Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
74cc73bb
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
74cc73bb
编写于
6月 17, 2022
作者:
Q
qipengh
提交者:
GitHub
6月 17, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU]add elementwise op (#43491)
上级
feebbe15
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
395 addition
and
1 deletion
+395
-1
paddle/fluid/operators/elementwise/elementwise_min_op_mlu.cc
paddle/fluid/operators/elementwise/elementwise_min_op_mlu.cc
+139
-0
paddle/fluid/operators/elementwise/elementwise_mlu.h
paddle/fluid/operators/elementwise/elementwise_mlu.h
+10
-0
paddle/fluid/platform/device/mlu/device_context.cc
paddle/fluid/platform/device/mlu/device_context.cc
+5
-1
paddle/fluid/platform/device/mlu/device_context.h
paddle/fluid/platform/device/mlu/device_context.h
+1
-0
paddle/fluid/platform/device/mlu/mlu_info.cc
paddle/fluid/platform/device/mlu/mlu_info.cc
+7
-0
paddle/fluid/platform/device/mlu/mlu_info.h
paddle/fluid/platform/device/mlu/mlu_info.h
+3
-0
python/paddle/fluid/tests/unittests/mlu/test_elementwise_min_op_mlu.py
.../fluid/tests/unittests/mlu/test_elementwise_min_op_mlu.py
+230
-0
未找到文件。
paddle/fluid/operators/elementwise/elementwise_min_op_mlu.cc
0 → 100644
浏览文件 @
74cc73bb
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_mlu.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
ElementwiseMinMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
MLUBinaryOp
<
MINIMUM
,
T
>
(
ctx
);
}
};
template
<
typename
T
>
class
ElementwiseMinGradMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
const
auto
&
x_dims
=
x
->
dims
();
const
auto
&
y_dims
=
y
->
dims
();
axis
=
(
axis
<
0
?
(
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
+
axis
+
1
)
:
axis
);
int
max_dim
=
std
::
max
(
x_dims
.
size
(),
y_dims
.
size
());
std
::
vector
<
int
>
x_dims_array
(
max_dim
);
std
::
vector
<
int
>
y_dims_array
(
max_dim
);
std
::
vector
<
int
>
out_dims_array
(
max_dim
);
GetBroadcastDimsArrays
(
x_dims
,
y_dims
,
x_dims_array
.
data
(),
y_dims_array
.
data
(),
out_dims_array
.
data
(),
max_dim
,
axis
);
// mask = LessEqual(x, y)
Tensor
mask
(
x
->
dtype
());
mask
.
Resize
(
phi
::
make_ddim
(
out_dims_array
));
mask
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
cnnlDataType_t
data_type
=
ToCnnlDataType
<
T
>
();
MLUCnnlTensorDesc
x_desc
(
max_dim
,
x_dims_array
.
data
(),
data_type
);
MLUCnnlTensorDesc
y_desc
(
max_dim
,
y_dims_array
.
data
(),
data_type
);
MLUCnnlTensorDesc
mask_desc
(
max_dim
,
out_dims_array
.
data
(),
data_type
);
MLUCnnl
::
Logic
(
ctx
,
CNNL_LOGIC_OP_LE
,
x_desc
.
get
(),
GetBasePtr
(
x
),
y_desc
.
get
(),
GetBasePtr
(
y
),
mask_desc
.
get
(),
GetBasePtr
(
&
mask
));
// dx = Mul(dz, mask)
Tensor
dx_temp
(
x
->
dtype
());
dx_temp
.
Resize
(
dout
->
dims
());
dx_temp
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
dout_desc
(
*
dout
);
MLUCnnlOpTensorDesc
mul_op_desc
(
CNNL_OP_TENSOR_MUL
,
data_type
,
CNNL_NOT_PROPAGATE_NAN
);
MLUCnnl
::
OpTensor
(
ctx
,
mul_op_desc
.
get
(),
dout_desc
.
get
(),
GetBasePtr
(
dout
),
dout_desc
.
get
(),
GetBasePtr
(
&
mask
),
dout_desc
.
get
(),
GetBasePtr
(
&
dx_temp
),
data_type
);
// dy = Sub(dz, dx)
Tensor
dy_temp
(
y
->
dtype
());
dy_temp
.
