提交 7483555a 编写于 作者: Y Yu Yang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into feature/change_int64

## Install and Build
TBD
### Download & Install
Download the latest C-API development package from CI system and install. You can find the required version in the table below:
<table>
<thead>
<tr>
<th>Version Tips</th>
<th>C-API</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
<tr>
<td>cpu_avx_openblas</td>
<td>-</td>
</tr>
<tr>
<td>cpu_noavx_openblas</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
<tr>
<td>cuda7.5_cudnn5_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
<tr>
<td>cuda8.0_cudnn5_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
<tr>
<td>cuda8.0_cudnn7_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr></tbody></table>
### From source
Users can also compile the C-API library from PaddlePaddle source code by compiling with the following compilation options:
<table>
<thead>
<tr>
<th>Options</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WITH_C_API</td>
<td>ON</td>
</tr>
<tr>
<td>WITH_PYTHON</td>
<td>OFF(recommended)</td>
</tr>
<tr>
<td>WITH_SWIG_PY</td>
<td>OFF(recommended)</td>
</tr>
<tr>
<td>WITH_GOLANG</td>
<td>OFF(recommended)</td>
</tr>
<tr>
<td>WITH_GPU</td>
<td>ON/OFF</td>
</tr>
<tr>
<td>WITH_MKL</td>
<td>ON/OFF</td>
</tr></tbody></table>
It is best to set up with recommended values to avoid linking with unnecessary libraries. Set other compilation options as you need.
Pull the latest following code snippet from github, and configure compilation options(replace PADDLE_ROOT with the installation path of the PaddlePaddle C-API inference library):
```shell
PADDLE_ROOT=/path/of/capi
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=$PADDLE_ROOT \
-DCMAKE_BUILD_TYPE=Release \
-DWITH_C_API=ON \
-DWITH_SWIG_PY=OFF \
-DWITH_GOLANG=OFF \
-DWITH_PYTHON=OFF \
-DWITH_MKL=OFF \
-DWITH_GPU=OFF \
..
```
After running the above code to generate Makefile , run: `make && make install`. After successful compilation, the dependencies required by C-API(includes: (1)PaddlePaddle inference library and header files; (2) Third-party libraries and header files) will be stored in the `PADDLE_ROOT` directory.
If the compilation is successful, see the following directory structure under `PADDLE_ROOT`(includes PaddlePaddle header files and libraries, and third-party libraries and header files(determined by the link methods if necessary)):
```text
├── include
│   └── paddle
│   ├── arguments.h
│   ├── capi.h
│   ├── capi_private.h
│   ├── config.h
│   ├── error.h
│   ├── gradient_machine.h
│   ├── main.h
│   ├── matrix.h
│   ├── paddle_capi.map
│   └── vector.h
├── lib
│   ├── libpaddle_capi_engine.a
│   ├── libpaddle_capi_layers.a
│   ├── libpaddle_capi_shared.so
│   └── libpaddle_capi_whole.a
└── third_party
├── gflags
│   ├── include
│   │   └── gflags
│   │   ├── gflags_completions.h
│   │   ├── gflags_declare.h
│   │   ...
│   └── lib
│   └── libgflags.a
├── glog
│   ├── include
│   │   └── glog
│   │   ├── config.h
│   │   ...
│   └── lib
│   └── libglog.a
├── openblas
│   ├── include
│   │   ├── cblas.h
│   │   ...
│   └── lib
│   ...
├── protobuf
│   ├── include
│   │   └── google
│   │   └── protobuf
│   │   ...
│   └── lib
│   └── libprotobuf-lite.a
└── zlib
├── include
│   ...
└── lib
...
```
### Linking Description:
There are three kinds of linking methods:
1. Linking with dynamic library `libpaddle_capi_shared.so`(This way is much more convenient and easier, **Without special requirements, it is recommended**), refer to the following:
1. Compiling with CPU version and using `OpenBLAS`; only need to link one library named `libpaddle_capi_shared.so` to develop prediction program through C-API.
