Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
71634a61
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
71634a61
编写于
1月 26, 2022
作者:
Q
qipengh
提交者:
GitHub
1月 26, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU]Add conv2d op (#39110)
* [MLU]Add conv2d op * [MLU]fix comment * [MLU]adapt NCHW of conv2d op
上级
4efbebea
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
832 addition
and
5 deletion
+832
-5
paddle/fluid/operators/batch_norm_op_mlu.cc
paddle/fluid/operators/batch_norm_op_mlu.cc
+1
-1
paddle/fluid/operators/conv_op_mlu.cc
paddle/fluid/operators/conv_op_mlu.cc
+251
-0
paddle/fluid/operators/mlu/mlu_baseop.h
paddle/fluid/operators/mlu/mlu_baseop.h
+23
-0
paddle/fluid/operators/top_k_op_mlu.cc
paddle/fluid/operators/top_k_op_mlu.cc
+1
-2
paddle/fluid/operators/top_k_v2_op_mlu.cc
paddle/fluid/operators/top_k_v2_op_mlu.cc
+1
-2
python/paddle/fluid/tests/unittests/mlu/test_conv2d_op_mlu.py
...on/paddle/fluid/tests/unittests/mlu/test_conv2d_op_mlu.py
+555
-0
未找到文件。
paddle/fluid/operators/batch_norm_op_mlu.cc
浏览文件 @
71634a61
...
...
@@ -106,7 +106,7 @@ class MLUBatchNormOpKernel : public framework::OpKernel<T> {
if
(
ctx
.
HasInput
(
"MomentumTensor"
))
{
const
auto
*
mom_tensor
=
ctx
.
Input
<
Tensor
>
(
"MomentumTensor"
);
Tensor
mom_cpu
;
TensorCopySync
(
*
mom_tensor
,
platform
::
CPUPlace
(),
&
mom_cpu
);
framework
::
TensorCopySync
(
*
mom_tensor
,
platform
::
CPUPlace
(),
&
mom_cpu
);
momentum
=
mom_cpu
.
data
<
float
>
()[
0
];
}
...
...
paddle/fluid/operators/conv_op_mlu.cc
0 → 100644
浏览文件 @
71634a61
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
DataLayout
=
framework
::
DataLayout
;
template
<
typename
T
>
class
MLUConvOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
Tensor
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
filter
=
ctx
.
Input
<
Tensor
>
(
"Filter"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
const
std
::
string
padding_algorithm
=
ctx
.
Attr
<
std
::
string
>
(
"padding_algorithm"
);
const
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
const
bool
channel_last
=
data_format
==
"NHWC"
;
// update padding and dilation
auto
in_dims
=
input
->
dims
();
auto
filter_dims
=
filter
->
dims
();
auto
in_dims_size
=
in_dims
.
size
();
framework
::
DDim
in_data_dims
;
framework
::
DDim
filter_data_dims
;
if
(
channel_last
)
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
1
,
in_dims
.
size
()
-
1
);
}
else
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
}
filter_data_dims
=
framework
::
slice_ddim
(
filter_dims
,
2
,
in_dims
.
size
());
std
::
vector
<
int
>
ksize
=
framework
::
vectorize
<
int
>
(
filter_data_dims
);
UpdatePaddingAndDilation
(
&
paddings
,
&
dilations
,
padding_algorithm
,
in_data_dims
,
strides
,
ksize
);
Tensor
input_tensor
(
input
->
type
());
Tensor
output_tensor
(
output
->
type
());
const
std
::
vector
<
int
>
perm_to_nhwc
=
{
0
,
2
,
3
,
1
};
if
(
channel_last
)
{
input_tensor
.
ShareDataWith
(
*
input
);
output_tensor
.