Resize
(
dout
->
dims
());
dy_temp
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlOpTensorDesc
sub_op_desc
(
CNNL_OP_TENSOR_SUB
,
data_type
,
CNNL_NOT_PROPAGATE_NAN
);
MLUCnnl
::
OpTensor
(
ctx
,
sub_op_desc
.
get
(),
dout_desc
.
get
(),
GetBasePtr
(
dout
),
dout_desc
.
get
(),
GetBasePtr
(
&
dx_temp
),
dout_desc
.
get
(),
GetBasePtr
(
&
dy_temp
),
data_type
);
if
(
dx
)
{
if
(
dx
->
dims
()
!=
dout
->
dims
())
{
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
vector
<
int
>
reduce_axes
;
GetReduceAxes
(
axis
,
dx_temp
.
dims
(),
dx
->
dims
(),
&
reduce_axes
);
MLUCnnlReduceDesc
reduction_desc
(
reduce_axes
,
CNNL_REDUCE_ADD
,
data_type
,
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_NO_INDICES
,
CNNL_32BIT_INDICES
);
MLUCnnlTensorDesc
dx_desc
(
*
dx
);
MLUCnnl
::
Reduce
(
ctx
,
true
/*need_workspace*/
,
reduction_desc
.
get
(),
nullptr
,
dout_desc
.
get
(),
GetBasePtr
(
&
dx_temp
),
0
,
nullptr
,
nullptr
,
dx_desc
.
get
(),
GetBasePtr
(
dx
));
}
else
{
dx
->
ShareDataWith
(
dx_temp
);
}
}
if
(
dy
)
{
if
(
dy
->
dims
()
!=
dout
->
dims
())
{
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
vector
<
int
>
reduce_axes
;
GetReduceAxes
(
axis
,
dy_temp
.
dims
(),
dy
->
dims
(),
&
reduce_axes
);
MLUCnnlReduceDesc
reduction_desc
(
reduce_axes
,
CNNL_REDUCE_ADD
,
data_type
,
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_NO_INDICES
,
CNNL_32BIT_INDICES
);
MLUCnnlTensorDesc
dy_desc
(
*
dy
);
MLUCnnl
::
Reduce
(
ctx
,
true
/*need_workspace*/
,
reduction_desc
.
get
(),
nullptr
,
dout_desc
.
get
(),
GetBasePtr
(
&
dy_temp
),
0
,
nullptr
,
nullptr
,
dy_desc
.
get
(),
GetBasePtr
(
dy
));
}
else
{
dy
->
ShareDataWith
(
dy_temp
);
}
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
elementwise_min
,
ops
::
ElementwiseMinMLUKernel
<
int
>
,
ops
::
ElementwiseMinMLUKernel
<
float
>
,
ops
::
ElementwiseMinMLUKernel
<
plat
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
elementwise_min_grad
,
ops
::
ElementwiseMinGradMLUKernel
<
int
>
,
ops
::
ElementwiseMinGradMLUKernel
<
float
>
,
ops
::
ElementwiseMinGradMLUKernel
<
plat
::
float16
>
);
paddle/fluid/operators/elementwise/elementwise_mlu.h
浏览文件 @
74cc73bb
...
...
@@ -109,6 +109,7 @@ enum BINARY_FUNCTOR {
DIV
,
DIVNONAN
,
MAXIMUM
,
MINIMUM
,
};
template
<
BINARY_FUNCTOR
func
>
...
...