1. Compiling with CPU version and using `MKL` lib, you need to link MKL library directly to develop prediction program through PaddlePaddle C-API, due to `MKL` has its own dynamic library.
1. Compiling with GPU version, CUDA library will be loaded dynamically on prediction program run-time, and also set CUDA library to  `LD_LIBRARY_PATH` environment variable.
2. Linking with static library `libpaddle_capi_whole.a`,refer to the following:
1. Specify `-Wl,--whole-archive` linking options.
1. Explicitly link third-party libraries such as `gflags``glog``libz``protobuf` .etc, you can find them under `PADDLE_ROOT/third_party` directory.
1. Use OpenBLAS library if compiling C-API,must explicitly link `libopenblas.a`.
1. Use MKL when compiling C-API, must explicitly link MKL dynamic library.
3. Linking with static library `libpaddle_capi_layers.a` and `libpaddle_capi_engine.a`,refer to the following:
1. This linking methods is mainly used for mobile prediction.
1. Split `libpaddle_capi_whole.a` into two static linking library at least to reduce the size of linking libraries.
1. Specify `-Wl,--whole-archive -lpaddle_capi_layers`  and `-Wl,--no-whole-archive -lpaddle_capi_engine` for linking.
1. The third-party dependencies need explicitly link same as method 2 above.
# Kubernetes Distributed
# Distributed Training on Kubernetes
TBD
We introduced how to create a PaddlePaddle Job with a single node on Kuberentes in the
previous document.
In this article, we will introduce how to create a PaddlePaddle job with multiple nodes
on Kubernetes cluster.
## Overall Architecture
Before creating a training job, the users need to slice the training data and deploy
the Python scripts along with it into the distributed file system
(We can use the different type of Kuberentes Volumes to mount different distributed
file systems). Before training starts, The program will copy the training data into the
Container and also save the models at the same path during training. The global architecture
is as follows:
![PaddlePaddle on Kubernetes Architecture](src/k8s-paddle-arch.png)
The above figure describes a distributed training architecture which contains 3 nodes, each
Pod mounts a folder of the distributed file system to save training data and models
by Kubernetes Volume. Kubernetes created 3 Pods for this training phase and scheduled these on
3 nodes, each Pod has a PaddlePaddle container. After the containers car created,
PaddlePaddle starts up the communication between PServer and Trainer and read training
data for this training job.
As the description above, we can start up a PaddlePaddle distributed training job on a
Kubernetes ready cluster with the following steps:
1. [Build PaddlePaddle Docker Image](#Build a Docker Image)
1. [Split training data and upload to the distributed file system](#Upload Training Data)
1. [Edit a YAML file and create a Kubernetes Job](#Create a Job)
1. [Check the output](#Check The Output)
We will introduce these steps as follows:
### Build a Docker Image
Training docker image needs to package the paddle pserver and paddle trainer runtimes, as well as two more processes before we can kick off the training:
- Copying the training data into container.
- Generating the initialization arguments for `Paddle PServer` and `Paddle Training` processes.
Since the paddlepaddle official docker image already has the runtimes we need, we'll take it as the base image and pack some additional scripts for the processes mentioned above to build our training image. for more detail, please find from the following link:
- https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/usage/cluster/src/k8s_train/Dockerfile
```bash
$ cd doc/howto/usage/k8s/src/k8s_train
$ docker build -t [YOUR_REPO]/paddle:mypaddle .
```
And then upload the new Docker Image to a Docker hub:
```bash
docker push [YOUR_REPO]/paddle:mypaddle
```
**[NOTE]**, in the above command arguments, `[YOUR_REPO]` represents your Docker repository,
you need to use your repository instead of it. We will replace it with your respository name to
represent the Docker Image which built in this step.
### Prepare Training Data
We can download and split the training job by creating a Kubernetes Job, or custom your image
by editing [k8s_train](./src/k8s_train/).
Before creating a Job, we need to bind a [persistenVolumeClaim](https://kubernetes.io/docs/user-guide/persistent-volumes) by the different type of
the different file system, the generated dataset would be saved on this volume.