ShareDataWith
(
*
output
);
}
else
{
// transpose input from NCHW to NHWC
TransposeFromMLUTensor
<
T
>
(
ctx
,
perm_to_nhwc
,
input
,
&
input_tensor
,
true
/*need_reshape_or_alloc*/
);
auto
output_dims
=
output
->
dims
();
output_tensor
.
mutable_data
<
T
>
(
{
output_dims
[
0
],
output_dims
[
2
],
output_dims
[
3
],
output_dims
[
1
]},
ctx
.
GetPlace
());
}
input_tensor
.
set_layout
(
DataLayout
::
kNHWC
);
output_tensor
.
set_layout
(
DataLayout
::
kNHWC
);
// transpose filter from MCHW to MHWC
Tensor
trans_filter
(
filter
->
type
());
TransposeFromMLUTensor
<
T
>
(
ctx
,
perm_to_nhwc
,
filter
,
&
trans_filter
,
true
/*need_reshape_or_alloc*/
);
cnnlTensorLayout_t
data_layout
=
CNNL_LAYOUT_NHWC
;
MLUCnnlTensorDesc
input_desc
(
input_tensor
,
data_layout
,
ToCnnlDataType
(
input_tensor
.
type
()));
MLUCnnlTensorDesc
filter_desc
(
trans_filter
,
data_layout
,
ToCnnlDataType
(
trans_filter
.
type
()));
MLUCnnlTensorDesc
output_desc
(
output_tensor
,
data_layout
,
ToCnnlDataType
(
output_tensor
.
type
()));
MLUCnnlConvolutionDesc
conv_desc
(
in_dims_size
,
paddings
.
data
(),
strides
.
data
(),
dilations
.
data
(),
groups
,
ToCnnlDataType
<
T
>
());
MLUCnnl
::
ConvolutionForward
(
ctx
,
conv_desc
.
get
(),
nullptr
/*alpha*/
,
nullptr
/*beta*/
,
nullptr
/*bias_desc*/
,
nullptr
/*bias_ptr*/
,
input_desc
.
get
(),
GetBasePtr
(
&
input_tensor
),
filter_desc
.
get
(),
GetBasePtr
(
&
trans_filter
),
output_desc
.
get
(),
GetBasePtr
(
&
output_tensor
));
if
(
!
channel_last
)
{
// transpose ouput from NHWC to NCHW
const
std
::
vector
<
int
>
perm_to_nchw
=
{
0
,
3
,
1
,
2
};
TransposeFromMLUTensor
<
T
>
(
ctx
,
perm_to_nchw
,
&
output_tensor
,
output
,
false
/*need_reshape_or_alloc*/
);
}
}
};
template
<
typename
T
>
class
MLUConvGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
filter
=
ctx
.
Input
<
Tensor
>
(
"Filter"
);
auto
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
auto
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
filter_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
const
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
const
std
::
string
padding_algorithm
=
ctx
.
Attr
<
std
::
string
>
(
"padding_algorithm"
);
const
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
const
bool
channel_last
=
data_format
==
"NHWC"
;
// update padding and dilation
auto
in_dims
=
input
->
dims
();
auto
filter_dims
=
filter
->
dims
();
auto
in_dims_size
=
in_dims
.
size
();
framework
::
DDim
in_data_dims
;
framework
::
DDim
filter_data_dims
;
if
(
channel_last
)
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
1
,
in_dims
.
size
()
-
1
);
}
else
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
}
filter_data_dims
=
framework
::
slice_ddim
(
filter_dims
,
2
,
in_dims
.
size
());
std
::
vector
<
int
>
ksize
=
framework
::
vectorize
<
int
>
(
filter_data_dims
);
UpdatePaddingAndDilation
(
&
paddings
,
&
dilations
,
padding_algorithm
,
in_data_dims
,
strides
,
ksize
);
Tensor
input_tensor
(
input
->
type
());
Tensor
output_grad_tensor
(
output_grad
->
type
());
const
std
::
vector
<
int
>
perm_to_nhwc
=
{
0
,
2
,
3
,
1
};
const
std
::
vector
<
int
>
perm_to_nchw
=
{
0
,
3
,
1
,
2
};
if
(
channel_last
)
{
input_tensor
.
