未验证 提交 6e871dbc 编写于 作者: J joeqiao12 提交者: GitHub

[MLU]add mlu kernel for fill_constant op (#39069)

* [MLU]add mlu kernel for fill_constant op

* delete device_context DEPS
上级 978558be
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fill_constant_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace paddle {
namespace operators {
template <typename T>
class FillConstantMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto str_value = ctx.Attr<std::string>("str_value");
auto float_value = ctx.Attr<float>("value");
auto *out_var = ctx.Output<framework::Tensor>("Out");
T value;
if (str_value.empty()) {
value = static_cast<T>(float_value);
} else {
// handle NaN/Inf first, which cannot be read from stream.
if (str_value == "inf") {
value = static_cast<T>(std::numeric_limits<double>::infinity());
} else if (str_value == "-inf") {
value = static_cast<T>(-std::numeric_limits<double>::infinity());
} else if (str_value == "nan") {
value = static_cast<T>(std::numeric_limits<double>::quiet_NaN());
} else {
std::stringstream convert_stream(str_value);
if (std::is_same<int64_t, T>::value) {
int64_t tmp_value;
convert_stream >> tmp_value;
value = static_cast<T>(tmp_value);
} else {
double tmp_value;
convert_stream >> tmp_value;
value = static_cast<T>(tmp_value);
}
}
}
if (ctx.HasInput("ValueTensor")) {
auto *value_tensor = ctx.Input<framework::Tensor>("ValueTensor");
PADDLE_ENFORCE_EQ(
value_tensor->numel(), 1,
platform::errors::InvalidArgument(
"When use Tensor as value to set Tensor value in fill_cosntant, "
"value input(ValueTensor) size must be 1, but get %d",
value_tensor->numel()));
const T *tensor_data = value_tensor->data<T>();
framework::Tensor mlu_tensor;
auto tmp_place = value_tensor->place();
if (platform::is_mlu_place(tmp_place)) {
TensorCopySync(*value_tensor, platform::CPUPlace(), &mlu_tensor);
tensor_data = mlu_tensor.data<T>();
}
value = tensor_data[0];
}
auto shape = GetShape(ctx);
out_var->mutable_data<T>(shape, ctx.GetPlace());
MLUCnnlTensorDesc output_desc(*out_var, CNNL_LAYOUT_ARRAY,
ToCnnlDataType(out_var->type()));
MLUCnnl::Fill(ctx, value, output_desc.get(), GetBasePtr(out_var));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_MLU_KERNEL(
fill_constant, paddle::operators::FillConstantMLUKernel<float>,
paddle::operators::FillConstantMLUKernel<bool>,
paddle::operators::FillConstantMLUKernel<int>,
paddle::operators::FillConstantMLUKernel<uint8_t>,
paddle::operators::FillConstantMLUKernel<int16_t>,
paddle::operators::FillConstantMLUKernel<int64_t>,
paddle::operators::FillConstantMLUKernel<paddle::platform::float16>);
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
sys.path.append('..')
from op_test import OpTest, convert_float_to_uint16
import paddle
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
import numpy as np
from paddle.fluid import compiler, Program, program_guard
# Situation 1: Attr(shape) is a list(without tensor)
class TestFillConstantOp1(OpTest):
def setUp(self):
'''Test fill_constant op with specified value
'''
self.op_type = "fill_constant"
self.inputs = {}
self.attrs = {'shape': [123, 92], 'value': 3.8}
self.outputs = {'Out': np.full((123, 92), 3.8)}
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
def test_check_output(self):
self.check_output_with_place(self.place)
class TestFillConstantOp2(OpTest):
def setUp(self):
'''Test fill_constant op with default value
'''
self.op_type = "fill_constant"
self.inputs = {}
self.attrs = {'shape': [123, 92]}
self.outputs = {'Out': np.full((123, 92), 0.0)}
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
def test_check_output(self):
self.check_output_with_place(self.place)
class TestFillConstantOp3(OpTest):
def setUp(self):
'''Test fill_constant op with specified int64 value
'''
self.op_type = "fill_constant"
self.inputs = {}
self.attrs = {'shape': [123, 92], 'value': 10000000000}
self.outputs = {'Out': np.full((123, 92), 10000000000)}
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
def test_check_output(self):
self.check_output_with_place(self.place)
class TestFillConstantOp4(OpTest):
def setUp(self):
'''Test fill_constant op with specified int value
'''
self.op_type = "fill_constant"
self.inputs = {}
self.attrs = {'shape': [123, 92], 'value': 3}
self.outputs = {'Out': np.full((123, 92), 3)}
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
def test_check_output(self):
self.check_output_with_place(self.place)
class TestFillConstantOpWithSelectedRows(unittest.TestCase):
def check_with_place(self, place):
scope = core.Scope()
# create Out Variable
out = scope.var('Out').get_selected_rows()
# create and run fill_constant_op operator
fill_constant_op = Operator(