```yaml
apiVersion: batch/v1
kind: Job
metadata:
name: paddle-data
spec:
template:
metadata:
name: pi
spec:
hostNetwork: true
containers:
- name: paddle-data
image: paddlepaddle/paddle-tutorial:k8s_data
imagePullPolicy: Always
volumeMounts:
- mountPath: "/mnt"
name: nfs
env:
- name: OUT_DIR
value: /home/work/mfs/paddle-cluster-job
- name: SPLIT_COUNT
value: "3"
volumes:
- name: nfs
persistentVolumeClaim:
claimName: mfs
restartPolicy: Never
```
Create the Job with the following command:
```bash
> kubectl create -f xxx.yaml
```
If created successfully, you can see some information like this:
```base
[root@paddle-kubernetes-node0 nfsdir]$ tree -d
.
`-- paddle-cluster-job
|-- 0
| `-- data
|-- 1
| `-- data
|-- 2
| `-- data
|-- output
|-- quick_start
```
The `paddle-cluster-job` above is the job name for this training job; we need 3
PaddlePaddle training nodes and save the split training data in `paddle-cluster-job` path,
the folder `0`, `1` and `2` represents the `training_id` on each node, `quick_start` folder is used to store training data, `output` folder is used to store the models and logs.
### Create a Job
Kubernetes allow users to create objects with YAML files, and we can use a command-line tool
to create it.
The Job YAML file describes that which Docker Image would be used in this training job, how much nodes would be created, what's the startup arguments of `Paddle PServer/Trainer` process and what's the type of Volumes. You can find the details of the YAML filed in
[Kubernetes Job API](http://kubernetes.io/docs/api-reference/batch/v1/definitions/#_v1_job).
The following is an example for this training job:
```yaml
apiVersion: batch/v1
kind: Job
metadata:
name: paddle-cluster-job
spec:
parallelism: 3
completions: 3
template:
metadata:
name: paddle-cluster-job
spec:
volumes:
- name: jobpath
hostPath:
path: /home/work/mfs
containers:
- name: trainer
image: [YOUR_REPO]/paddle:mypaddle
command: ["bin/bash", "-c", "/root/start.sh"]
env:
- name: JOB_NAME
value: paddle-cluster-job
- name: JOB_PATH
value: /home/jobpath
- name: JOB_NAMESPACE
value: default
- name: TRAIN_CONFIG_DIR
value: recommendation
- name: CONF_PADDLE_NIC
value: eth0
- name: CONF_PADDLE_PORT
value: "7164"
- name: CONF_PADDLE_PORTS_NUM
value: "2"
- name: CONF_PADDLE_PORTS_NUM_SPARSE
value: "2"
- name: CONF_PADDLE_GRADIENT_NUM
value: "3"
volumeMounts:
- name: jobpath
mountPath: /home/jobpath
restartPolicy: Never
```
In the above YAML file:
- `metadata.name`, The job name.
- `parallelism`, Whether the Kubernetes Job would create `parallelism` Pods at the same time.
- `completions`, The Job would become the success status only when the number of successful Pod(the exit code is 0)
is equal to `completions`.
- `volumeMounts`, the name field `jobpath` is a key, the `mountPath` field represents
the path in the container, and we can define the `jobpath` in `volumes` filed, use `hostPath`
to configure the host path we want to mount.
- `env`, the environment variables in the Container, we pass some startup arguments by
this approach, some details are as following:
- JOB_PATH:the mount path in the container
- JOB_NAME:the job name
- TRAIN_CONFIG_DIR:the job path in the container, we can find the training data path by
combine with JOB_NAME.
- CONF_PADDLE_NIC: the argument `--nics` of `Paddle PServer` process, the network
device name.
- CONF_PADDLE_PORT: the argument `--port` of `Paddle PServer` process.
- CONF_PADDLE_PORTS_NUM: the argument `--ports_num` of `Paddle PServer`, the port number
for dense prameter update.