ShareDataWith
(
*
input
);
output_grad_tensor
.
ShareDataWith
(
*
output_grad
);
}
else
{
// transpose input and output_grad from NCHW to NHWC
TransposeFromMLUTensor
<
T
>
(
ctx
,
perm_to_nhwc
,
input
,
&
input_tensor
,
true
/*need_reshape_or_alloc*/
);
TransposeFromMLUTensor
<
T
>
(
ctx
,
perm_to_nhwc
,
output_grad
,
&
output_grad_tensor
,
true
/*need_reshape_or_alloc*/
);
}
input_tensor
.
set_layout
(
DataLayout
::
kNHWC
);
output_grad_tensor
.
set_layout
(
DataLayout
::
kNHWC
);
if
(
filter_grad
)
{
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
filter_grad_dims
=
filter_grad
->
dims
();
Tensor
temp_filter_grad
(
filter_grad
->
type
());
temp_filter_grad
.
mutable_data
<
T
>
(
{
filter_grad_dims
[
0
],
filter_grad_dims
[
2
],
filter_grad_dims
[
3
],
filter_grad_dims
[
1
]},
ctx
.
GetPlace
());
cnnlDataType_t
tensor_dtype
=
ToCnnlDataType
<
T
>
();
cnnlTensorLayout_t
data_layout
=
CNNL_LAYOUT_NHWC
;
MLUCnnlTensorDesc
input_desc
(
input_tensor
,
data_layout
,
tensor_dtype
);
MLUCnnlTensorDesc
out_grad_desc
(
output_grad_tensor
,
data_layout
,
tensor_dtype
);
MLUCnnlTensorDesc
temp_filter_grad_desc
(
temp_filter_grad
,
data_layout
,
tensor_dtype
);
MLUCnnlConvolutionDesc
conv_desc
(
in_dims_size
,
paddings
.
data
(),
strides
.
data
(),
dilations
.
data
(),
groups
,
tensor_dtype
);
MLUCnnl
::
ConvBackpropFilter
(
ctx
,
conv_desc
.
get
(),
input_desc
.
get
(),
GetBasePtr
(
&
input_tensor
),
out_grad_desc
.
get
(),
GetBasePtr
(
&
output_grad_tensor
),
temp_filter_grad_desc
.
get
(),
GetBasePtr
(
&
temp_filter_grad
));
// transpose filter_grad from MHWC to MCHW
TransposeFromMLUTensor
<
T
>
(
ctx
,
perm_to_nchw
,
&
temp_filter_grad
,
filter_grad
,
false
/*need_reshape_or_alloc*/
);
}
if
(
input_grad
)
{
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Tensor
input_grad_tensor
(
input_grad
->
type
());
if
(
channel_last
)
{
input_grad_tensor
.
ShareDataWith
(
*
input_grad
);
}
else
{
auto
input_grad_dims
=
input_grad
->
dims
();
input_grad_tensor
.
mutable_data
<
T
>
(
{
input_grad_dims
[
0
],
input_grad_dims
[
2
],
input_grad_dims
[
3
],
input_grad_dims
[
1
]},
ctx
.
GetPlace
());
}
input_grad_tensor
.
set_layout
(
DataLayout
::
kNHWC
);
// transpose filter from MCHW to MHWC
Tensor
trans_filter
(
filter
->
type
());
TransposeFromMLUTensor
<
T
>
(
ctx
,
perm_to_nhwc
,
filter
,
&
trans_filter
,
true
/*need_reshape_or_alloc*/
);
cnnlDataType_t
tensor_dtype
=
ToCnnlDataType
<
T
>
();
cnnlTensorLayout_t
data_layout
=
CNNL_LAYOUT_NHWC
;
MLUCnnlTensorDesc
filter_desc
(
trans_filter
,
data_layout
,
tensor_dtype
);
MLUCnnlTensorDesc
out_grad_desc
(
output_grad_tensor
,
data_layout
,
tensor_dtype
);
MLUCnnlTensorDesc
in_grad_desc
(
input_grad_tensor
,
data_layout
,
tensor_dtype
);
MLUCnnlConvolutionDesc
conv_desc
(
in_dims_size
,
paddings
.
