Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
6e871dbc
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6e871dbc
编写于
1月 25, 2022
作者:
J
joeqiao12
提交者:
GitHub
1月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU]add mlu kernel for fill_constant op (#39069)
* [MLU]add mlu kernel for fill_constant op * delete device_context DEPS
上级
978558be
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
544 addition
and
0 deletion
+544
-0
paddle/fluid/operators/fill_constant_op_mlu.cc
paddle/fluid/operators/fill_constant_op_mlu.cc
+91
-0
python/paddle/fluid/tests/unittests/mlu/test_fill_constant_op_mlu.py
...le/fluid/tests/unittests/mlu/test_fill_constant_op_mlu.py
+453
-0
未找到文件。
paddle/fluid/operators/fill_constant_op_mlu.cc
0 → 100644
浏览文件 @
6e871dbc
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fill_constant_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
FillConstantMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
str_value
=
ctx
.
Attr
<
std
::
string
>
(
"str_value"
);
auto
float_value
=
ctx
.
Attr
<
float
>
(
"value"
);
auto
*
out_var
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
T
value
;
if
(
str_value
.
empty
())
{
value
=
static_cast
<
T
>
(
float_value
);
}
else
{
// handle NaN/Inf first, which cannot be read from stream.
if
(
str_value
==
"inf"
)
{
value
=
static_cast
<
T
>
(
std
::
numeric_limits
<
double
>::
infinity
());
}
else
if
(
str_value
==
"-inf"
)
{
value
=
static_cast
<
T
>
(
-
std
::
numeric_limits
<
double
>::
infinity
());
}
else
if
(
str_value
==
"nan"
)
{
value
=
static_cast
<
T
>
(
std
::
numeric_limits
<
double
>::
quiet_NaN
());
}
else
{
std
::
stringstream
convert_stream
(
str_value
);
if
(
std
::
is_same
<
int64_t
,
T
>::
value
)
{
int64_t
tmp_value
;
convert_stream
>>
tmp_value
;
value
=
static_cast
<
T
>
(
tmp_value
);
}
else
{
double
tmp_value
;
convert_stream
>>
tmp_value
;
value
=
static_cast
<
T
>
(
tmp_value
);
}
}
}
if
(
ctx
.
HasInput
(
"ValueTensor"
))
{
auto
*
value_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"ValueTensor"
);
PADDLE_ENFORCE_EQ
(
value_tensor
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"When use Tensor as value to set Tensor value in fill_cosntant, "
"value input(ValueTensor) size must be 1, but get %d"
,
value_tensor
->
numel
()));
const
T
*
tensor_data
=
value_tensor
->
data
<
T
>
();
framework
::
Tensor
mlu_tensor
;
auto
tmp_place
=
value_tensor
->
place
();
if
(
platform
::
is_mlu_place
(
tmp_place
))
{
TensorCopySync
(
*
value_tensor
,
platform
::
CPUPlace
(),
&
mlu_tensor
);
tensor_data
=
mlu_tensor
.
data
<
T
>
();
}
value
=
tensor_data
[
0
];
}
auto
shape
=
GetShape
(
ctx
);
out_var
->
mutable_data
<
T
>
(
shape
,
ctx
.
GetPlace
());
MLUCnnlTensorDesc
output_desc
(
*
out_var
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
out_var
->
type
()));
MLUCnnl
::
Fill
(
ctx
,
value
,
output_desc
.
get
(),
GetBasePtr
(
out_var
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_MLU_KERNEL
(
fill_constant
,
paddle
::
operators
::
FillConstantMLUKernel
<
float
>
,
paddle
::
operators
::
FillConstantMLUKernel
<
bool
>
,
paddle
::
operators
::
FillConstantMLUKernel
<
int
>
,
paddle
::
operators
::
FillConstantMLUKernel
<
uint8_t
>
,
paddle
::
operators
::
FillConstantMLUKernel
<
int16_t
>
,
paddle
::
operators
::
FillConstantMLUKernel
<
int64_t
>
,
paddle
::
operators
::
FillConstantMLUKernel
<
paddle
::
platform
::
float16
>
);
python/paddle/fluid/tests/unittests/mlu/test_fill_constant_op_mlu.py
0 → 100644
浏览文件 @
6e871dbc
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
,
convert_float_to_uint16
import
paddle
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
import
numpy
as
np
from
paddle.fluid
import
compiler
,
Program
,
program_guard
# Situation 1: Attr(shape) is a list(without tensor)
class
TestFillConstantOp1
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with specified value
'''
self
.
op_type
=
"fill_constant"
self
.
