提交 70dbd598 编写于 作者: D dengkaipeng

add grad kernel for spectral_norm. test=develop

上级 72509ec3
...@@ -27,18 +27,18 @@ using Array1 = Eigen::DSizes<int64_t, 1>; ...@@ -27,18 +27,18 @@ using Array1 = Eigen::DSizes<int64_t, 1>;
using Array2 = Eigen::DSizes<int64_t, 2>; using Array2 = Eigen::DSizes<int64_t, 2>;
using IndexPair = Eigen::IndexPair<int>; using IndexPair = Eigen::IndexPair<int>;
static inline void ResizeWeight(Tensor* weight_mat, const int dim) { static inline void CalcMatrixShape(const Tensor& weight, const int dim, int* h,
auto weight_dims = weight_mat->dims(); int* w) {
int h = 1; auto weight_dims = weight.dims();
int w = 1; *h = 1;
*w = 1;
for (int i = 0; i < weight_dims.size(); i++) { for (int i = 0; i < weight_dims.size(); i++) {
if (i <= dim) { if (i <= dim) {
h *= weight_dims[i]; *h *= weight_dims[i];
} else { } else {
w *= weight_dims[i]; *w *= weight_dims[i];
} }
} }
*weight_mat = weight_mat->Resize({h, w});
} }
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
...@@ -55,42 +55,27 @@ static inline void CalcMatrixSigmaAndNormWeight( ...@@ -55,42 +55,27 @@ static inline void CalcMatrixSigmaAndNormWeight(
const int h = weight->dims()[0]; const int h = weight->dims()[0];
const int w = weight->dims()[1]; const int w = weight->dims()[1];
// LOG(ERROR) << "weight: " << weight_t;
// LOG(ERROR) << "weight_trans: " << weight_trans_t;
for (int i = 0; i < power_iters; i++) { for (int i = 0; i < power_iters; i++) {
// v_t.device(place) = weight_trans_t.contract(u_t, product_dims);
blas.MatMul(*weight, true, *u, false, T(1), v, T(0)); blas.MatMul(*weight, true, *u, false, T(1), v, T(0));
// LOG(ERROR) << "iter v: " << v_t;
auto v_t_norm = auto v_t_norm =
v_t.square().sum().sqrt().eval().reshape(Array1(1)).broadcast( v_t.square().sum().sqrt().eval().reshape(Array1(1)).broadcast(
Array1(w)); Array1(w));
// LOG(ERROR) << "iter v_norm: " << v_t_norm;
v_t.device(place) = v_t / (v_t_norm + v_t_norm.constant(eps)); v_t.device(place) = v_t / (v_t_norm + v_t_norm.constant(eps));
// LOG(ERROR) << "iter norm v: " << v_t;
// u_t.device(place) = weight_t.contract(v_t, product_dims);
blas.MatMul(*weight, false, *v, false, T(1), u, T(0)); blas.MatMul(*weight, false, *v, false, T(1), u, T(0));
// LOG(ERROR) << "iter u: " << u_t;
auto u_t_norm = auto u_t_norm =
u_t.square().sum().sqrt().eval().reshape(Array1(1)).broadcast( u_t.square().sum().sqrt().eval().reshape(Array1(1)).broadcast(
Array1(h)); Array1(h));
u_t.device(place) = u_t / (u_t_norm + u_t_norm.constant(eps)); u_t.device(place) = u_t / (u_t_norm + u_t_norm.constant(eps));
// LOG(ERROR) << "iter norm u: " << u_t;
} }
// LOG(ERROR) << "h" << h << "w" << w;
// LOG(ERROR) << "u: " << u_t;
// LOG(ERROR) << "v: " << v_t;
Tensor weight_v; Tensor weight_v;
weight_v.mutable_data<T>({h, 1}, ctx.GetPlace()); weight_v.mutable_data<T>({h, 1}, ctx.GetPlace());
blas.MatMul(*weight, false, *v, false, T(1), &weight_v, T(0)); blas.MatMul(*weight, false, *v, false, T(1), &weight_v, T(0));
auto weight_v_t = EigenTensor<T, 2>::From(weight_v); auto weight_v_t = EigenTensor<T, 2>::From(weight_v);