@@ -137,6 +138,15 @@ inline void MLUBinary<MAXIMUM>(
MLUCnnl
::
Maximum
(
ctx
,
x_desc
,
x
,
y_desc
,
y
,
out_desc
,
out
);
}
template
<
>
inline
void
MLUBinary
<
MINIMUM
>
(
const
framework
::
ExecutionContext
&
ctx
,
cnnlComputationPreference_t
prefer
,
const
cnnlTensorDescriptor_t
in1_desc
,
const
void
*
in1
,
const
cnnlTensorDescriptor_t
in2_desc
,
const
void
*
in2
,
const
cnnlTensorDescriptor_t
out_desc
,
void
*
out
)
{
MLUCnnl
::
Minimum
(
ctx
,
in1_desc
,
in1
,
in2_desc
,
in2
,
out_desc
,
out
);
}
template
<
BINARY_FUNCTOR
Functor
,
typename
T
>
void
MLUBinaryOp
(
const
framework
::
ExecutionContext
&
ctx
)
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
...
...
paddle/fluid/platform/device/mlu/device_context.cc
浏览文件 @
74cc73bb
...
...
@@ -40,6 +40,7 @@ MLUDeviceContext::MLUDeviceContext(MLUPlace place) : place_(place) {
compute_capability_
=
GetMLUComputeCapability
(
place_
.
device
);
driver_version_
=
GetMLUDriverVersion
(
place_
.
device
);
runtime_version_
=
GetMLURuntimeVersion
(
place_
.
device
);
cnnl_version_
=
GetMLUCnnlVersion
(
place_
.
device
);
LOG_FIRST_N
(
WARNING
,
1
)
<<
"Please NOTE: device: "
<<
place_
.
device
<<
", MLU Compute Capability: "
...
...
@@ -50,7 +51,10 @@ MLUDeviceContext::MLUDeviceContext(MLUPlace place) : place_(place) {
<<
driver_version_
%
100
<<
", Runtime API Version: "
<<
runtime_version_
/
10000
<<
"."
<<
(
runtime_version_
/
100
)
%
100
<<
"."
<<
runtime_version_
%
100
;
<<
runtime_version_
%
100
<<
", Cnnl API Version: "
<<
cnnl_version_
/
10000
<<
"."
<<
(
cnnl_version_
/
100
)
%
100
<<
"."
<<
cnnl_version_
%
100
;
default_ctx_
.
reset
(
new
MLUContext
(
place_
));
}
...
...
paddle/fluid/platform/device/mlu/device_context.h
浏览文件 @
74cc73bb
...
...
@@ -134,6 +134,7 @@ class MLUDeviceContext : public DeviceContext {
int
compute_capability_
;
int
driver_version_
;
int
runtime_version_
;
int
cnnl_version_
;
MLUPlace
place_
;
std
::
shared_ptr
<
MLUContext
>
default_ctx_
;
...
...
paddle/fluid/platform/device/mlu/mlu_info.cc
浏览文件 @
74cc73bb
...
...
@@ -116,6 +116,13 @@ int GetMLURuntimeVersion(int id) {
return
x
*
10000
+
y
*
100
+
z
;
}
int
GetMLUCnnlVersion
(
int
id
)
{
CheckDeviceId
(
id
);
int
x
,
y
,
z
;
cnnlGetLibVersion
(
&
x
,
&
y
,
&
z
);
return
x
*
10000
+
y
*
100
+
z
;
}
int
GetMLUCurrentDeviceId
()
{
int
device_id
;
PADDLE_ENFORCE_MLU_SUCCESS
(
cnrtGetDevice
(
&
device_id
));
...
...
paddle/fluid/platform/device/mlu/mlu_info.h
浏览文件 @
74cc73bb
...
...
@@ -46,6 +46,9 @@ int GetMLUDriverVersion(int id);
//! Get the runtime version of the ith MLU.
int
GetMLURuntimeVersion
(
int
id
);
//! Get the cnnl version of the ith MLU.
int
GetMLUCnnlVersion
(
int
id
);
//! Get the total number of MLU devices in system.
int
GetMLUDeviceCount
();
...