data
(),
strides
.
data
(),
dilations
.
data
(),
groups
,
tensor_dtype
);
MLUCnnl
::
ConvBackpropInput
(
ctx
,
conv_desc
.
get
(),
filter_desc
.
get
(),
GetBasePtr
(
&
trans_filter
),
out_grad_desc
.
get
(),
GetBasePtr
(
&
output_grad_tensor
),
in_grad_desc
.
get
(),
GetBasePtr
(
&
input_grad_tensor
));
if
(
!
channel_last
)
{
// transpose input_grad from NHWC to NCHW
TransposeFromMLUTensor
<
T
>
(
ctx
,
perm_to_nchw
,
&
input_grad_tensor
,
input_grad
,
false
/*need_reshape_or_alloc*/
);
}
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
conv2d
,
ops
::
MLUConvOpKernel
<
float
>
,
ops
::
MLUConvOpKernel
<
plat
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
conv2d_grad
,
ops
::
MLUConvGradOpKernel
<
float
>
,
ops
::
MLUConvGradOpKernel
<
plat
::
float16
>
);
paddle/fluid/operators/mlu/mlu_baseop.h
浏览文件 @
71634a61
...
...
@@ -1137,5 +1137,28 @@ class MLUCnnl {
void
*
output
);
};
template
<
typename
T
>
inline
void
TransposeFromMLUTensor
(
const
ExecutionContext
&
ctx
,
const
std
::
vector
<
int
>
perm
,
const
Tensor
*
transformed_input
,
Tensor
*
transformed_output
,
bool
need_reshape_or_alloc
)
{
auto
in_dims_vec
=
framework
::
vectorize
(
transformed_input
->
dims
());
if
(
need_reshape_or_alloc
)
{
transformed_output
->
mutable_data
<
T
>
(
{
in_dims_vec
[
perm
[
0
]],
in_dims_vec
[
perm
[
1
]],
in_dims_vec
[
perm
[
2
]],
in_dims_vec
[
perm
[
3
]]},
ctx
.
GetPlace
());
}
MLUCnnlTensorDesc
trans_in_desc
(
*
transformed_input
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
trans_out_desc
(
*
transformed_output
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
T
>
());
MLUCnnl
::
Transpose
(
ctx
,
perm
,
in_dims_vec
.
size
(),
trans_in_desc
.
get
(),
GetBasePtr
(
transformed_input
),
trans_out_desc
.
get
(),
GetBasePtr
(
transformed_output
));
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/top_k_op_mlu.cc
浏览文件 @
71634a61
...
...
@@ -33,8 +33,7 @@ class TopkMLUKernel : public framework::OpKernel<T> {
auto
k_t_ptr
=
static_cast
<
const
void
*>
(
k_t
->
data
<
int
>
());
auto
size
=
k_t
->
numel
()
*
sizeof
(
int
);
memory
::
Copy
(
platform
::
CPUPlace
(),
reinterpret_cast
<
void
*>
(
&
k
),
BOOST_GET_CONST
(
platform
::
MLUPlace
,
k_t
->
place
()),
k_t_ptr
,
size
,
nullptr
);
k_t
->
place
(),
k_t_ptr
,
size
,
nullptr
);
framework
::
DDim
output_dims
=
output
->
dims
();
output_dims
[
output_dims
.
size
()
-
1
]
=
k
;
output
->
Resize
(
output_dims
);
...
...
paddle/fluid/operators/top_k_v2_op_mlu.cc
浏览文件 @
71634a61
...
...