- CONF_PADDLE_PORTS_NUM_SPARSE:the argument `--ports_num_for_sparse` of `Paddle PServer`,
the port number for sparse parameter update.
- CONF_PADDLE_GRADIENT_NUM:the number of training node, the argument
`--num_gradient_servers` of `Paddle PServer` and `Paddle Trainer`.
You can find some details information at [here]
(http://www.paddlepaddle.org/docs/develop/documentation/zh/howto/usage/cmd_parameter/detail_introduction_cn.html)。
We can use the command-line tool of Kubernetes to create a Job when we finish the YAML file:
```bash
kubectl create -f job.yaml
```
Upon successful creation, Kubernetes would create 3 Pods as PaddlePaddle training node,
pull the Docker image and begin to train.
### Checkout the Output
At the process of training, we can check the logs and the output models which is stored in
the `output` folder.
**NOTE**, `node_0`, `node_1` and `node_2` represent the
`trainer_id` of the PaddlePaddle training job rather than the node id of Kubernetes.
```bash
[root@paddle-kubernetes-node0 output]# tree -d
.
├── node_0
│   ├── server.log
│   └── train.log
├── node_1
│   ├── server.log
│   └── train.log
├── node_2
......
├── pass-00002
│   ├── done
│   ├── ___embedding_0__.w0
│   ├── ___embedding_1__.w0
......
```
We can checkout the status of each training Pod by viewing the logs:
```bash
[root@paddle-kubernetes-node0 node_0]# cat train.log
I1116 09:10:17.123121 50 Util.cpp:155] commandline:
/usr/local/bin/../opt/paddle/bin/paddle_trainer
--nics=eth0 --port=7164
--ports_num=2 --comment=paddle_process_by_paddle
--pservers=192.168.129.66,192.168.223.143,192.168.129.71
--ports_num_for_sparse=2 --config=./trainer_config.py
--trainer_count=4 --num_passes=10 --use_gpu=0
--log_period=50 --dot_period=10 --saving_period=1
--local=0 --trainer_id=0
--save_dir=/home/jobpath/paddle-cluster-job/output
I1116 09:10:17.123440 50 Util.cpp:130] Calling runInitFunctions
I1116 09:10:17.123764 50 Util.cpp:143] Call runInitFunctions done.
[WARNING 2016-11-16 09:10:17,227 default_decorators.py:40] please use keyword arguments in paddle config.
[INFO 2016-11-16 09:10:17,239 networks.py:1282] The input order is [movie_id, title, genres, user_id, gender, age, occupation, rating]
[INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is [__square_error_cost_0__]
I1116 09:10:17.392917 50 Trainer.cpp:170] trainer mode: Normal
I1116 09:10:17.613910 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
I1116 09:10:17.680917 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
I1116 09:10:17.681543 50 GradientMachine.cpp:134] Initing parameters..
I1116 09:10:18.012390 50 GradientMachine.cpp:141] Init parameters done.
I1116 09:10:18.018641 50 ParameterClient2.cpp:122] pserver 0 192.168.129.66:7164
I1116 09:10:18.018950 50 ParameterClient2.cpp:122] pserver 1 192.168.129.66:7165
I1116 09:10:18.019069 50 ParameterClient2.cpp:122] pserver 2 192.168.223.143:7164
I1116 09:10:18.019492 50 ParameterClient2.cpp:122] pserver 3 192.168.223.143:7165
I1116 09:10:18.019716 50 ParameterClient2.cpp:122] pserver 4 192.168.129.71:7164
I1116 09:10:18.019836 50 ParameterClient2.cpp:122] pserver 5 192.168.129.71:7165
```
## Some Additional Details
### Using Environment Variables
Usually we use the environment varialbes to configurate the PaddlePaddle Job which runs in
Kubernetes, `start_paddle.py` provides a start up script to convert the environment variable
to the start up arguments of PaddlePaddle process:
```bash
API = "/api/v1/namespaces/"
JOBSELECTOR = "labelSelector=job-name="
JOB_PATH = os.getenv("JOB_PATH") + "/" + os.getenv("JOB_NAME")
JOB_PATH_OUTPUT = JOB_PATH + "/output"
JOBNAME = os.getenv("JOB_NAME")
NAMESPACE = os.getenv("JOB_NAMESPACE")
PADDLE_NIC = os.getenv("CONF_PADDLE_NIC")
PADDLE_PORT = os.getenv("CONF_PADDLE_PORT")
PADDLE_PORTS_NUM = os.getenv("CONF_PADDLE_PORTS_NUM")
PADDLE_PORTS_NUM_SPARSE = os.getenv("CONF_PADDLE_PORTS_NUM_SPARSE")
PADDLE_SERVER_NUM = os.getenv("CONF_PADDLE_GRADIENT_NUM")
```
### Communication between Pods
At the begin of `start_paddle.py`, it would initializes and parses the arguments.
