提交 72509ec3 编写于 作者: D dengkaipeng

add unittest for spectral_norm. test=develop

上级 3bf1ae9b
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/spectral_norm_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
spectral_norm,
ops::SpectralNormKernel<paddle::platform::CUDADeviceContext, float>,
ops::SpectralNormKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
spectral_norm_grad,
ops::SpectralNormGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::SpectralNormGradKernel<paddle::platform::CUDADeviceContext, double>);
...@@ -46,47 +46,51 @@ static inline void CalcMatrixSigmaAndNormWeight( ...@@ -46,47 +46,51 @@ static inline void CalcMatrixSigmaAndNormWeight(
Tensor* sigma, Tensor* u, Tensor* v, Tensor* weight, const int power_iters, Tensor* sigma, Tensor* u, Tensor* v, Tensor* weight, const int power_iters,
const float eps, const framework::ExecutionContext& ctx) { const float eps, const framework::ExecutionContext& ctx) {
auto& place = *ctx.template device_context<DeviceContext>().eigen_device(); auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
auto blas = math::GetBlas<DeviceContext, T>(ctx);
auto sigma_t = EigenTensor<T, 2>::From(*sigma); auto sigma_t = EigenTensor<T, 2>::From(*sigma);
auto weight_t = EigenTensor<T, 2>::From(*weight); auto weight_t = EigenTensor<T, 2>::From(*weight);
auto u_t = EigenTensor<T, 1>::From(*u); auto u_t = EigenTensor<T, 2>::From(*u);
auto v_t = EigenTensor<T, 1>::From(*v); auto v_t = EigenTensor<T, 2>::From(*v);
const int h = weight->dims()[0]; const int h = weight->dims()[0];
const int w = weight->dims()[1]; const int w = weight->dims()[1];
Eigen::array<int, 2> perm = {1, 0}; // LOG(ERROR) << "weight: " << weight_t;
Eigen::array<IndexPair, 1> product_dims = {IndexPair(1, 0)}; // LOG(ERROR) << "weight_trans: " << weight_trans_t;
auto weight_trans_t = weight_t.shuffle(perm);
LOG(ERROR) << "weight: " << weight_t;
LOG(ERROR) << "weight_trans: " << weight_trans_t;
for (int i = 0; i < power_iters; i++) { for (int i = 0; i < power_iters; i++) {
v_t.device(place) = weight_trans_t.contract(u_t, product_dims); // v_t.device(place) = weight_trans_t.contract(u_t, product_dims);
LOG(ERROR) << "iter v: " << v_t; blas.MatMul(*weight, true, *u, false, T(1), v, T(0));
// LOG(ERROR) << "iter v: " << v_t;
auto v_t_norm = auto v_t_norm =
v_t.square().sum().sqrt().eval().reshape(Array1(1)).broadcast( v_t.square().sum().sqrt().eval().reshape(Array1(1)).broadcast(
Array1(w)); Array1(w));
LOG(ERROR) << "iter v_norm: " << v_t_norm; // LOG(ERROR) << "iter v_norm: " << v_t_norm;
v_t.device(place) = v_t / (v_t_norm + v_t_norm.constant(eps)); v_t.device(place) = v_t / (v_t_norm + v_t_norm.constant(eps));
LOG(ERROR) << "iter norm v: " << v_t; // LOG(ERROR) << "iter norm v: " << v_t;
u_t.device(place) = weight_t.contract(v_t, product_dims); // u_t.device(place) = weight_t.contract(v_t, product_dims);
LOG(ERROR) << "iter u: " << u_t; blas.MatMul(*weight, false, *v, false, T(1), u, T(0));
// LOG(ERROR) << "iter u: " << u_t;
auto u_t_norm = auto u_t_norm =
u_t.square().sum().sqrt().eval().reshape(Array1(1)).broadcast( u_t.square().sum().sqrt().eval().reshape(Array1(1)).broadcast(
Array1(h)); Array1(h));
u_t.device(place) = u_t / (u_t_norm + u_t_norm.constant(eps)); u_t.device(place) = u_t / (u_t_norm + u_t_norm.constant(eps));
LOG(ERROR) << "iter norm u: " << u_t; // LOG(ERROR) << "iter norm u: " << u_t;
} }
LOG(ERROR) << "h" << h << "w" << w; // LOG(ERROR) << "h" << h << "w" << w;
LOG(ERROR) << "u: " << u_t; // LOG(ERROR) << "u: " << u_t;
LOG(ERROR) << "v: " << v_t; // LOG(ERROR) << "v: " << v_t;
LOG(ERROR) << "weight_v: " << weight_t.contract(v_t, product_dims); Tensor weight_v;
sigma_t.device(place) = (u_t * weight_t.contract(v_t, product_dims)) weight_v.mutable_data<T>({h, 1}, ctx.GetPlace());
blas.MatMul(*weight, false, *v, false, T(1), &weight_v, T(0));
auto weight_v_t = EigenTensor<T, 2>::From(weight_v);