@@ -43,8 +43,7 @@ class TopkV2MLUKernel : public framework::OpKernel<T> {
auto
k_t_ptr
=
static_cast
<
const
void
*>
(
k_t
->
data
<
int
>
());
auto
size
=
k_t
->
numel
()
*
sizeof
(
int
);
memory
::
Copy
(
platform
::
CPUPlace
(),
reinterpret_cast
<
void
*>
(
&
k
),
BOOST_GET_CONST
(
platform
::
MLUPlace
,
k_t
->
place
()),
k_t_ptr
,
size
,
nullptr
);
k_t
->
place
(),
k_t_ptr
,
size
,
nullptr
);
framework
::
DDim
output_dims
=
output
->
dims
();
// accroding to axis to set K value in the dim
output_dims
[
axis
]
=
k
;
...
...
python/paddle/fluid/tests/unittests/mlu/test_conv2d_op_mlu.py
0 → 100644
浏览文件 @
71634a61
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
op_test
import
OpTest
from
test_conv2d_op
import
conv2d_forward_naive
paddle
.
enable_static
()
def
create_test_channel_last_class
(
parent
):
class
TestChannelLastCase
(
parent
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_test_case_2
(
self
):
N
,
C
,
H
,
W
=
self
.
input_size
self
.
input_size
=
[
N
,
H
,
W
,
C
]
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"ChannelLast"
)
TestChannelLastCase
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestChannelLastCase
def
create_test_padding_SAME_class
(
parent
):
class
TestPaddingSMAECase
(
parent
):
def
init_paddings
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
padding_algorithm
=
"SAME"
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"PaddingSAMEOp"
)
TestPaddingSMAECase
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestPaddingSMAECase
def
create_test_padding_VALID_class
(
parent
):
class
TestPaddingVALIDCase
(
parent
):
def
init_paddings
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
padding_algorithm
=
"VALID"
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"PaddingVALIDOp"
)
TestPaddingVALIDCase
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestPaddingVALIDCase
def
create_test_fp16_class
(
parent
):
class
TestFp16Case
(
parent
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"Fp16"
)
TestFp16Case
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestFp16Case
class
TestConv2DOp
(
OpTest
):
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
init_data_format
(
self
):
self
.
data_format
=
"NCHW"
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"conv2d"
self
.
init_data_format
()
self
.
init_dtype
()
self
.
init_group
()
self
.
init_dilation
()
self
.
init_test_case
()
conv2d_param
=
{
'stride'
:
self
.
stride
,
'pad'
:
self
.
pad
,
'dilation'
:
self
.
dilations
}
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
filter
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
filter_size
).
astype
(
self
.
dtype
)
output
,
_
,
_
,
_
,
_
=
conv2d_forward_naive
(
input
,
filter
,
self
.
groups
,
conv2d_param
,
data_format
=
self
.
data_format
)
output
=
output
.
astype
(
self
.
dtype
)
self
.
inputs
=
{
'Input'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
),
'Filter'
:
OpTest
.
np_dtype_to_fluid_dtype
(
filter
)
}
self
.
attrs
=
{
'strides'
:
self
.
stride
,
'paddings'
:
self
.
pad
,
'groups'
:
self
.
groups
,
'dilations'
:
self
.
dilations
,
'data_format'
:
self
.
data_format
,
}
self
.
outputs
=
{
'Output'
:
output
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-2
)
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad_with_place
(
self
.
place
,
{
'Input'
,
'Filter'
},
'Output'
,
max_relative_error
=
0.03
,
numeric_place
=
paddle
.
CPUPlace
())
def
test_check_grad_no_filter
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Output'
,
max_relative_error
=
0.03
,
no_grad_set
=
set
([
'Filter'
]),
numeric_place
=
paddle
.
CPUPlace
())
def
test_check_grad_no_input
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad_with_place
(
self
.
place
,
[
'Filter'
],
'Output'
,
max_relative_error
=
0.03
,
no_grad_set
=
set
([
'Input'
]),
numeric_place
=
paddle
.