```python
parser = argparse.ArgumentParser(prog="start_paddle.py",
description='simple tool for k8s')
args, train_args_list = parser.parse_known_args()
train_args = refine_unknown_args(train_args_list)
train_args_dict = dict(zip(train_args[:-1:2], train_args[1::2]))
podlist = getPodList()
```
And then query the status of all the other Pods of this Job by the function `getPodList()`, and fetch `triner_id` by the function `getIdMap(podlist)` if all the Pods status is `RUNNING`.
```python
podlist = getPodList()
# need to wait until all pods are running
while not isPodAllRunning(podlist):
time.sleep(10)
podlist = getPodList()
idMap = getIdMap(podlist)
```
**NOTE**: `getPodList()` would prefetch all the Pods in the current namespace, if some
Pods are alreay running, it may cause some error. We will use [statfulesets](https://kubernetes.io/docs/concepts/abstractions/controllers/statefulsets) instead of
Kubernetes Pod or Replicaset in the future.
The function `getIdMap(podlist)` fetches IPs addresses of `podlist` and then sort them
to generate `trainer_id`.
```python
def getIdMap(podlist):
'''
generate tainer_id by ip
'''
ips = []
for pod in podlist["items"]:
ips.append(pod["status"]["podIP"])
ips.sort()
idMap = {}
for i in range(len(ips)):
idMap[ips[i]] = i
return idMap
```
After getting the `idMap`, we can generate the arguments of `Paddle PServer` and `Paddle Trainer`
so that we can start up them by `startPaddle(idMap, train_args_dict)`.
### Create Job
The main goal of `startPaddle` is generating the arguments of `Paddle PServer` and
`Paddle Trainer` processes. Take `Paddle Trainer` as an example, we parse the
environment variable and then get `PADDLE_NIC`, `PADDLE_PORT`, `PADDLE_PORTS_NUM` and etc...,
finally find `trainerId` from `idMap` according to its IP address.
```python
program = 'paddle train'
args = " --nics=" + PADDLE_NIC
args += " --port=" + str(PADDLE_PORT)
args += " --ports_num=" + str(PADDLE_PORTS_NUM)
args += " --comment=" + "paddle_process_by_paddle"
ip_string = ""
for ip in idMap.keys():
ip_string += (ip + ",")
ip_string = ip_string.rstrip(",")
args += " --pservers=" + ip_string
args_ext = ""
for key, value in train_args_dict.items():
args_ext += (' --' + key + '=' + value)
localIP = socket.gethostbyname(socket.gethostname())
trainerId = idMap[localIP]
args += " " + args_ext + " --trainer_id=" + \
str(trainerId) + " --save_dir=" + JOB_PATH_OUTPUT
```
......@@ -13,11 +13,10 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/block_desc.h"
#include <queue>
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include <queue>
namespace paddle {
namespace framework {
......@@ -147,52 +146,7 @@ void BlockDesc::RemoveOp(size_t s, size_t e) {
if (ops_.begin() + s == ops_.end() || ops_.begin() + e == ops_.end()) {
return;
}
auto get_vars = [](std::deque<std::unique_ptr<OpDesc>>::iterator &op,
std::vector<std::string> &v) {
auto in_names = (*op)->InputArgumentNames();
v.insert(v.end(), in_names.begin(), in_names.end());
auto out_names = (*op)->OutputArgumentNames();
v.insert(v.end(), out_names.begin(), out_names.end());
std::sort(v.begin(), v.end());
auto last = std::unique(v.begin(), v.end());
v.erase(last, v.end());
};
need_update_ = true;
for (size_t i = s; i < e; i++) {
// since remove op one by one, every time remove the first op.
