_type": "group_norm",
"op_inputs": {
"X": ["input_data"],
"Scale": ["scale_weight"],
"Bias": ["bias_weight"]
},
"op_outputs": {
"Y": ["y_output"],
"Mean": ["mean_output"],
"Variance": ["variance_output"]
},
"op_attrs": dics[i]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={
"scale_weight": TensorConfig(
data_gen=partial(generate_scale)),
"bias_weight": TensorConfig(
data_gen=partial(generate_bias))
},
inputs={
"input_data": TensorConfig(data_gen=partial(
generate_input, dics, batch))
},
outputs=["y_output"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {"input_data": [1, 16, 32, 32]}
self.dynamic_shape.max_input_shape = {
"input_data": [4, 64, 128, 64]
}
self.dynamic_shape.opt_input_shape = {"input_data": [2, 32, 64, 64]}
def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
if len(attrs[0]) == 3:
if dynamic_shape:
return 1, 2
else:
return 0, 3
else:
return 0, 3
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
# self.trt_param.precision = paddle_infer.PrecisionType.Float32
# yield self.create_inference_config(), generate_trt_nodes_num(attrs, True), 1e-5
# self.trt_param.precision = paddle_infer.PrecisionType.Half
# yield self.create_inference_config(), generate_trt_nodes_num(attrs, True), 1e-5
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册