"fill_constant", shape=[123, 92], value=3.8, Out='Out')
fill_constant_op.run(scope, place)
# get result from Out
result_array = np.array(out.get_tensor())
full_array = np.full((123, 92), 3.8, 'float32')
self.assertTrue(np.array_equal(result_array, full_array))
def test_fill_constant_with_selected_rows(self):
places = [core.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(core.CUDAPlace(0))
for place in places:
self.check_with_place(place)
# Situation 2: Attr(shape) is a list(with tensor)
class TestFillConstantOp1_ShapeTensorList(OpTest):
def setUp(self):
'''Test fill_constant op with specified value
'''
self.op_type = "fill_constant"
self.init_data()
shape_tensor_list = []
for index, ele in enumerate(self.shape):
shape_tensor_list.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs = {"ShapeTensorList": shape_tensor_list}
self.attrs = {'shape': self.infer_shape, 'value': self.value}
self.outputs = {'Out': np.full(self.shape, self.value)}
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
def init_data(self):
self.shape = [123, 92]
self.infer_shape = [-1, 92]
self.value = 3.8
def test_check_output(self):
self.check_output_with_place(self.place)
class TestFillConstantOp2_ShapeTensorList(OpTest):
def setUp(self):
'''Test fill_constant op with default value
'''
self.op_type = "fill_constant"
self.init_data()
shape_tensor_list = []
for index, ele in enumerate(self.shape):
shape_tensor_list.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs = {"ShapeTensorList": shape_tensor_list}
self.attrs = {'shape': self.infer_shape}
self.outputs = {'Out': np.full(self.shape, 0.0)}
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
def init_data(self):
self.shape = [123, 92]
self.infer_shape = [-1, -1]
def test_check_output(self):
self.check_output_with_place(self.place)
class TestFillConstantOp3_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
def init_data(self):
self.shape = [123, 92]
self.infer_shape = [123, -1]
self.value = 10000000000
class TestFillConstantOp4_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
def init_data(self):
self.shape = [123, 92]
self.infer_shape = [123, -1]
self.value = 3
# Situation 3: shape is a tensor
class TestFillConstantOp1_ShapeTensor(OpTest):
def setUp(self):
'''Test fill_constant op with specified value
'''
self.op_type = "fill_constant"
self.init_data()
self.inputs = {"ShapeTensor": np.array(self.shape).astype("int32")}
self.attrs = {'value': self.value}
self.outputs = {'Out': np.full(self.shape, self.value)}
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
def init_data(self):
self.shape = [123, 92]
self.value = 3.8
def test_check_output(self):
self.check_output_with_place(self.place)
# Situation 4: value is a tensor
class TestFillConstantOp1_ValueTensor(OpTest):
def setUp(self):
'''Test fill_constant op with specified value
'''
self.op_type = "fill_constant"
self.init_data()
self.inputs = {
"ShapeTensor": np.array(self.shape).astype("int32"),
'ValueTensor': np.array([self.value]).astype("float32")
}
self.attrs = {'value': self.value + 1.0}
self.outputs = {'Out': np.full(self.shape, self.value)}
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
def init_data(self):
#self.shape = [123, 92]
self.shape = [2, 2]
self.value = 3.8
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place)
# Situation 5: value is a tensor
class TestFillConstantOp2_ValueTensor(OpTest):
def setUp(self):
'''Test fill_constant op with specified value
'''
self.op_type = "fill_constant"
self.init_data()
self.inputs = {
"ShapeTensor": np.array(self.shape).astype("int32"),
'ValueTensor': np.array([self.value]).astype("int32")
}
self.attrs = {'value': self.value, 'dtype': 2}
self.outputs = {'Out': np.full(self.shape, self.value)}
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
def init_data(self):
self.shape = [123, 92]
self.value = 3
self.dtype = np.int32
def test_check_output(self):
self.check_output_with_place(self.place)
# Test python API
class TestFillConstantAPI(unittest.TestCase):
def test_api(self):
positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2)
positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
shape_tensor_int32 = fluid.data(
name="shape_tensor_int32", shape=[2], dtype="int32")
shape_tensor_int64 = fluid.data(
name="shape_tensor_int64", shape=[2], dtype="int64")
out_1 = fluid.layers.fill_constant(
shape=[1, 2], dtype="float32", value=1.1)
out_2 = fluid.layers.fill_constant(
shape=[1, positive_2_int32], dtype="float32", value=1.1)
out_3 = fluid.layers.fill_constant(
shape=[1, positive_2_int64], dtype="float32", value=1.1)
out_4 = fluid.layers.fill_constant(