auto op = ops_.begin() + s;
// collect input and output variables from current delete op
std::vector<std::string> cur_vars;
get_vars(op, cur_vars);
// remove current op
ops_.erase(ops_.begin() + s);
// collect input and output variables from other ops
std::vector<std::string> other_vars;
for (auto it = ops_.begin(); it != ops_.end(); it++) {
get_vars(it, other_vars);
}
// variables should be deleted
std::vector<std::string> delete_vars;
// delete_vars = cur_vars - cur_vars ^ other_input_vars
std::set_difference(cur_vars.begin(), cur_vars.end(), other_vars.begin(),
other_vars.end(),
std::inserter(delete_vars, delete_vars.end()));
// remove variables
for (size_t i = 0; i < delete_vars.size(); i++) {
auto name = delete_vars[i];
auto it = vars_.find(name);
PADDLE_ENFORCE(it != vars_.end(),
"%s is not in variable list, it should not be deleted",
name);
vars_.erase(it);
VLOG(3) << "deleting variable " << name;
}
}
ops_.erase(ops_.begin() + s, ops_.begin() + e);
}
std::vector<OpDesc *> BlockDesc::AllOps() const {
......
......@@ -181,10 +181,10 @@ void ParallelExecutor::SplitTensorToPlaces(
member_->places_.size(), lod_tensors.size());
for (size_t j = 0; j < member_->places_.size(); ++j) {
// TODO(panxy0718): Do I need to delete this var?
member_->local_scopes_[j]
->Var(it.first)
->GetMutable<LoDTensor>()
->ShareDataWith(lod_tensors[j]);
auto t =
member_->local_scopes_[j]->Var(it.first)->GetMutable<LoDTensor>();
t->ShareDataWith(lod_tensors[j]);
t->set_lod(lod_tensors[j].lod());
}
}
}
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/batch_norm_op.h"
#include <string>
#include "paddle/fluid/framework/data_layout.h"
namespace paddle {
......
......@@ -13,9 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/framework/data_layout.h"
#include <cfloat>
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cudnn_helper.h"
#include "paddle/fluid/platform/float16.h"
......
......@@ -13,7 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
......
......@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/compare_op.h"
#include <string>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/concat_op.h"
#include <string>
#include <vector>
namespace paddle {
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/framework/ddim.h"
......
......@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/conv_transpose_op.h"
#include <string>
#include <vector>
namespace paddle {
namespace operators {
......
......@@ -13,7 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/im2col.h"
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <limits>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
......
......@@ -13,7 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/strided_memcpy.h"
......