inputs
=
{}
self
.
attrs
=
{
'shape'
:
[
123
,
92
],
'value'
:
3.8
}
self
.
outputs
=
{
'Out'
:
np
.
full
((
123
,
92
),
3.8
)}
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
TestFillConstantOp2
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with default value
'''
self
.
op_type
=
"fill_constant"
self
.
inputs
=
{}
self
.
attrs
=
{
'shape'
:
[
123
,
92
]}
self
.
outputs
=
{
'Out'
:
np
.
full
((
123
,
92
),
0.0
)}
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
TestFillConstantOp3
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with specified int64 value
'''
self
.
op_type
=
"fill_constant"
self
.
inputs
=
{}
self
.
attrs
=
{
'shape'
:
[
123
,
92
],
'value'
:
10000000000
}
self
.
outputs
=
{
'Out'
:
np
.
full
((
123
,
92
),
10000000000
)}
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
TestFillConstantOp4
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with specified int value
'''
self
.
op_type
=
"fill_constant"
self
.
inputs
=
{}
self
.
attrs
=
{
'shape'
:
[
123
,
92
],
'value'
:
3
}
self
.
outputs
=
{
'Out'
:
np
.
full
((
123
,
92
),
3
)}
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
TestFillConstantOpWithSelectedRows
(
unittest
.
TestCase
):
def
check_with_place
(
self
,
place
):
scope
=
core
.
Scope
()
# create Out Variable
out
=
scope
.
var
(
'Out'
).
get_selected_rows
()
# create and run fill_constant_op operator
fill_constant_op
=
Operator
(
"fill_constant"
,
shape
=
[
123
,
92
],
value
=
3.8
,
Out
=
'Out'
)
fill_constant_op
.
run
(
scope
,
place
)
# get result from Out
result_array
=
np
.
array
(
out
.
get_tensor
())
full_array
=
np
.
full
((
123
,
92
),
3.8
,
'float32'
)
self
.
assertTrue
(
np
.
array_equal
(
result_array
,
full_array
))
def
test_fill_constant_with_selected_rows
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
check_with_place
(
place
)
# Situation 2: Attr(shape) is a list(with tensor)
class
TestFillConstantOp1_ShapeTensorList
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with specified value
'''
self
.
op_type
=
"fill_constant"
self
.
init_data
()
shape_tensor_list
=
[]
for
index
,
ele
in
enumerate
(
self
.
shape
):
shape_tensor_list
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
"ShapeTensorList"
:
shape_tensor_list
}
self
.
attrs
=
{
'shape'
:
self
.
infer_shape
,
'value'
:
self
.
value
}
self
.
outputs
=
{
'Out'
:
np
.
full
(
self
.
shape
,
self
.
value
)}
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
infer_shape
=
[
-
1
,
92
]
self
.
value
=
3.8
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
TestFillConstantOp2_ShapeTensorList
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with default value
'''
self
.
op_type
=
"fill_constant"
self
.
init_data
()
shape_tensor_list
=
[]
for
index
,
ele
in
enumerate
(
self
.
shape
):
shape_tensor_list
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
"ShapeTensorList"
:
shape_tensor_list
}
self
.
attrs
=
{
'shape'
:
self
.
infer_shape
}
self
.
outputs
=
{
'Out'
:
np
.
full
(
self
.
shape
,
0.0
)}
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
infer_shape
=
[
-
1
,
-
1
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
TestFillConstantOp3_ShapeTensorList
(
TestFillConstantOp1_ShapeTensorList
):
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
infer_shape
=
[
123
,
-
1
]
self
.
value
=
10000000000
class
TestFillConstantOp4_ShapeTensorList
(
TestFillConstantOp1_ShapeTensorList
):
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
infer_shape
=
[
123
,
-
1
]
self
.
value
=
3
# Situation 3: shape is a tensor
class
TestFillConstantOp1_ShapeTensor
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with specified value
'''
self
.
op_type
=
"fill_constant"
self
.
init_data
()
self
.
inputs
=
{
"ShapeTensor"
:
np
.
array
(
self
.
shape
).
astype
(
"int32"
)}
self
.
attrs
=
{
'value'
:
self
.
value
}
self
.
outputs
=
{
'Out'
:
np
.
full
(
self
.
shape
,
self
.
value
)}
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
value
=
3.8
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
# Situation 4: value is a tensor
class
TestFillConstantOp1_ValueTensor
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with specified value
'''
self
.
op_type
=
"fill_constant"
self
.
init_data
()
self
.
inputs
=
{
"ShapeTensor"
:
np
.