// LOG(ERROR) << "weight_v: " << weight_v_t;
sigma_t.device(place) = (u_t * weight_v_t) sigma_t.device(place) = (u_t * weight_v_t)
.sum() .sum()
.eval() .eval()
.reshape(Array2(1, 1)) .reshape(Array2(1, 1))
.broadcast(Array2(h, w)); .broadcast(Array2(h, w));
// LOG(ERROR) << "weight: " << weight_t;
// LOG(ERROR) << "sigma: " << sigma_t;
weight_t.device(place) = weight_t / sigma_t; weight_t.device(place) = weight_t / sigma_t;
} }
...@@ -107,29 +92,78 @@ class SpectralNormKernel : public framework::OpKernel<T> { ...@@ -107,29 +92,78 @@ class SpectralNormKernel : public framework::OpKernel<T> {
int power_iters = ctx.Attr<int>("power_iters"); int power_iters = ctx.Attr<int>("power_iters");
float eps = ctx.Attr<float>("eps"); float eps = ctx.Attr<float>("eps");
const int h = weight->dims()[0];
const int w = weight->dims()[1];
Tensor weight_mat; Tensor weight_mat;
int h, w;
CalcMatrixShape(*weight, dim, &h, &w);
TensorCopySync(*weight, ctx.GetPlace(), &weight_mat); TensorCopySync(*weight, ctx.GetPlace(), &weight_mat);
ResizeWeight(&weight_mat, dim); weight_mat = weight_mat.Resize({h, w});
Tensor sigma; Tensor sigma;
sigma.mutable_data<T>(weight->dims(), ctx.GetPlace()); sigma.mutable_data<T>(weight_mat.dims(), ctx.GetPlace());
Tensor uu, vv; Tensor uu, vv;
TensorCopySync(*u, ctx.GetPlace(), &uu); TensorCopySync(*u, ctx.GetPlace(), &uu);
TensorCopySync(*v, ctx.GetPlace(), &vv); TensorCopySync(*v, ctx.GetPlace(), &vv);
CalcMatrixSigmaAndNormWeight<DeviceContext, T>( CalcMatrixSigmaAndNormWeight<DeviceContext, T>(
&sigma, &(uu.Resize({h, 1})), &(vv.Resize({w, 1})), &weight_mat, &sigma, &(uu.Resize({h, 1})), &(vv.Resize({w, 1})), &weight_mat,
power_iters, eps, ctx); power_iters, eps, ctx);
TensorCopySync(weight_mat, ctx.GetPlace(), out); TensorCopySync(weight_mat.Resize(out->dims()), ctx.GetPlace(), out);
} }
}; };
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class SpectralNormGradKernel : public framework::OpKernel<T> { class SpectralNormGradKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override {} void Compute(const framework::ExecutionContext& ctx) const override {
auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
auto blas = math::GetBlas<DeviceContext, T>(ctx);
auto weight = ctx.Input<Tensor>("Weight");
auto u = ctx.Input<Tensor>("U");
auto v = ctx.Input<Tensor>("V");
auto out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto weight_grad = ctx.Output<Tensor>(framework::GradVarName("Weight"));
int dim = ctx.Attr<int>("dim");
int power_iters = ctx.Attr<int>("power_iters");
float eps = ctx.Attr<float>("eps");
Tensor weight_mat, out_grad_mat;
int h, w;
CalcMatrixShape(*weight, dim, &h, &w);
TensorCopySync(*weight, ctx.GetPlace(), &weight_mat);
TensorCopySync(*out_grad, ctx.GetPlace(), &out_grad_mat);
weight_mat = weight_mat.Resize({h, w});
out_grad_mat = out_grad_mat.Resize({h, w});
Tensor sigma;
sigma.mutable_data<T>(weight_mat.dims(), ctx.GetPlace());
Tensor uu, vv;
TensorCopySync(*u, ctx.GetPlace(), &uu);
TensorCopySync(*v, ctx.GetPlace(), &vv);