......@@ -39,13 +39,14 @@ void gemm<platform::CUDADeviceContext, float16>(
cublasOperation_t cuTransB =
(transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
float h_alpha = static_cast<float>(alpha);
float h_beta = static_cast<float>(beta);
// TODO(kexinzhao): add processing code for compute capability < 53 case
PADDLE_ENFORCE_GE(context.GetComputeCapability(), 53,
"cublas fp16 gemm requires GPU compute capability >= 53");
#if CUDA_VERSION >= 8000
float h_alpha = static_cast<float>(alpha);
float h_beta = static_cast<float>(beta);
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
#if CUDA_VERSION >= 9000
if (context.GetComputeCapability() >= 70) {
......@@ -56,7 +57,7 @@ void gemm<platform::CUDADeviceContext, float16>(
PADDLE_ENFORCE(platform::dynload::cublasSetMathMode(context.cublas_handle(),
CUBLAS_DEFAULT_MATH));
}
#endif
#endif // CUDA_VERSION >= 9000
// cublasHgemm does true FP16 computation which is slow for non-Volta
// GPUs. So use cublasGemmEx instead which does pesudo FP16 computation:
......@@ -66,6 +67,18 @@ void gemm<platform::CUDADeviceContext, float16>(
context.cublas_handle(), cuTransB, cuTransA, N, M, K, &h_alpha, B,
CUDA_R_16F, ldb, A, CUDA_R_16F, lda, &h_beta, C, CUDA_R_16F, N,
CUDA_R_32F, algo));
#else
// CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm
const half h_alpha = static_cast<const half>(alpha);
const half h_beta = static_cast<const half>(beta);
const half* h_A = reinterpret_cast<const half*>(A);
const half* h_B = reinterpret_cast<const half*>(B);
half* h_C = reinterpret_cast<half*>(C);
PADDLE_ENFORCE(platform::dynload::cublasHgemm(
context.cublas_handle(), cuTransB, cuTransA, N, M, K, &h_alpha, h_B, ldb,
h_A, lda, &h_beta, h_C, N));
#endif // CUDA_VERSION >= 8000
}
template <>
......
......@@ -28,6 +28,10 @@ CUBLAS_BLAS_ROUTINE_EACH(DEFINE_WRAP);
CUBLAS_BLAS_ROUTINE_EACH_R2(DEFINE_WRAP);
#endif
#ifdef CUBLAS_BLAS_ROUTINE_EACH_R3
CUBLAS_BLAS_ROUTINE_EACH_R3(DEFINE_WRAP);
#endif
} // namespace dynload
} // namespace platform
} // namespace paddle
......@@ -71,7 +71,6 @@ extern void *cublas_dso_handle;
__macro(cublasDgemm_v2); \
__macro(cublasHgemm); \
__macro(cublasSgemmEx); \
__macro(cublasGemmEx); \
__macro(cublasSgeam_v2); \
__macro(cublasDgeam_v2); \
__macro(cublasCreate_v2); \
......@@ -83,11 +82,6 @@ extern void *cublas_dso_handle;
__macro(cublasDgemmBatched); \
__macro(cublasCgemmBatched); \
__macro(cublasZgemmBatched); \
__macro(cublasSgemmStridedBatched); \
__macro(cublasDgemmStridedBatched); \
__macro(cublasCgemmStridedBatched); \
__macro(cublasZgemmStridedBatched); \
__macro(cublasHgemmStridedBatched); \
__macro(cublasSgetrfBatched); \
__macro(cublasSgetriBatched); \
__macro(cublasDgetrfBatched); \
......@@ -95,10 +89,24 @@ extern void *cublas_dso_handle;
CUBLAS_BLAS_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP)
// APIs available after CUDA 8.0
#if CUDA_VERSION >= 8000
#define CUBLAS_BLAS_ROUTINE_EACH_R2(__macro) \
__macro(cublasGemmEx); \
__macro(cublasSgemmStridedBatched); \
__macro(cublasDgemmStridedBatched); \
__macro(cublasCgemmStridedBatched); \
__macro(cublasZgemmStridedBatched); \
__macro(cublasHgemmStridedBatched);
CUBLAS_BLAS_ROUTINE_EACH_R2(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP)
#endif
// APIs available after CUDA 9.0
#if CUDA_VERSION >= 9000
#define CUBLAS_BLAS_ROUTINE_EACH_R2(__macro) __macro(cublasSetMathMode);
CUBLAS_BLAS_ROUTINE_EACH_R2(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP)
#define CUBLAS_BLAS_ROUTINE_EACH_R3(__macro) __macro(cublasSetMathMode);
CUBLAS_BLAS_ROUTINE_EACH_R3(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP)
#endif
#undef DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP
......