shape=shape_tensor_int32, dtype="float32", value=1.1)
out_5 = fluid.layers.fill_constant(
shape=shape_tensor_int64, dtype="float32", value=1.1)
out_6 = fluid.layers.fill_constant(
shape=shape_tensor_int64, dtype=np.float32, value=1.1)
val1 = fluid.layers.fill_constant(
shape=[1], dtype=np.float32, value=1.1)
val2 = fluid.layers.fill_constant(
shape=[1], dtype=np.float64, value=1.1)
out_7 = fluid.layers.fill_constant(
shape=shape_tensor_int64, dtype=np.float32, value=val1)
out_8 = fluid.layers.fill_constant(
shape=shape_tensor_int64, dtype=np.float32, value=val2)
exe = fluid.Executor(place=fluid.CPUPlace())
res_1, res_2, res_3, res_4, res_5, res_6, res_7, res_8 = exe.run(
fluid.default_main_program(),
feed={
"shape_tensor_int32": np.array([1, 2]).astype("int32"),
"shape_tensor_int64": np.array([1, 2]).astype("int64"),
},
fetch_list=[
out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8
])
assert np.array_equal(res_1, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_2, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_3, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_4, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_5, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_6, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_7, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_8, np.full([1, 2], 1.1, dtype="float32"))
class TestFillConstantImperative(unittest.TestCase):
def test_api(self):
with fluid.dygraph.guard():
data1 = np.array([1, 2]).astype('int32')
data2 = np.array([1.1]).astype('float32')
data3 = np.array([88]).astype('int32')
shape = fluid.dygraph.to_variable(data1)
val = fluid.dygraph.to_variable(data2)
value = fluid.dygraph.to_variable(data3)
res1 = fluid.layers.fill_constant(
shape=[1, 2], dtype='float32', value=1.1)
res2 = fluid.layers.fill_constant(
shape=shape, dtype='float32', value=1.1)
res3 = fluid.layers.fill_constant(
shape=shape, dtype='float32', value=val)
res4 = fluid.layers.fill_constant(
shape=shape, dtype='int32', value=value)
assert np.array_equal(
res1.numpy(), np.full(
[1, 2], 1.1, dtype="float32"))
assert np.array_equal(
res2.numpy(), np.full(
[1, 2], 1.1, dtype="float32"))
assert np.array_equal(
res3.numpy(), np.full(
[1, 2], 1.1, dtype="float32"))
assert np.array_equal(
res4.numpy(), np.full(
[1, 2], 88, dtype="int32"))
def test_nan(self):
with fluid.dygraph.guard():
res = fluid.layers.fill_constant([1], 'float32', np.nan)
self.assertTrue(np.isnan(res.numpy().item(0)))
def test_inf(self):
with fluid.dygraph.guard():
res = fluid.layers.fill_constant([1], 'float32', np.inf)
self.assertTrue(np.isinf(res.numpy().item(0)))
def test_ninf(self):
with fluid.dygraph.guard():
res = fluid.layers.fill_constant([1], 'float32', np.NINF)
self.assertTrue(np.isinf(res.numpy().item(0)))
self.assertEqual(np.NINF, res.numpy().item(0))
class TestFillConstantOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
#for ci coverage
x1 = fluid.layers.data(name='x1', shape=[1], dtype="int16")
self.assertRaises(
TypeError,
fluid.layers.fill_constant,
shape=[1],
value=5,
dtype='uint4')
self.assertRaises(
TypeError,
fluid.layers.fill_constant,
shape=[1.1],
value=5,
dtype='float32',
out=x1)
# The argument dtype of fill_constant_op must be one of bool, float16,
#float32, float64, uint8, int16, int32 or int64
x2 = fluid.layers.data(name='x2', shape=[1], dtype="int32")
self.assertRaises(
TypeError,
fluid.layers.fill_constant,
shape=[1],
value=5,
dtype='float64',
out=x2)
x3 = np.random.randn(100, 100).astype('int32')
self.assertRaises(
TypeError,
fluid.layers.fill_constant,
shape=[100, 100],
value=5,
dtype='float64',
out=x3)
# The argument shape's type of fill_constant_op must be list, tuple or Variable.
def test_shape_type():
fluid.layers.fill_constant(shape=1, dtype="float32", value=1)
self.assertRaises(TypeError, test_shape_type)
# The argument shape's size of fill_constant_op must not be 0.
def test_shape_size():
fluid.layers.fill_constant(shape=[], dtype="float32", value=1)
self.assertRaises(AssertionError, test_shape_size)
# The shape dtype of fill_constant_op must be int32 or int64.
def test_shape_tensor_dtype():
shape = fluid.data(
name="shape_tensor", shape=[2], dtype="float32")
fluid.layers.fill_constant(
shape=shape, dtype="float32", value=1)
self.assertRaises(TypeError, test_shape_tensor_dtype)
def test_shape_tensor_list_dtype():
shape = fluid.data(
name="shape_tensor_list", shape=[1], dtype="bool")
fluid.layers.fill_constant(
shape=[shape, 2], dtype="float32", value=1)
self.assertRaises(TypeError, test_shape_tensor_list_dtype)
if __name__ == "__main__":
paddle.enable_static()
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册