Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
77cf21e5
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
77cf21e5
编写于
1月 18, 2018
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Change input data type to int64_t
上级
3388e52d
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
17 addition
and
17 deletion
+17
-17
paddle/operators/edit_distance_op.cc
paddle/operators/edit_distance_op.cc
+13
-13
paddle/operators/edit_distance_op.cu
paddle/operators/edit_distance_op.cu
+2
-2
paddle/operators/edit_distance_op.h
paddle/operators/edit_distance_op.h
+2
-2
未找到文件。
paddle/operators/edit_distance_op.cc
浏览文件 @
77cf21e5
...
...
@@ -49,10 +49,10 @@ class EditDistanceOpMaker : public framework::OpProtoAndCheckerMaker {
EditDistanceOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Hyps"
,
"(2-D LoDTensor<int>, 2nd dim. equal to 1) "
"(2-D LoDTensor<int
64_t
>, 2nd dim. equal to 1) "
"The indices for hypothesis strings."
);
AddInput
(
"Refs"
,
"(2-D LoDTensor<int>, 2nd dim. equal to 1) "
"(2-D LoDTensor<int
64_t
>, 2nd dim. equal to 1) "
"The indices for reference strings."
);
AddAttr
<
bool
>
(
"normalized"
,
"(bool, default false) Indicated whether to normalize "
...
...
@@ -66,22 +66,22 @@ class EditDistanceOpMaker : public framework::OpProtoAndCheckerMaker {
EditDistance operator computes the edit distances between a batch of hypothesis
strings and their references.
Edit distance, also called Levenshtein distance, measures how dissimilar two strings
are by counting the minimum number of operations to transform one string into anthor.
Here the operations include insertion, deletion, and substitution. For example,
given hypothesis string A = "kitten" and reference B = "sitting", the edit distance
is 3 for A will be transformed into B at least after two substitutions and one
Edit distance, also called Levenshtein distance, measures how dissimilar two strings
are by counting the minimum number of operations to transform one string into anthor.
Here the operations include insertion, deletion, and substitution. For example,
given hypothesis string A = "kitten" and reference B = "sitting", the edit distance
is 3 for A will be transformed into B at least after two substitutions and one
insertion:
"kitten" -> "sitten" -> "sittin" -> "sitting"
Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with the total
number denoted by `batch_size`, and the separation is specified by the LoD information.
And the `batch_size` reference strings are arranged in order in the same way in the
Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with the total
number denoted by `batch_size`, and the separation is specified by the LoD information.
And the `batch_size` reference strings are arranged in order in the same way in the
LoDTensor Input(Refs).
Output(Out) contains the `batch_size` results and each stands for the edit stance
for a pair of strings respectively. If Attr(normalized) is true, the edit distance
Output(Out) contains the `batch_size` results and each stands for the edit stance
for a pair of strings respectively. If Attr(normalized) is true, the edit distance
will be divided by the length of reference string.
)DOC"
);
}
...
...
paddle/operators/edit_distance_op.cu
浏览文件 @
77cf21e5
...
...
@@ -113,8 +113,8 @@ class EditDistanceGPUKernel : public framework::OpKernel<T> {
dist_t
.
Resize
({
m
+
1
,
n
+
1
});
dist_t
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dist
=
dist_t
.
data
<
T
>
();
auto
x1
=
x1_t
->
data
<
int
>
()
+
hyp_lod
[
num
];
auto
x2
=
x2_t
->
data
<
int
>
()
+
ref_lod
[
num
];
auto
x1
=
x1_t
->
data
<
int
64_t
>
()
+
hyp_lod
[
num
];
auto
x2
=
x2_t
->
data
<
int
64_t
>
()
+
ref_lod
[
num
];
FillFirstColumn
<
T
><<<
1
+
m
/
PADDLE_CUDA_NUM_THREADS
,
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
dist
,
m
,
n
);
...
...
paddle/operators/edit_distance_op.h
浏览文件 @
77cf21e5
...
...
@@ -60,8 +60,8 @@ class EditDistanceKernel : public framework::OpKernel<T> {
dist_t
.
Resize
({
m
+
1
,
n
+
1
});
dist_t
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dist
=
dist_t
.
data
<
T
>
();
auto
x1
=
x1_t
->
data
<
int
>
()
+
hyp_lod
[
num
];
auto
x2
=
x2_t
->
data
<
int
>
()
+
ref_lod
[
num
];
auto
x1
=
x1_t
->
data
<
int
64_t
>
()
+
hyp_lod
[
num
];
auto
x2
=
x2_t
->
data
<
int
64_t
>
()
+
ref_lod
[
num
];
for
(
int64_t
i
=
0
;
i
<
m
+
1
;
++
i
)
{
dist
[
i
*
(
n
+
1
)]
=
i
;
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录