......@@ -14,8 +14,9 @@
#pragma once
#include <thread>
#include <thread> // NOLINT
#include <typeindex>
#include <vector>
#include "paddle/fluid/platform/dynload/nccl.h"
#include "paddle/fluid/platform/enforce.h"
......@@ -29,6 +30,8 @@ inline ncclDataType_t ToNCCLDataType(std::type_index type) {
return ncclDouble;
} else if (type == typeid(int)) { // NOLINT
return ncclInt;
} else if (type == typeid(int64_t)) { // NOLINT
return ncclInt64;
} else {
PADDLE_THROW("Not supported");
}
......@@ -66,23 +69,23 @@ struct NCCLContext {
return boost::get<platform::CUDAPlace>(ctx_->GetPlace()).device;
}
static void InitNCCLContext(std::unordered_map<int, NCCLContext> &contexts,
static void InitNCCLContext(std::unordered_map<int, NCCLContext> *contexts,
const std::vector<platform::Place> &places) {
std::vector<ncclComm_t> comms;
std::vector<int> devs;
comms.resize(contexts.size());
devs.reserve(contexts.size());
comms.resize(contexts->size());
devs.reserve(contexts->size());
for (auto &p : places) {
devs.push_back(boost::get<platform::CUDAPlace>(p).device);
}
PADDLE_ENFORCE(platform::dynload::ncclCommInitAll(
&comms[0], static_cast<int>(contexts.size()), &devs[0]));
&comms[0], static_cast<int>(contexts->size()), &devs[0]));
int i = 0;
for (auto &dev_id : devs) {
contexts.at(dev_id).comm_ = comms[i++];
contexts->at(dev_id).comm_ = comms[i++];
}
}
};
......@@ -91,7 +94,7 @@ struct NCCLContextMap {
std::unordered_map<int, NCCLContext> contexts_;
std::vector<int> order_;
NCCLContextMap(const std::vector<platform::Place> &places) {
explicit NCCLContextMap(const std::vector<platform::Place> &places) {
order_.reserve(places.size());
for (auto &p : places) {
int dev_id = boost::get<CUDAPlace>(p).device;
......
......@@ -818,6 +818,11 @@ class Block(object):
del self.vars[name]
self.sync_with_cpp()
def remove_var(self, name):
self.sync_with_cpp()
self.desc.remove_var(name)
del self.vars[name]
def create_parameter(self, *args, **kwargs):
global_block = self.program.global_block()
param = Parameter(global_block, *args, **kwargs)
......@@ -838,6 +843,11 @@ class Block(object):
self.ops.insert(index, op)
return op
def remove_op(self, index):
self.sync_with_cpp()
self.desc.remove_op(index, index + 1)
del self.ops[index]
def delete_ops(self, ops):
# remove from cpp
# FIXME(typhoonzero): remove only the first occurrence.
......@@ -846,6 +856,7 @@ class Block(object):
end = list(self.ops).index(ops[-1])
except Exception, e:
raise e
self.desc.remove_op(start, end + 1)
def slice_ops(self, start, end):
......
......@@ -201,24 +201,6 @@ class TestBlockDesc(unittest.TestCase):
op1.set_type("test")
op2.set_type("test")
var0 = block.var("var0")
var1 = block.var("var1")
var2 = block.var("var2")
var3 = block.var("var3")
var4 = block.var("var4")
var5 = block.var("var5")
op0.set_input("X", ["var0"])
op0.set_output("Y", ["var0"])
op1.set_input("X", ["var1", "var2"])
op1.set_output("Y", ["var3", "var4"])
op2.set_input("X", ["var1"])
op2.set_output("Y", ["var4", "var5"])
program.sync_with_cpp()
# remove op1, its input var2 and output var3 will be removed at the same time,
# but its input var1 and output var4 will not be removed since they are used for op2.
block.remove_op(1, 2)
program.sync_with_cpp()
......@@ -226,8 +208,6 @@ class TestBlockDesc(unittest.TestCase):
for idx in xrange(0, block.op_size()):
all_ops.append(block.op(idx))
self.assertEqual(all_ops, [op0, op2])
all_vars = block.all_vars()
self.assertEqual(set(all_vars), {var0, var1, var4, var5})
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册