array
(
self
.
shape
).
astype
(
"int32"
),
'ValueTensor'
:
np
.
array
([
self
.
value
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'value'
:
self
.
value
+
1.0
}
self
.
outputs
=
{
'Out'
:
np
.
full
(
self
.
shape
,
self
.
value
)}
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
init_data
(
self
):
#self.shape = [123, 92]
self
.
shape
=
[
2
,
2
]
self
.
value
=
3.8
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
# Situation 5: value is a tensor
class
TestFillConstantOp2_ValueTensor
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with specified value
'''
self
.
op_type
=
"fill_constant"
self
.
init_data
()
self
.
inputs
=
{
"ShapeTensor"
:
np
.
array
(
self
.
shape
).
astype
(
"int32"
),
'ValueTensor'
:
np
.
array
([
self
.
value
]).
astype
(
"int32"
)
}
self
.
attrs
=
{
'value'
:
self
.
value
,
'dtype'
:
2
}
self
.
outputs
=
{
'Out'
:
np
.
full
(
self
.
shape
,
self
.
value
)}
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
value
=
3
self
.
dtype
=
np
.
int32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
# Test python API
class
TestFillConstantAPI
(
unittest
.
TestCase
):
def
test_api
(
self
):
positive_2_int32
=
fluid
.
layers
.
fill_constant
([
1
],
"int32"
,
2
)
positive_2_int64
=
fluid
.
layers
.
fill_constant
([
1
],
"int64"
,
2
)
shape_tensor_int32
=
fluid
.
data
(
name
=
"shape_tensor_int32"
,
shape
=
[
2
],
dtype
=
"int32"
)
shape_tensor_int64
=
fluid
.
data
(
name
=
"shape_tensor_int64"
,
shape
=
[
2
],
dtype
=
"int64"
)
out_1
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
,
2
],
dtype
=
"float32"
,
value
=
1.1
)
out_2
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
,
positive_2_int32
],
dtype
=
"float32"
,
value
=
1.1
)
out_3
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
,
positive_2_int64
],
dtype
=
"float32"
,
value
=
1.1
)
out_4
=
fluid
.
layers
.
fill_constant
(
shape
=
shape_tensor_int32
,
dtype
=
"float32"
,
value
=
1.1
)
out_5
=
fluid
.
layers
.
fill_constant
(
shape
=
shape_tensor_int64
,
dtype
=
"float32"
,
value
=
1.1
)
out_6
=
fluid
.
layers
.
fill_constant
(
shape
=
shape_tensor_int64
,
dtype
=
np
.
float32
,
value
=
1.1
)
val1
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
np
.
float32
,
value
=
1.1
)
val2
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
np
.
float64
,
value
=
1.1
)
out_7
=
fluid
.
layers
.
fill_constant
(
shape
=
shape_tensor_int64
,
dtype
=
np
.
float32
,
value
=
val1
)
out_8
=
fluid
.
layers
.
fill_constant
(
shape
=
shape_tensor_int64
,
dtype
=
np
.
float32
,
value
=
val2
)
exe
=
fluid
.
Executor
(
place
=
fluid
.
CPUPlace
())
res_1
,
res_2
,
res_3
,
res_4
,
res_5
,
res_6
,
res_7
,
res_8
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"shape_tensor_int32"
:
np
.
array
([
1
,
2
]).
astype
(
"int32"
),
"shape_tensor_int64"
:
np
.
array
([
1
,
2
]).
astype
(
"int64"
),
},
fetch_list
=
[
out_1
,
out_2
,
out_3
,
out_4
,
out_5
,
out_6
,
out_7
,
out_8
])
assert
np
.
array_equal
(
res_1
,
np
.
full
([
1
,
2
],
1.1
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res_2
,
np
.
full
([
1
,
2
],
1.1
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res_3
,
np
.
full
([
1
,
2
],
1.1
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res_4
,
np
.
full
([
1
,
2
],
1.1
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res_5
,
np
.
full
([
1
,
2
],
1.1
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res_6
,
np
.
full
([
1
,
2
],
1.1
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res_7
,
np
.
full
([
1
,
2
],
1.1
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res_8
,
np
.
full
([
1
,
2
],
1.1
,
dtype
=
"float32"
))
class
TestFillConstantImperative
(
unittest
.