// LOG(ERROR) << "weight_v: " << weight_v_t;
sigma_t.device(place) = (u_t * weight_v_t)
.sum() .sum()
.eval() .eval()
.reshape(Array2(1, 1)) .reshape(Array2(1, 1))
.broadcast(Array2(h, w)); .broadcast(Array2(h, w));
LOG(ERROR) << "weight: " << weight_t; // LOG(ERROR) << "weight: " << weight_t;
LOG(ERROR) << "sigma: " << sigma_t; // LOG(ERROR) << "sigma: " << sigma_t;
weight_t.device(place) = weight_t / sigma_t; weight_t.device(place) = weight_t / sigma_t;
} }
...@@ -103,6 +107,9 @@ class SpectralNormKernel : public framework::OpKernel<T> { ...@@ -103,6 +107,9 @@ class SpectralNormKernel : public framework::OpKernel<T> {
int power_iters = ctx.Attr<int>("power_iters"); int power_iters = ctx.Attr<int>("power_iters");
float eps = ctx.Attr<float>("eps"); float eps = ctx.Attr<float>("eps");
const int h = weight->dims()[0];
const int w = weight->dims()[1];
Tensor weight_mat; Tensor weight_mat;
TensorCopySync(*weight, ctx.GetPlace(), &weight_mat); TensorCopySync(*weight, ctx.GetPlace(), &weight_mat);
ResizeWeight(&weight_mat, dim); ResizeWeight(&weight_mat, dim);
...@@ -113,7 +120,8 @@ class SpectralNormKernel : public framework::OpKernel<T> { ...@@ -113,7 +120,8 @@ class SpectralNormKernel : public framework::OpKernel<T> {
TensorCopySync(*u, ctx.GetPlace(), &uu); TensorCopySync(*u, ctx.GetPlace(), &uu);
TensorCopySync(*v, ctx.GetPlace(), &vv); TensorCopySync(*v, ctx.GetPlace(), &vv);
CalcMatrixSigmaAndNormWeight<DeviceContext, T>( CalcMatrixSigmaAndNormWeight<DeviceContext, T>(
&sigma, &uu, &vv, &weight_mat, power_iters, eps, ctx); &sigma, &(uu.Resize({h, 1})), &(vv.Resize({w, 1})), &weight_mat,
power_iters, eps, ctx);
TensorCopySync(weight_mat, ctx.GetPlace(), out); TensorCopySync(weight_mat, ctx.GetPlace(), out);
} }
}; };
......
...@@ -21,17 +21,36 @@ from op_test import OpTest ...@@ -21,17 +21,36 @@ from op_test import OpTest
from paddle.fluid import core from paddle.fluid import core
def spectral_norm(weight, u, v, dim, power_iters, eps):
h = w = 1
for i, d in enumerate(weight.shape):
if i <= dim:
h *= d
else:
w *= d
weight_mat = weight.reshape((h, w))
u = u.reshape((h, 1))
v = v.reshape((w, 1))
for i in range(power_iters):
v = np.matmul(weight_mat.T, u)
v_norm = np.sqrt((v * v).sum())
v = v / (v_norm + eps)
u = np.matmul(weight_mat, v)
u_norm = np.sqrt((u * u).sum())
u = u / (u_norm + eps)
sigma = (u * np.matmul(weight_mat, v)).sum()
return (weight_mat / sigma).reshape(weight.shape)
class TestSpectralNormOp(OpTest): class TestSpectralNormOp(OpTest):
def setUp(self): def setUp(self):
self.initTestCase() self.initTestCase()
self.op_type = 'spectral_norm' self.op_type = 'spectral_norm'
# weight = np.random.random(self.weight_shape).astype('float32') weight = np.random.random(self.weight_shape).astype('float32')
# u = np.random.random(self.u_shape).astype('float32') u = np.random.random(self.u_shape).astype('float32')
# v = np.random.random(self.u_shape).astype('float32') v = np.random.random(self.v_shape).astype('float32')
weight = np.ones(self.weight_shape).astype('float32')
weight[1, :] = 2.
u = np.ones(self.u_shape).astype('float32')
v = np.ones(self.v_shape).astype('float32')
self.attrs = { self.attrs = {
"dim": self.dim, "dim": self.dim,
...@@ -45,8 +64,9 @@ class TestSpectralNormOp(OpTest): ...@@ -45,8 +64,9 @@ class TestSpectralNormOp(OpTest):
"V": v, "V": v,
} }
output = weight output = spectral_norm(weight, u, v, self.dim, self.power_iters,
self.outputs = {"Out": weight, } self.eps)
self.outputs = {"Out": output}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
...@@ -56,7 +76,7 @@ class TestSpectralNormOp(OpTest): ...@@ -56,7 +76,7 @@ class TestSpectralNormOp(OpTest):
self.u_shape = (2, ) self.u_shape = (2, )
self.v_shape = (3, ) self.v_shape = (3, )
self.dim = 0 self.dim = 0
self.power_iters = 1 self.power_iters = 2
self.eps = 1e-12 self.eps = 1e-12
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册