...
python/paddle/fluid/tests/unittests/mlu/test_elementwise_min_op_mlu.py
0 → 100644
浏览文件 @
74cc73bb
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
import
paddle.fluid.core
as
core
paddle
.
enable_static
()
SEED
=
2022
class
TestElementwiseMinOp
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_min"
self
.
init_dtype
()
self
.
init_input_output
()
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
y
)
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axis'
:
self
.
axis
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
init_input_output
(
self
):
# If x and y have the same value, the min() is not differentiable.
# So we generate test data by the following method
# to avoid them being too close to each other.
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
y
=
self
.
x
+
self
.
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
minimum
(
self
.
x
,
self
.
y
)
self
.
axis
=
-
1
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
if
self
.
dtype
==
np
.
float16
:
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.5
)
else
:
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
,
'Y'
],
'Out'
,
)
def
test_check_grad_ingore_x
(
self
):
if
self
.
dtype
==
np
.
float16
:
self
.
check_grad_with_place
(
self
.
place
,
[
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
),
max_relative_error
=
0.9
)
else
:
self
.
check_grad_with_place
(
self
.
place
,
[
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
),
)
def
test_check_grad_ingore_y
(
self
):
if
self
.
dtype
==
np
.
float16
:
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
,
no_grad_set
=
set
(
"Y"
),
max_relative_error
=
0.1
)
else
:
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
,
no_grad_set
=
set
(
"Y"
),
)
class
TestElementwiseMinOpFp16
(
TestElementwiseMinOp
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
class
TestElementwiseMinOp_Vector
(
TestElementwiseMinOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
self
.
dtype
)
self
.
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
self
.
dtype
)
self
.
y
=
self
.
x
+
self
.
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
(
100
,
)).
astype
(
self
.
dtype
)
self
.
out
=
np
.
minimum
(
self
.
x
,
self
.
y
)
self
.
axis
=
-
1
class
TestElementwiseMinOpFp16_Vector
(
TestElementwiseMinOp_Vector
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseMinOp_scalar
(
TestElementwiseMinOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
random_integers
(
-
5
,
5
,
[
10
,
3
,
4
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
array
([
0.5
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
minimum
(
self
.
x
,
self
.
y
)
self
.
axis
=
-
1
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseMinOpFp16_scalar
(
TestElementwiseMinOp_scalar
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
class
TestElementwiseMinOp_broadcast
(
TestElementwiseMinOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
100
)).
astype
(
self
.
dtype
)
self
.
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
self
.
dtype
)
self
.
y
=
self
.
x
[
0
,
0
,
:]
+
self
.
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
self
.
dtype
)
self
.
out
=
np
.
minimum
(
self
.
x
,
self
.
y
.
reshape
(
1
,
1
,
100
))
self
.
axis
=
-
1
class
TestElementwiseMinOpFp16_broadcast
(
TestElementwiseMinOp_broadcast
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
class
TestElementwiseMinOpNet
(
unittest
.
TestCase
):
def
_test
(
self
,
run_mlu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
a_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
b_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
32
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
"b"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
32
,
1
],
dtype
=
'int64'
)
c
=
paddle
.
minimum
(
a
,
b
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
c
,
size
=
128
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
sgd
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
sgd
.
minimize
(
loss
)
if
run_mlu
:
place
=
paddle
.
device
.
MLUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
print
(
"Start run on {}"
.
format
(
place
))
for
epoch
in
range
(
100
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_mlu
(
self
):
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
mlu_pred
,
mlu_loss
=
self
.
_test
(
True
)
self
.
assertTrue
(
np
.
allclose
(
mlu_pred
,
cpu_pred
))
self
.
assertTrue
(
np
.
allclose
(
mlu_loss
,
cpu_loss
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录