TestCase
):
def
test_api
(
self
):
with
fluid
.
dygraph
.
guard
():
data1
=
np
.
array
([
1
,
2
]).
astype
(
'int32'
)
data2
=
np
.
array
([
1.1
]).
astype
(
'float32'
)
data3
=
np
.
array
([
88
]).
astype
(
'int32'
)
shape
=
fluid
.
dygraph
.
to_variable
(
data1
)
val
=
fluid
.
dygraph
.
to_variable
(
data2
)
value
=
fluid
.
dygraph
.
to_variable
(
data3
)
res1
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
,
2
],
dtype
=
'float32'
,
value
=
1.1
)
res2
=
fluid
.
layers
.
fill_constant
(
shape
=
shape
,
dtype
=
'float32'
,
value
=
1.1
)
res3
=
fluid
.
layers
.
fill_constant
(
shape
=
shape
,
dtype
=
'float32'
,
value
=
val
)
res4
=
fluid
.
layers
.
fill_constant
(
shape
=
shape
,
dtype
=
'int32'
,
value
=
value
)
assert
np
.
array_equal
(
res1
.
numpy
(),
np
.
full
(
[
1
,
2
],
1.1
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res2
.
numpy
(),
np
.
full
(
[
1
,
2
],
1.1
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res3
.
numpy
(),
np
.
full
(
[
1
,
2
],
1.1
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res4
.
numpy
(),
np
.
full
(
[
1
,
2
],
88
,
dtype
=
"int32"
))
def
test_nan
(
self
):
with
fluid
.
dygraph
.
guard
():
res
=
fluid
.
layers
.
fill_constant
([
1
],
'float32'
,
np
.
nan
)
self
.
assertTrue
(
np
.
isnan
(
res
.
numpy
().
item
(
0
)))
def
test_inf
(
self
):
with
fluid
.
dygraph
.
guard
():
res
=
fluid
.
layers
.
fill_constant
([
1
],
'float32'
,
np
.
inf
)
self
.
assertTrue
(
np
.
isinf
(
res
.
numpy
().
item
(
0
)))
def
test_ninf
(
self
):
with
fluid
.
dygraph
.
guard
():
res
=
fluid
.
layers
.
fill_constant
([
1
],
'float32'
,
np
.
NINF
)
self
.
assertTrue
(
np
.
isinf
(
res
.
numpy
().
item
(
0
)))
self
.
assertEqual
(
np
.
NINF
,
res
.
numpy
().
item
(
0
))
class
TestFillConstantOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
#for ci coverage
x1
=
fluid
.
layers
.
data
(
name
=
'x1'
,
shape
=
[
1
],
dtype
=
"int16"
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
fill_constant
,
shape
=
[
1
],
value
=
5
,
dtype
=
'uint4'
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
fill_constant
,
shape
=
[
1.1
],
value
=
5
,
dtype
=
'float32'
,
out
=
x1
)
# The argument dtype of fill_constant_op must be one of bool, float16,
#float32, float64, uint8, int16, int32 or int64
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
1
],
dtype
=
"int32"
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
fill_constant
,
shape
=
[
1
],
value
=
5
,
dtype
=
'float64'
,
out
=
x2
)
x3
=
np
.
random
.
randn
(
100
,
100
).
astype
(
'int32'
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
fill_constant
,
shape
=
[
100
,
100
],
value
=
5
,
dtype
=
'float64'
,
out
=
x3
)
# The argument shape's type of fill_constant_op must be list, tuple or Variable.
def
test_shape_type
():
fluid
.
layers
.
fill_constant
(
shape
=
1
,
dtype
=
"float32"
,
value
=
1
)
self
.
assertRaises
(
TypeError
,
test_shape_type
)
# The argument shape's size of fill_constant_op must not be 0.
def
test_shape_size
():
fluid
.
layers
.
fill_constant
(
shape
=
[],
dtype
=
"float32"
,
value
=
1
)
self
.
assertRaises
(
AssertionError
,
test_shape_size
)
# The shape dtype of fill_constant_op must be int32 or int64.
def
test_shape_tensor_dtype
():
shape
=
fluid
.
data
(
name
=
"shape_tensor"
,
shape
=
[
2
],
dtype
=
"float32"
)
fluid
.
layers
.
fill_constant
(
shape
=
shape
,
dtype
=
"float32"
,
value
=
1
)
self
.
assertRaises
(
TypeError
,
test_shape_tensor_dtype
)
def
test_shape_tensor_list_dtype
():
shape
=
fluid
.
data
(
name
=
"shape_tensor_list"
,
shape
=
[
1
],
dtype
=
"bool"
)
fluid
.
layers
.
fill_constant
(
shape
=
[
shape
,
2
],
dtype
=
"float32"
,
value
=
1
)
self
.
assertRaises
(
TypeError
,
test_shape_tensor_list_dtype
)
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录