CPUPlace
())
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
def
init_dilation
(
self
):
self
.
dilations
=
[
1
,
1
]
def
init_group
(
self
):
self
.
groups
=
1
class
TestWithPad
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
class
TestWithStride
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
6
,
6
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
class
TestWithGroup
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
group
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
18
,
f_c
,
3
,
3
]
class
TestWith1x1
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
120
,
f_c
,
1
,
1
]
def
init_group
(
self
):
# FIXME: Supporting group = 3 in this case.
# NOTE(wangran16): There is an unknown error (acl error code is : 507015)
# when group = 3, which needs to be fixed.
self
.
groups
=
1
class
TestWithDepthWise5x5
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
4
,
10
,
10
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
8
,
f_c
,
5
,
5
]
def
init_group
(
self
):
self
.
groups
=
4
class
TestWithDepthWise7x7
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
8
,
10
,
10
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
16
,
f_c
,
7
,
7
]
def
init_group
(
self
):
self
.
groups
=
8
class
TestWithDilation
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
10
,
10
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
12
,
f_c
,
3
,
3
]
def
init_dilation
(
self
):
self
.
dilations
=
[
2
,
2
]
# TODO(MLU): Depthwise opration does not support dilation yet
# it will throw an error of CNNL_STATUS_NOT_SUPPORTED.
# def init_group(self):
# self.groups = 3
class
TestWithInput1x1Filter1x1
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
100
,
1
,
1
,
1
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
120
,
f_c
,
1
,
1
]
def
init_group
(
self
):
self
.
groups
=
1
class
TestConv2DOp_v2
(
OpTest
):
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"conv2d"
self
.
dtype
=
np
.
float32
self
.
init_kernel_type
()
self
.
init_group
()
self
.
init_dilation
()
self
.
init_data_format
()
self
.
init_test_case
()
self
.
init_paddings
()
self
.
init_test_case_2
()
conv2d_param
=
{
'stride'
:
self
.
stride
,
'pad'
:
self
.
pad
,
'dilation'
:
self
.
dilations
}
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
filter
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
filter_size
).
astype
(
self
.
dtype
)
output
,
_
,
_
,
_
,
_
=
conv2d_forward_naive
(
input
,
filter
,
self
.
groups
,
conv2d_param
,
self
.
padding_algorithm
,
self
.
data_format
)
output
=
output
.
astype
(
self
.
dtype
)
self
.
inputs
=
{
'Input'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
),
'Filter'
:
OpTest
.
np_dtype_to_fluid_dtype
(
filter
)
}
self
.
attrs
=
{
'strides'
:
self
.
stride
,
'paddings'
:
self
.
pad
,
'padding_algorithm'
:
self
.
padding_algorithm
,
'groups'
:
self
.
groups
,
'dilations'
:
self
.
dilations
,
'data_format'
:
self
.
data_format
,
}
self
.
outputs
=
{
'Output'
:
output
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-2
)
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad_with_place
(
self
.
place
,
{
'Input'
,
'Filter'
},
'Output'
,
max_relative_error
=
0.02
,
numeric_place
=
paddle
.
CPUPlace
())
def
test_check_grad_no_filter
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Output'
,
max_relative_error
=
0.02
,
no_grad_set
=
set
([
'Filter'
]),
numeric_place
=
paddle
.
CPUPlace
())
def
test_check_grad_no_input
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad_with_place
(
self
.
place
,
[
'Filter'
],
'Output'
,
no_grad_set
=
set
([
'Input'
]),
numeric_place
=
paddle
.
CPUPlace
())
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
2
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
4
,
3
]
def
init_dilation
(
self
):
self
.
dilations
=
[
1
,
1
]
def
init_group
(
self
):
self
.
groups
=
1
def
init_kernel_type
(
self
):
pass
def
init_paddings
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
padding_algorithm
=
"EXPLICIT"
def
init_data_format
(
self
):
self
.
data_format
=
"NCHW"
def
init_test_case_2
(
self
):
pass
class
TestConv2DOp_AsyPadding
(
TestConv2DOp_v2
):
def
init_paddings
(
self
):
self
.