CalcMatrixSigmaAndNormWeight<DeviceContext, T>(
&sigma, &(uu.Resize({h, 1})), &(vv.Resize({w, 1})), &weight_mat,
power_iters, eps, ctx);
Tensor uv;
uv.mutable_data<T>({h, w}, ctx.GetPlace());
blas.MatMul(uu.Resize({h, 1}), false, vv.Resize({w, 1}), false, T(1), &uv,
T(0));
Tensor weight_grad_mat, ones;
weight_grad_mat.mutable_data<T>({h, w}, ctx.GetPlace());
ones.mutable_data<T>({h, w}, ctx.GetPlace());
auto weight_grad_mat_t = EigenTensor<T, 2>::From(weight_grad_mat);
auto weight_mat_t = EigenTensor<T, 2>::From(weight_mat);
auto out_grad_mat_t = EigenTensor<T, 2>::From(out_grad_mat);
auto sigma_t = EigenTensor<T, 2>::From(sigma);
auto uv_t = EigenTensor<T, 2>::From(uv);
auto ones_t = EigenTensor<T, 2>::From(ones).setConstant((T)1);
weight_mat_t.device(place) =
weight_mat_t.sum().eval().reshape(Array2(1, 1)).broadcast(Array2(h, w));
weight_grad_mat_t.device(place) =
out_grad_mat_t * (ones_t - uv_t * weight_mat_t) / sigma_t;
TensorCopySync(weight_grad_mat.Resize(weight_grad->dims()), ctx.GetPlace(),
weight_grad);
}
}; };
} // namespace operators } // namespace operators
......
...@@ -44,13 +44,13 @@ def spectral_norm(weight, u, v, dim, power_iters, eps): ...@@ -44,13 +44,13 @@ def spectral_norm(weight, u, v, dim, power_iters, eps):
return (weight_mat / sigma).reshape(weight.shape) return (weight_mat / sigma).reshape(weight.shape)
class TestSpectralNormOp(OpTest): class TestSpectralNormOpNoGrad(OpTest):
def setUp(self): def setUp(self):
self.initTestCase() self.initTestCase()
self.op_type = 'spectral_norm' self.op_type = 'spectral_norm'
weight = np.random.random(self.weight_shape).astype('float32') weight = np.random.random(self.weight_shape).astype('float32')
u = np.random.random(self.u_shape).astype('float32') u = np.random.normal(0., 1., self.u_shape).astype('float32')
v = np.random.random(self.v_shape).astype('float32') v = np.random.normal(0., 1., self.v_shape).astype('float32')
self.attrs = { self.attrs = {
"dim": self.dim, "dim": self.dim,
...@@ -76,7 +76,44 @@ class TestSpectralNormOp(OpTest): ...@@ -76,7 +76,44 @@ class TestSpectralNormOp(OpTest):
self.u_shape = (2, ) self.u_shape = (2, )
self.v_shape = (3, ) self.v_shape = (3, )
self.dim = 0 self.dim = 0
self.power_iters = 2 self.power_iters = 5
self.eps = 1e-12
class TestSpectralNormOpNoGrad2(TestSpectralNormOpNoGrad):
def initTestCase(self):
self.weight_shape = (2, 3, 3, 3)
self.u_shape = (6, )
self.v_shape = (9, )
self.dim = 1
self.power_iters = 10
self.eps = 1e-12
class TestSpectralNormOp(TestSpectralNormOpNoGrad):
def test_check_grad_ignore_uv(self):
self.check_grad(
['Weight'],
'Out',
no_grad_set=set(["U", "V"]),
max_relative_error=0.1)
def initTestCase(self):
self.weight_shape = (2, 3)
self.u_shape = (2, )
self.v_shape = (3, )
self.dim = 0
self.power_iters = 0
self.eps = 1e-12
class TestSpectralNormOp2(TestSpectralNormOp):
def initTestCase(self):
self.weight_shape = (2, 3, 3, 3)
self.u_shape = (6, )
self.v_shape = (9, )
self.dim = 1
self.power_iters = 0
self.eps = 1e-12 self.eps = 1e-12
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册