pad
=
[
0
,
0
,
1
,
2
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestWithPad_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
def
init_paddings
(
self
):
self
.
pad
=
[
2
,
1
,
3
,
2
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestWithStride_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
6
,
6
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
def
init_paddings
(
self
):
self
.
pad
=
[
2
,
1
,
3
,
2
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestWithGroup_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
2
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
group
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
4
,
3
]
class
TestWith1x1_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
120
,
f_c
,
1
,
1
]
def
init_group
(
self
):
self
.
groups
=
1
def
init_paddings
(
self
):
self
.
pad
=
[
2
,
2
,
4
,
0
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestWithDepthWise3x3_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
3
,
4
,
10
,
10
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
16
,
f_c
,
3
,
3
]
# TODO(MLU): Depthwise opration does not support dilation yet
# it will throw an error of CNNL_STATUS_NOT_SUPPORTED.
# def init_dilation(self):
# self.dilations = [2, 2]
def
init_group
(
self
):
self
.
groups
=
4
def
init_paddings
(
self
):
self
.
pad
=
[
1
,
3
,
2
,
1
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestWithDepthWise5x5_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
4
,
10
,
10
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
8
,
f_c
,
5
,
5
]
def
init_group
(
self
):
self
.
groups
=
4
def
init_paddings
(
self
):
self
.
pad
=
[
0
,
1
,
1
,
0
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestWithDepthWise7x7_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
8
,
10
,
10
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
16
,
f_c
,
7
,
7
]
def
init_group
(
self
):
self
.
groups
=
8
def
init_paddings
(
self
):
self
.
pad
=
[
1
,
3
,
4
,
1
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestWithDilation_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
10
,
10
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
def
init_dilation
(
self
):
self
.
dilations
=
[
2
,
2
]
# TODO(MLU): Depthwise opration does not support dilation yet
# it will throw an error of CNNL_STATUS_NOT_SUPPORTED.
# def init_group(self):
# self.groups = 3
def
init_paddings
(
self
):
self
.
pad
=
[
0
,
1
,
3
,
0
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestWithInput1x1Filter1x1_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
100
,
1
,
1
,
1
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
120
,
f_c
,
1
,
1
]
def
init_group
(
self
):
self
.
groups
=
1
def
init_paddings
(
self
):
self
.
pad
=
[
0
,
3
,
4
,
0
]
self
.
padding_algorithm
=
"EXPLICIT"
create_test_padding_SAME_class
(
TestConv2DOp_AsyPadding
)
create_test_padding_SAME_class
(
TestWithPad_AsyPadding
)
create_test_padding_SAME_class
(
TestWithStride_AsyPadding
)
create_test_padding_SAME_class
(
TestWithGroup_AsyPadding
)
create_test_padding_SAME_class
(
TestWithInput1x1Filter1x1_AsyPadding
)
create_test_padding_VALID_class
(
TestConv2DOp_AsyPadding
)
create_test_padding_VALID_class
(
TestWithPad_AsyPadding
)
create_test_padding_VALID_class
(
TestWithStride_AsyPadding
)
create_test_padding_VALID_class
(
TestWithGroup_AsyPadding
)
create_test_padding_VALID_class
(
TestWithInput1x1Filter1x1_AsyPadding
)
create_test_channel_last_class
(
TestConv2DOp_AsyPadding
)
create_test_channel_last_class
(
TestWithPad_AsyPadding
)
create_test_channel_last_class
(
TestWithGroup_AsyPadding
)
create_test_channel_last_class
(
TestWith1x1_AsyPadding
)
create_test_channel_last_class
(
TestWithInput1x1Filter1x1_AsyPadding
)
create_test_fp16_class
(
TestConv2DOp_AsyPadding
)
create_test_fp16_class
(
TestWithPad_AsyPadding
)
create_test_fp16_class
(
TestWithStride_AsyPadding
)
create_test_fp16_class
(
TestWithGroup_AsyPadding
)
create_test_fp16_class
(
TestWithInput1x1Filter1x1_AsyPadding
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录